Communicating automata

Communicating Automata (CA)

- Simple formalism to describe asynchronous concurrent systems
- Shows some of the basic concepts of this course:
 - System description using an automaton
 - Decomposition into communicating automata
 - automata product (parallelisation)
 - automata synchronisation
 - construction of the state graph

A coffee machine automaton

- 1. Wait for a coin
- 2. Brew a cup of coffee
- 3. Give it to the user

Decomposing the coffee machine

- Coin subsystem
 - Accepts a coin
 - Orders to brew a coffee

Brewing subsystem

- Waits for a command
- Makes coffee

- How do we put these pieces together?
- Will the composition have the same behavior?

Labelled Transition Systems (LTS)

An LTS is a 4-ple $M = \langle S, A, T, s_0 \rangle$

- S: Set of states, A: Set of actions
- $T \subseteq S \times A \times S$: Labelled transition relation - If $(s, a, s') \in T$, we simply write $s \longrightarrow a \to s'$
- s_0 : Initial state

 $S = \{ waitCoin, makingCoffee, coffeeReady \}$ init waitCoin
coin
coffee
brew
coffeeReady $A = \{ coin, brew, coffee \}$ $T = \{ (w, coin, m),$ (m, brew, c), $(c, coffee, w) \}$ $s_0 = waitCoin$

LTS product (1/3)

- We have the LTSs of two systems
 - $M_1 = \langle S_1, A_1, T_1, S_{10} \rangle$
 - $M_2 = \langle S_2, A_2, T_2, S_{20} \rangle$
- We want the LTS of a system *M* that is composed of *M*₁ and *M*₂
- *M*₁ and *M*₂ evolve independently, in parallel

We can define a product of LTSs: $M = M_1 \otimes M_2$

LTS product (2/3)

Example: one system can only do *a*, the other can only do *b*.

The product should be able to do:

- *a*, then *b*
- *b*, then *a*

LTS product (3/3)

- States: Product of S₁, S₂
- Actions: Union of A₁, A₂
- Initial state: (*s*₁₀, *s*₂₀)
- Transitions?

Inference rules

if all premises (above the line) are true, the conclusion (below the line) must also be true

What about communication?

- What we have seen is pure interleaving
 - The two components just alternate their execution
- But components often communicate
 - Let's go back at the coffee machine example
 - *brew* represents a communication between the two automata: they should do *brew* together

Synchronisation

- Let us introduce a set L of synchronising actions
- Extend \otimes to \otimes_{L}
 - E.g., for our coffee machine, *L* = { *brew* }
 - When M_1 , M_2 can both do $\mu \in L$, they evolve together
 - When $L = \emptyset$: pure interleaving

$$\frac{s_1 \xrightarrow{\mu} s'_1 \quad \mu \notin L}{(s_1, s_2) \xrightarrow{\mu} (s'_1, s_2)} \qquad \frac{s_2 \xrightarrow{\mu} s'_2 \quad \mu \notin L}{(s_1, s_2) \xrightarrow{\mu} (s_1, s'_2)}$$
$$\frac{s_1 \xrightarrow{\mu} s'_1 \quad s_2 \xrightarrow{\mu} s'_2 \quad \mu \in L}{(s_1, s_2) \xrightarrow{\mu} (s'_1, s'_2)}$$

Composing the coffee machine

Wait a minute...

This automaton does not have the same behaviour as the original

> After brewing a coffee, it can accept a coin before giving the coffee

Exercise

• Compute the following product

Behavioural Equivalences

Weaker than LTS equivalence: some automata are different, but have the same behaviour

• Example:

- Both can only do an ∞ sequence of a
- We need to formalise this notion

Strong bisimulation (1/2)

- A binary relation between states
- Binary relation = Set of pairs
- When do states *p* and *q* have the same behaviour?
 - They can do the same actions
 - When they do an action, they must reach states with the same behaviour (recursive!)

Strong bisimulation

R is a strong bisimulation if $\forall (p, q) \in R$:

- 1. If $p \rightarrow p'$ then $\exists q'$ s.t. $q \rightarrow q'$ and $(p', q') \in \mathbb{R}$
- 2. If $q \rightarrow q'$ then $\exists p' \text{ s.t } p \rightarrow p'$ and $(p', q') \in \mathbb{R}$

p, *q* are strongly bisimilar $(p \sim q)$ if there exists a strong bisimulation *R* such that $(p, q) \in R$

Two LTSs with initial states s_{10} , s_{20} are strongly bisimilar if $s_{10} \sim s_{20}$

Example (1/3)

• Prove that $s_0 \sim t_0$

Example (2/3)

• Prove that $s_0 \sim t_0$

- Deadlocked states are bisimilar: $s_2 \sim t_2$, $s_2 \sim t_3$
- $s_1 \sim t_1, s_1 \sim t'_1$
- $s_0 \sim t_0$
- $R = \{ (s_0, t_0), (s_1, t_1), (s_1, t'_1), (s_2, t_2), (s_2, t_3) \}$

Example (3/3)

• These automata are not bisimilar

- Look at s_1 , t_1 , and t_1'
- This is equivalence checking, can be automated

Exercise

• Are these LTSs bisimilar? $(s_0 \sim t_0?)$

Solution

- Are these LTSs bisimilar? ($s_0 \sim t_0$?) Yes
 - Dashed lines represent the bisimulation relation
 - Self-transitions may be confusing...

LTS minimization

- For every LTS *M* we can construct an *M*' that
 - Is strongly bisimilar to M

p

t

С

- Has a minimal number of states/transitions
- M'is known as the minimal representative of M
- *M*'can be computed automatically, given *M*
- Example:

Internal actions and hiding

- Internal (or invisible) action
 - traditionally written *i*, or τ (tau)
 - Automata cannot synchronise on it
- Often, we want to check the equivalence of a specification *S* and an implementation *P*
 - But *P* may contain actions that are irrelevant to *S*.
 - Strong bisimulation does not work
- Solution:
 - In *P*, rename those irrelevant actions to *i* (hiding)
 - Define an equivalence that "ignores" internal actions

Branching bisimulation

- For non- τ actions, same as strong bisimulation
- "Collapse" sequences of τ actions

• You can also minimize an LTS up to branching bisimulation

Rendezvous

When two (or more!) CA synchronize, we say that they perform a rendezvous. Two "styles":

- Symmetrical (shown earlier)
 - No such distinction
 - Rendezvous on the same action
 - Easy to extend to many CA (multi-party rendezvous)
- Asymmetrical
 - Distinguish between input and output actions
 - Rendezvous on input/output pairs
 - Typically results in an internal action
 - Typical syntax: 'a a or ?a !a or a? a!

Drawbacks

- Risk of state space explosion with \otimes
 - Size of $S_1 \times S_2 = (\text{Size of } S_1) \times (\text{Size of } S_2)$
 - Minimization can help with that
- No modelling of data
 - Scenario: an automaton sends an int to another
 - Automata need a different action for each int
 - Receiver needs a different state for each int
- Too low-level for human use

