Communicating automata

Communicating Automata (CA)

- Simple formalism to describe asynchronous concurrent systems
- Shows some of the basic concepts of this course:
- System description using an automaton
- Decomposition into communicating automata
- automata product (parallelisation)
- automata synchronisation
- construction of the state graph

A coffee machine automaton

1. Wait for a coin
2. Brew a cup of coffee
3. Give it to the user

Decomposing the coffee machine

Coin subsystem

- Accepts a coin

- Orders to brew a coffee

Brewing subsystem

- Waits for a command

- Makes coffee
- How do we put these pieces together?
- Will the composition have the same behavior?

Labelled Transition Systems (LTS)

An LTS is a 4-ple $M=\left\langle S, A, T, s_{0}\right\rangle$

- S : Set of states, A : Set of actions
- $T \subseteq S \times A \times S$: Labelled transition relation
- If $\left(s, a, s^{\prime}\right) \in T$, we simply write $s-a \rightarrow s^{\prime}$
- s_{0} : Initial state

$$
S=\{\text { waitCoin, makingCoffee, coffeeReady }\}
$$

$A=\{$ coin, brew, coffee $\}$

$$
T=\{(w, \text { coin }, m),
$$

(m, brew, c),
(c, coffee, w)\}
$s_{0}=$ waitCoin

LTS product (1/3)

- We have the LTSs of two systems
- $M_{1}=\left\langle S_{1}, A_{1}, T_{1}, s_{10}\right\rangle$
- $M_{2}=\left\langle S_{2}, A_{2}, T_{2}, S_{20}\right\rangle$
- We want the LTS of a system M that is composed of M_{1} and M_{2}
- M_{1} and M_{2} evolve independently, in parallel

We can define a product of LTSs: $M=M_{1} \otimes M_{2}$

LTS product (2/3)

Example: one system can only do a, the other can only do b.

The product should be able to do:

- a, then b
- b, then a

LTS product (3/3)

- States: Product of S_{1}, S_{2}
- Actions: Union of A_{1}, A_{2}
- Initial state: $\left(s_{10}, s_{20}\right)$
- Transitions?

$$
\begin{gathered}
\frac{s_{1} \xrightarrow{\mu} s_{1}^{\prime}}{\left(s_{1}, s_{2}\right) \xrightarrow{\mu}\left(s_{1}^{\prime}, s_{2}\right)} \\
\frac{s_{2} \xrightarrow{\mu} s_{2}^{\prime}}{\left(s_{1}, s_{2}\right) \xrightarrow{\mu}\left(s_{1}, s_{2}^{\prime}\right)}
\end{gathered}
$$

Inference rules
if all premises (above the line) are true, the conclusion (below the line) must also be true

What about communication?

- What we have seen is pure interleaving
- The two components just alternate their execution
- But components often communicate
- Let's go back at the coffee machine example
- brew represents a communication between the two automata: they should do brew together

Synchronisation

- Let us introduce a set L of synchronising actions
- Extend \otimes to \otimes_{L}
- E.g., for our coffee machine, $L=\{$ brew $\}$
- When M_{1}, M_{2} can both do $\mu \in L$, they evolve together
- When $L=\varnothing$: pure interleaving

$$
\begin{gathered}
\frac{s_{1} \xrightarrow{\mu} s_{1}^{\prime} \mu \notin L}{\left(s_{1}, s_{2}\right) \xrightarrow{\mu}\left(s_{1}^{\prime}, s_{2}\right)} \quad \stackrel{s_{2} \xrightarrow{\mu} s_{2}^{\prime} \mu \notin L}{\left(s_{1}, s_{2}\right) \xrightarrow{\mu}\left(s_{1}, s_{2}^{\prime}\right)} \\
\frac{s_{1} \xrightarrow{\mu} s_{1}^{\prime} \quad s_{2} \xrightarrow{\mu} s_{2}^{\prime} \quad \mu \in L}{\left(s_{1}, s_{2}\right) \xrightarrow{\mu}\left(s_{1}^{\prime}, s_{2}^{\prime}\right)}
\end{gathered}
$$

Composing the coffee machine

Wait a minute...
This automaton does not have the same behaviour as the original

- After brewing a coffee, it can accept a coin before giving the coffee

Exercise

- Compute the following product

Solution

Behavioural Equivalences

Weaker than LTS equivalence: some automata are different, but have the same behaviour

- Example:

- Both can only do an ∞ sequence of a
- We need to formalise this notion

Strong bisimulation (1/2)

A binary relation between states
Binary relation = Set of pairs
When do states p and q have the same behaviour?

