
Modelling and verification

Designing correct concurrent and 
real-time systems using 

formal methods



Teacher

Luca Di Stefano
post-doctoral researcher, Convecs team

Inria Grenoble Rhône-Alpes
Montbonnot

luca.di-stefano@inria.fr

Modelling and Verification 2



Course overview (1/2)

1. Introduction (18/3, 13:30-15:30)
2. Communicating automata (18/3, 15:30-17:30)

3. Process algebras (21/3 8:30-10:30)
4. Exercises on 2-3 (21/3 10:30-12:30)
5. LNT language (21/3 13:30-17:30)

6. Timed Automata (22/3 8:30-10:30)
7. Exercises on 2-3 (22/3 10:30-12:30)
8. Ex. on 5-6 + Lab: Uppaal (22/3 13:30-17:30)

Modelling and Verification 3



Course overview (2/2)

9. Temporal logics (13/4 13:30-15:30)
10.Test generation (13/4 15:30-17:30)

11. Exercises on 9-10 (14/4 8:30-12:30)
12. Lab session on CADP (14/4 13:30-17:30)

13. Exercises + Lab on all topics (11/5 13:30-16:30)
14. Conclusions (15/4 16:30-17:30)

Modelling and Verification 4



Final exam

• Individual homework
– 3 practical exercises involving the tools we will see in 

class (worth 5 points each)
– 1-2 “pen-and-paper” exercises (worth 5 points total)
– Total: 20 points

• Before the deadline (TBD), you should send me
– All files needed to “solve” the practical exercises
– A short report containing:

• Your solution to “pen-and-paper” exercise(s)
• Details on the practical exercises (what do the files 

contain, which commands did you run, etc.)

Modelling and Verification 5



Improving development processes 
using formal methods



What is a formal method
• A system development method
• Based on a formal model:

– Rigorous system description
– Mathematically-defined semantics

• Advantages:
– Reference: no ambiguity
– Some aspects of system correctness can be verified formally
– Applications from design to implementation & test

• Applicable to both software and hardware
– Architecture
– Data
– Input/outputs
– Timed behaviour, etc.

Modelling and Verification 7



Many formal methods

Modelling and Verification

(We will see these ones)

• Petri Nets
• Process algebras

– CCS
– CSP
– LNT

• Automata-based
– Timed Automata
– Hybrid Automata

• Quantitative FM
– Markov chains
– Chemical reaction networks

8



Why so many formal methods?

• Same situation as for programming languages
• Each formal method targets a specific domain: 

description of data, sequential processing, 
concurrency, real-time, etc.

• Each formal method has its strengths and 
weaknesses

• (Academia likes to explore those tradeoffs and 
come up with alternatives to the state of the art)

Modelling and Verification 9



Some knowledge bases

• Wikipedia
• https://formalmethods.wikia.org/
• http://www.cs.indiana.edu/formal-methods-

education/Tools
• http://i-cav.org/cavlinks/

Modelling and Verification 10

https://formalmethods.wikia.org/
http://www.cs.indiana.edu/formal-methods-education/Tools
http://i-cav.org/cavlinks/


COSTS AND BENEFITS 
Formal Methods:

Modelling and Verification 11



The initial cost of formal methods

Formal methods have the same disadvantages as any
quality improvement effort:
• They require skilled engineers
• The effort put in the formal modeling does not 

always immediately improve the final product

But…
• They also have advantages
• Not using them also has costs and risks

Modelling and Verification 12



1. Better quality of specifications

• More care is put in the early phases of the project

• Much better specifications are obtained, which 
will serve as reference documentation for the 
project

• This way, long term maintenance will be easier

Modelling and Verification 13



2. An easier coding phase

• Programmers have a clear description of what the 
final program must “look like”

• Ambiguities are eliminated: it is much harder for 
the programmer to introduce mistakes by 
misunderstanding the specifications

Modelling and Verification 14



3. Earliest error detection

• Generally, the latter an error is detected, the 
more expensive it is to correct

• The worst errors are those detected when the 
product has already been delivered to the client

• With formal methods, errors are detected earlier
• A formal proof of correctness gives strong 

guarantees that the final product will work as 
intended

Modelling and Verification 15



New distribution of effort and cost

Detecting errors earlier speeds up implementation, 
reduces the cost and duration of tests

Modelling and Verification 16



Costs of NOT using Formal Methods

• Intel Pentium II fdiv bug (1994)
– The “floating point division” instruction in early 

Pentium 2 chips gave incorrect results
– Massive recall of the affected chips
– 475 M$ 

• Ariane 5 crash (1996)
– A conversion from a 64-bit integer to a 16-bit one 

caused an overflow
– Rocket entered self-destruct
– 370 M$

Modelling and Verification 17



Additional outcomes

• Automated verification: automatically detect 
errors within the formal model (increases the 
number of errors discovered early)

• Code generation: synthesize source code from the 
specification (avoids introducing human errors in 
the translation)

• Test case generation: generate tests according to 
some criterion (decreases human effort)

