
Process algebras

Representing concurrent systems

• LTSs have a strong mathematical foundation
(needed to apply formal methods)

• But they are harder to manipulate directly (e.g.,
via drawing graphs) the bigger they become
– Imagine having to code a large software project using

flowcharts instead of programming languages…

• Process algebras = formal languages for structured
textual description of concurrent systems

Modelling and Verification 2

Process algebras: common elements

• A process is made of elementary actions

• Smaller processes can be composed to create
larger ones, by means of specific operators

• Typically, those operators need to describe:
– Sequencing (a system does a, then b, then …)
– Choice (a system may do a, or b, or …)
– Parallel composition (a system does a and b in parallel)

Modelling and Verification 3

CCS: Actions

CCS = Calculus of communicating systems
Intuitively, given a set of channel names A:
• CCS processes can perform input/output actions

on that channel
– Input: a, output: ā , where a ∈ A
– We say that a, ā are complementary

• They may synchronise on complementary actions
• They can perform an invisible action (denoted τ)

– Synchronisation on τ is not allowed

Modelling and Verification 4

CCS: Processes

• Grammar:
P, Q ::= nil (idle process)
| µ.P (action prefix) [µ is an action]
| P + Q (choice)
| P | Q (parallel composition)
| P \ a (restriction) [a is a visible action]
| P [a/b] (relabelling) [a,b are actions]
| K (named process invocation)

Modelling and Verification 5

Structural operational semantics

• A CCS process is just a term (a piece of text)
• We must give a rigorous meaning to every term
• One possible approach: operational semantics

– Define an LTS for every CCS term
– Each state in the LTS is a CCS term
– States are linked by labelled transitions
– The set of transitions is defined via inference rules

• If rules are based on the syntax of the language,
we have a structural operational semantics (SOS)

Modelling and Verification 6

CCS: Idle process

• The idle process nil (or 0) cannot do anything
• Its LTS is a single state with no transitions
• Thus, there are no SOS rules associated to nil

Modelling and Verification 7

nil

CCS: action prefix

Modelling and Verification 8

CCS: choice

Modelling and Verification 9

𝑃→
!
𝑃′

𝑃 + 𝑄→
!
𝑃′

𝑄 →
!
𝑄′

𝑃 + 𝑄→
!
𝑄′

CCS: Parallel composition

Modelling and Verification 10

𝑃→
!
𝑃"

𝑃| 𝑄→
!
𝑃"|𝑄

𝑄→
!
𝑄"

𝑃| 𝑄→
!
𝑃|𝑄′

𝑃→
#
𝑃" 𝑄→

$#
𝑄"

𝑃| 𝑄→
%
𝑃"|𝑄′

Exercise

Draw the LTS corresponding to the CCS term
(a.b.nil | c.nil)

Modelling and Verification 11

Solution

Draw the LTS corresponding to the CCS term
(a.b.nil | c.nil)

Modelling and Verification 12

a.b.nil | c.nil b.nil | c.nil
a

a

nil | c.nil
b

b
a.b.nil | nil

c

b.nil | nil

c

nil | nil

c

Exercise

Draw the LTS corresponding to the CCS term
(a.nil | ā.nil)

Modelling and Verification 13

Solution

Draw the LTS corresponding to the CCS term
(a.nil | ā.nil)

Modelling and Verification 14

a

a ā

ā

tnil | ā.nil a.nil | nil

nil

CCS: restriction

Modelling and Verification 15

CCS: relabelling (1/2)

Modelling and Verification 16

CCS: relabelling (2/2)

Modelling and Verification 17

CCS: named process invocation

Modelling and Verification 18

CCS: conclusions

• The above rules are enough to formally describe
the behaviour of any CCS term

• With this formal semantics, we can prove that two
processes are bisimilar (equivalence checking)
– http://caal.cs.aau.dk/ (CAAL: online automated tool)

Modelling and Verification 19

http://caal.cs.aau.dk/

Other process algebras

• Value-passing CCS
• CSP (Communicating Sequential Processes)
• ACP (Algebra of Communicating Processes)
• LOTOS (Language of Temporal Ordering

Specifications)
• LNT (LOTOS New Technology), etc.

• They introduce operators and constructs that
make it easier to specify complex systems

Modelling and Verification 20