- They can do the same actions
- When they do an action, they must reach states with the same behaviour (recursive!)

Strong bisimulation

R is a strong bisimulation if $\forall(p, q) \in R$:

1. If $p-\mathrm{a} \rightarrow p^{\prime}$ then $\exists q^{\prime}$ s.t. $q-\mathrm{a} \rightarrow q^{\prime}$ and $\left(p^{\prime}, q^{\prime}\right) \in \mathrm{R}$
2. If $q-\mathrm{a} \rightarrow q^{\prime}$ then $\exists p^{\prime}$ s.t $p-\mathrm{a} \rightarrow p^{\prime}$ and $\left(p^{\prime}, q^{\prime}\right) \in \mathrm{R}$
p, q are strongly bisimilar $(p \sim q)$ if there exists a strong bisimulation R such that $(p, q) \in R$

Two LTSs with initial states s_{10}, s_{20} are strongly bisimilar if $s_{10} \sim s_{20}$

Example (1/3)

- Prove that $s_{0} \sim t_{0}$

Example (2/3)

- Prove that $s_{0} \sim t_{0}$

- Deadlocked states are bisimilar: $s_{2} \sim t_{2}, s_{2} \sim t_{3}$
- $s_{1} \sim t_{1}, s_{1} \sim t_{1}^{\prime}$
- $s_{0} \sim t_{0}$
- $R=\left\{\left(s_{0}, t_{0}\right),\left(s_{1}, t_{1}\right),\left(s_{1}, t_{1}^{\prime}\right),\left(s_{2}, t_{2}\right),\left(s_{2}, t_{3}\right)\right\}$

Example (3/3)

- These automata are not bisimilar

- Look at s_{1}, t_{1}, and $t_{1}{ }^{\prime}$
- This is equivalence checking, can be automated

Exercise

- Are these LTSs bisimilar? $\left(s_{0} \sim t_{0}\right.$?)

Solution

- Are these LTSs bisimilar? ($s_{0} \sim t_{0}$?) Yes
- Dashed lines represent the bisimulation relation
- Self-transitions may be confusing...

LTS minimization

- For every LTS M we can construct an M^{\prime} that
- Is strongly bisimilar to M
- Has a minimal number of states/transitions
- M 'is known as the minimal representative of M
- M^{\prime} can be computed automatically, given M
- Example:

is the minimal representative of

Internal actions and hiding

- Internal (or invisible) action
- traditionally written i, or τ (tau)
- Automata cannot synchronise on it
- Often, we want to check the equivalence of a specification S and an implementation P
- But P may contain actions that are irrelevant to S.
- Strong bisimulation does not work
- Solution:
- In P, rename those irrelevant actions to i (hiding)
- Define an equivalence that "ignores" internal actions

Branching bisimulation

- For non- τ actions, same as strong bisimulation
- "Collapse" sequences of τ actions

- You can also minimize an LTS up to branching bisimulation

Rendezvous

When two (or more!) CA synchronize, we say that they perform a rendezvous. Two "styles":

- Symmetrical (shown earlier)
- No such distinction
- Rendezvous on the same action
- Easy to extend to many CA (multi-party rendezvous)
- Asymmetrical
- Distinguish between input and output actions
- Rendezvous on input/output pairs
- Typically results in an internal action
- Typical syntax: 'a - a or ?a - !a or a? - a!

Drawbacks

- Risk of state space explosion with \otimes
- Size of $\mathrm{S}_{1} \times \mathrm{S}_{2}=\left(\right.$ Size of $\left.S_{1}\right) \times\left(\right.$ Size of $\left.S_{2}\right)$
- Minimization can help with that
- No modelling of data
- Scenario: an automaton sends an int to another
- Automata need a different action for each int
- Receiver needs a different state for each int

- Too low-level for human use