Modelling and Verification 18



Automated verification (1/4)

• Idea: use the computing power to analyse the formal
model and:
– Either prove that the model is correct
– Or detect errors automatically

• It works for larger and larger examples

• As for chess player programs, "brute force" (exploration of 
all possible cases) and “heuristics" (smart strategies to 
direct the exploration) are combined

Modelling and Verification 19



Automated verification (2/4)

What do we verify?
• Functional (or qualitative) aspects

– Absence of deadlock (i.e., the system does not halt)
– Determinism
– Absence of unwanted sequences of actions

• Non-functional (or quantitative) aspects
– Response time
– Performance
– Memory consumption
– Power consumption

Modelling and Verification 20



Automated verification (3/4)
Two main approaches to functional verification:

• Proof (or deductive verification, theorem proving):
mathematically demonstrate that the property holds by 
application of logic rules

• Enumerative verification (brute force):
enumerate and verify all possible cases

• Not mutually exclusive
• Again, several tradeoffs

– Theorem proving may be harder to fully automate
– Enumeration has issues with “infinite-state” systems

Modelling and Verification 21



Automated verification (4/4)

How do we specify the properties we want to verify?
Two main approaches:

• Equivalence checking (single-language)
– Same formalism for system and properties

• Model checking (two-language)
– One language to describe the system
– the other to formalise properties

Modelling and Verification 22



Equivalence checking

• Describe both the specification S and the 
implementation P in the same formalism
– Specification encodes the “good” behaviour (and is 

usually very compact)
– Implementation describes how the actual system will 

work (and is usually larger, more detailed)

• Verify (via automated tools) that the two are 
equivalent: P	~	S
– i.e., they “do the same things”
– (There are multiple formalization of “equivalence”)

Modelling and Verification 23



Model Checking

• Describe the system P with a specification 
language

• Describe “good” behaviour with one or more logic 
formulas φ1, φ2 , … φn (properties)

• Show that P models (i.e., satisfies) all properties
P	⊨	φi

Modelling and Verification 24



Code generation and executable FMs

• A modelling language is executable if the model 
can be automatically transformed into executable 
code

• Programming languages are executable (of 
course!), but only some are formalized

• Some formal methods (not all of them!) are 
executable and are equipped with with compilers 
(which generate C code, for instance)

• Some modelling languages are neither formal, nor 
executable (e.g., parts of UML)

Modelling and Verification 25



An informal programming language: C

Modelling and Verification 26



A formal programming language: SML

Modelling and Verification 27



A formal process algebra: LNT

Modelling and Verification 28



Rapid prototyping

• If the specification is described with an 
executable formal method, it can be considered as 
a program written in a very high-level language

• The specification can be used to quickly generate
prototypes that will be shown to the client

• Possibly, all the coding can be automated
– But beware, big specifications can have drawbacks too!

Modelling and Verification 29



Automated test generation

• If the formal model is executable, it can be used 
to generate tests automatically

• This approach reduces the testing effort

Examples:
• TGV (Test Generation based on Verification)
• GATeL (developed at CEA/LIST)
• TESTOR

Modelling and Verification 30



Co-simulation (intensive testing)

• Use the code produced from an executable formal 
model to pilot the real system

• The formal model receives the real system’s 
outputs and sends its inputs

• Observers are used to detect any behavioural 
difference between the model and the real system

Modelling and Verification 31



INDUSTRY IMPACT
Formal methods:

Modelling and Verification 32



Hardware industry

• FMs are now commonly used for circuit and 
architecture designs
– Example: the PSL (Property Specification Language) of 

the Accellera consortium: http://www.accellera.org

• Essentially, every new design incorporates FMs in 
the signoff phase

• Some manufacturers even develop their own tools
– Intel
– IBM

Modelling and Verification 33

http://www.accellera.org/


Software industry (1/2)

FMs are not widespread in the software industry.
• They are a young subject (~50 years)
• They require theoretical skills
• They are not general: usually they are only

relevent to the most complex parts of a system
• There are many of them, with different tradeoffs

– additional effort: which parts of the systems should be
treated formally? Which formal method is best suited?

Modelling and Verification 34



Software industry (2/2)

• Distrust: initial goals were too ambitious
• Time-to-market is more important than early 

detection of errors
• Difficult to predict if the overhead caused by FMs 

will pay off in the future
• Competing techniques (e.g., software testing):

– catch a good amount of “shallow” bugs 
– require less technical expertise

But things are changing...

Modelling and Verification 35



FMs in the software industry: examples

Modelling and Verification

• Microsoft: Verification of Windows drivers (WDF)
• Facebook: Verification of web/mobile apps (Infer)
• Amazon: Verification of AWS components (TLA+)

[Software verification] has been the Holy Grail of 
computer science for many decades.
But now, in some very key areas, for example driver 
verification, we’re building tools that can do actual proofs 
of the software and how it works in order to guarantee 
the reliability.

