Process algebras

Representing concurrent systems

e LTSs have a strong mathematical foundation
(needed to apply formal methods)

e But they are harder to manipulate directly (e.g.,
via drawing graphs) the bigger they become

- Imagine having to code a large software project using
flowcharts instead of programming languages...

e Process algebras = formal languages for structured
textual description of concurrent systems

Modelling and Verification

Process algebras: common elements

e A process is made of elementary actions

« Smaller processes can be composed to create
larger ones, by means of specific operators

e Typically, those operators need to describe:

- Sequencing (a system does a, then b, then ...)
- Choice (a system may do a, or b, or ...)

- Parallel composition (a system does a and b in parallel)

Modelling and Verification

CCS: Actions

CCS = Calculus of communicating systems
Intuitively, given a set of channel names A:

o CCS processes can perform input/output actions
on that channel

- Input: a, output: a , wherea e A
- We say that a, a are complementary
e They may synchronise on complementary actions

e They can perform an invisible action (denoted 1)
- Synchronisation on 1 is not allowed

Modelling and Verification

CCS: Processes

e Grammar:
P, Q::=nil (idle process)
P (action prefix) [y is an action]
P+ Q (choice)
P | Q (parallel composition)
P\ a (restriction) [a is a visible action]
P [a/Db] (relabelling) [a,b are actions]
K (named process invocation)

Modelling and Verification

Structural operational semantics

A CCS process is just a term (a piece of text)
We must give a rigorous meaning to every term

One possible approach: operational semantics
- Define an LTS for every CCS term

Each state in the LTS is a CCS term

States are linked by labelled transitions

The set of transitions is defined via inference rules

If rules are based on the syntax of the language,
we have a structural operational semantics (SOS)

Modelling and Verification

CCS: Idle process

e The idle process nil (or 0) cannot do anything
e Its LTS is a single state with no transitions
e Thus, there are no SOS rules associated to nil

Modelling and Verification

CCS: action prefix

u.P performs p and continues as P

U can be either:

- A channel name a
- A co-name a

- The invisible action t

We will assume that a = a
Semantics of J.P:

uwP 5p
No premises = this rule always holds

Modelling and Verification

CCS: choice

e P + Q behaves either as P or as Q

e If P can perform an action and become P’, then
P+Q may also do that (same for Q, Q’)

Q50
P+Q5P P+Q5¢

Modelling and Verification 9

CCS: Parallel composition

e P | Qexecutes P and Q in parallel

e Furthermore, if P can perform an action named a
and Q can perform its complement a, then a
rendezvous may happen

e The result is an invisible action t
(= only binary rendezvous)

u u 7
PP 05Q P3P @S¢
U H / T ,
PIQ=P'1Q PIQ=PIQ" PlQSPIQ

Modelling and Verification 10

Exercise

Draw the LTS corresponding to the CCS term
(a.b.nil | c.nil)

Modelling and Verification

11

Solution

Draw the LTS corresponding to the CCS term
(a.b.nil | c.nil)

[a.b.nil | c.nil} a [b.nil c.nil} & [nil | c.nil }
[a.b.nivl | nil} a [b.nilvl nil } [nil " nil }

Modelling and Verification 12

Exercise

Draw the LTS corresponding to the CCS term
(a.nil | a.nil)

Modelling and Verification

13

Solution

Draw the LTS corresponding to the CCS term
(a.nil | a.nil)

nil | a.nil a.nil | nil

nil

Modelling and Verification

14

CCS: restriction

e P\ acan perform the same transitions as P,
except those labelled a (or a)

o Useful to force synchronisation:
- (a.nil | a.nil) can performa, a, and t
- (a.nil | a.nil) \ a can only perform t
- T cannot be restricted

e P\{a, b, c, ..}isthesameasP\a\b\c\..

p5p U+a p#*a
P\aiP’\a

Modelling and Verification

15

CCS: relabelling (1/2)

e P [a/b] behaves exacly like P, except that it
performs a (or @) whenever P would do b (or b)
- Actions can be relabelled to t (hiding)

- T cannot be relabelled
- You cannot relabel a and a to different actions

e Multiple relabellings: P [a/b, c/d, ...]

e a/b actually represents a relabelling function,
i.e., a function from actions to actions that
satisfies the description above

Modelling and Verification

16

CCS: relabelling (2/2)

e Properties of a relabelling function f:
- f(r) = t (the internal action is not renamed)

- f(x) = f(x) for all visible actions (co-name relations
are preserved)

e a/b is the function f such that
- f(b) = a,f(b) =a

- f(x) = x for all other actions x

p5p

Pif1 =8 prif)

Modelling and Verification

17

CCS: named process invocation

e A named process is a CCS term P that is given a
name K. We write K 2 P, “K is defined as P”

e CCS terms can contain names: they are equivalent

to their definitions
- E.g. if K2 c.nil, then a.b.K =a.b.c.nil

e This allows recursion e.g., K £ a.b.K
- K=a.b.a.b.a.b. ...

pSp kap
K5 p

Modelling and Verification

18

CCS: conclusions

e The above rules are enough to formally describe
the behaviour of any CCS term

o With this formal semantics, we can prove that two
processes are bisimilar (equivalence checking)

- (CAAL: online automated tool)

Modelling and Verification 19

http://caal.cs.aau.dk/

Other process algebras

Value-passing CCS
CSP (Communicating Sequential Processes)
ACP (Algebra of Communicating Processes)

LOTOS (Language of Temporal Ordering
Specifications)

LNT (LOTOS New Technology), etc.

They introduce operators and constructs that
make it easier to specify complex systems

Modelling and Verification

20