Bill Gates, 2002

36

https://en.wikipedia.org/wiki/Windows_Driver_Frameworks
https://fbinfer.com/
http://lamport.azurewebsites.net/tla/tla.html


Successes in the « software » domain

• Example 1 : The SPIN model checker (Bell Labs)
http://spinroot.com/spin/whatispin.html
– The Rotterdam flood control barriers
– The Lucent Pathstar switch
– NASA missions: Cassini, Mars, etc.

• Example 2 : The CADP verification tools (Inria)
http://cadp.inria.fr/case-studies

> 200 case studies in various domains

Modelling and Verification 37

http://spinroot.com/spin/whatispin.html
http://cadp.inria.fr/case-studies


Summary

• For specification and design, FMs are an improvement with 
respect of usual practices of natural language + diagrams.

• They require expertise and thus are mostly used for 
critical systems
– avionics, energy plants, circuits, etc.

• Their cost (early phases) can be compensated later
– automated coding, validation, test generation, etc.
– This can deeply modify the traditional development cycle.

• The formal method to use must be chosen according to the 
nature of the problem

Modelling and Verification 38



CONCURRENT, REACTIVE,
REAL-TIME SYSTEMS

Modelling and Verification 39



Transformational programs

• Sequential behaviour
• Termination is normal, even expected
• Maps inputs to outputs: output	=	f(input)
Examples:
• Algorithms (sorting, classifiers, arithmetic ops, …)
• Compilers
• Command-line tools

Modelling and Verification

programinput output

40



Reactive systems (1/3)

• Cyclic behaviour
• Termination (“deadlock”) is abnormal
• Receive inputs and respond with outputs
Examples:
• Operating systems
• Graphical interfaces
• Servers

Modelling and Verification

program
input1
input2
input3

output1
output2
output3

41



Reactive systems (2/3)

Modelling and Verification

• The same input can produce different outputs if it 
comes at different instants
– Double-click in a graphical interface
– Request to access a shared resource

• Input is not a single value: it’s a function of time
• Same for output
• The output of a reactive system must take into 

account all the previous inputs:
output(t)	=	f	(input(0),	…,	input(t))

42



Reactive systems (3/3)

• State: “summary” of the inputs
– state(t) : state of the program at instant t

• Next output & state are affected by current input 
and state
– output(t+1)	=	f	(input(t),	state(t))
– state(t+1)	=	g	(input(t),	state(t))

• Transitions from one instant (t) to (t+1)

Modelling and Verification

state (t) state (t+1)
input (t)/output (t)

43



Principles of reactive systems

• Concurrency
– Simultaneous execution of several processes (tasks) 
– Processes may compete to access common resources

• Communication
– Information exchange (message sending or variable 

sharing) between tasks

• Synchronization
– Waiting (rendezvous) between tasks or suspension 

(preemption)

• Cooperation
– Collaboration of tasks toward a common objective

Modelling and Verification 44



Asynchronous concurrency

• No global clock
• Atomic actions

– Instantaneous
– Non-simultaneous

• Automata may synchronize on specific actions
– E.g. inputs and outputs
– These actions are considered to happen simultaneously

• Observer point of view: interleaving of actions

Modelling and Verification 45



Examples of asynchronous systems

• Protocols 
– communication
– security / cryptography

• Distributed systems 
– clusters & grids
– shared virtual memory
– internet of things

• Hardware 
– asynchronous circuits and architectures
– multiprocessor systems

Modelling and Verification 46



Concurrency is a difficult problem

• Much harder than sequential computing
• Unavoidable

– We want to exploit parallel computing
– Some scenarios (e.g., networks of computers) can only 

be seen as concurrent systems

• Many errors are possible
– Deadlocks
– Race conditions, etc.

• Other causes of complexity
– Communications may fail
– Tasks/processes may fail, etc.

Modelling and Verification 47



Real-time (RT) systems

• Inherit the features of reactive systems
• Furthermore, time matters

– output	(t+1)	=	f	(input	(t),	state	(t),	t)
– state	(t+1)	=	g	(input	(t),	state	(t),	t)

• Execution is time-constrained
– A late reaction to some input (“missing a deadline”) 

may be useless or even wrong

Examples
• Communication protocols with timeout
• Electronic circuits (the timing of signals is important)
• Controllers for, e.g., autonomous vehicles

Modelling and Verification 48



Soft vs. Hard RT

• Soft RT: the system should not miss a deadline
– but may do it from time to time: it can cause some 

degradation, but the system may recover
– E.g., IP router

• Hard RT: the system must respect all deadlines
– Failure to do so may have catastrophic consequences
– E.g., plane autopilot

• The hard RT part of a system is usually small
– Airbus 340: 5% hard RT

Modelling and Verification 49



Goals of this course

• Study basic formalisms for concurrency
– Communicating automata
– Process algebras
– Property languages
– Timed extensions

• Study some aspects of formal verification (model 
checking, equivalence checking), and other 
techniques enabled by FMs (e.g. test generation)

• Lab sessions: languages and tools for modelling 
and verifying asynchronous concurrent systems

Modelling and Verification 50


