
The LNT Language

Introduction

• LNT mixes concepts from the process algebra and
programming “worlds”
– Control part: Processes, gates, synchronization
– Data part: Variables, functions, expressions…

• Advantages:
– Describing complex concurrent systems is easier
– Lots of similarities with programming languages

Modelling and Verification 2

Tools for LNT programs

Given a program.lnt file, with CADP you can…

• Generate its LTS
– lnt.open program.lnt generator program.bcg

• Perform equivalence checking
– lnt.open program.lnt bisimulator spec.bcg

• Do a simulation (execute e.g., 100 steps randomly)
– lnt.open program.lnt executor 100 2

• Perform model checking
– lnt.open program.lnt evaluator property.mcl

Modelling and Verification 3

http://cadp.inria.fr/man/generator.html
http://cadp.inria.fr/man/bisimulator.html
http://cadp.inria.fr/man/executor.html
http://cadp.inria.fr/man/evaluator3.html

“Coffee or tea” machine in LNT

module CoffeeOrTeaMachine is
process AcceptCoin [coin1, coin2: none] is

select coin1 [] coin2 end select --choice
end process
process Main [nickel, dime, makeC,

makeT, giveC, giveT: none] is
AcceptCoin [nickel, dime] ; --invocation
select makeC; giveC [] makeT; giveT
end select –- “;” denotes sequencing

end process
end module

Modelling and Verification 4

Another LNT example (1/2)

module University is
process CS [pub, coin, coffee: none] is

-- infinite loop
loop pub ; coin ; coffee end loop

end process

process CM [coin, coffee: none] is
loop coin ; coffee end loop

end process
(* another syntax for (multi-line) comments *)
-- continues on next slide

Modelling and Verification 5

Another LNT example (2/2)

process Main [pub: none] is
-- rename coin, coffee to i (internal action)
hide coin, coffee: none in

-- parallel composition
-- (forced rendezvous on coin, coffee)
par coin, coffee in

CS || CM
end par

end hide
end process

end module

Modelling and Verification 6

Files and modules

• 1 file = 1 module
– Module must have the same name as the file
– Names are case-insensitive (as most of LNT)
– Names can only contain letters, numbers, underscores
– You can import other modules in the same directory

• Example
– File mymodule.lnt, imports a.lnt and b.lnt :

module MyModule(A, B) is
…

end module

Modelling and Verification 7

Contents of a module

• Definitions related to the control part
– Processes, Channels

• Definitions related to the data part
– Functions, Custom data types

• If you call lnt.open on a file, that file must
contain a Main process
– “Entry point”, describes the whole system
– Similar to main() function in C

Modelling and Verification 8

CONTROL PART
LNT

Modelling and Verification 9

Processes

• Definition
process MyProcess [gates] (parameters) is
…

end process

• Composition operators
– Sequential P1 ; P2 ; … ; Pn
– Choice select P1 [] P2 [] … [] Pn end select
– Parallel par P1 || P2 || … || Pn end par
– …

Modelling and Verification 10

Process parameters

process OddOrEven [odd, even: none] (x : int) is
if (x mod 2) == 0 then even else odd end if

end process
process Main [odd, even : none] is

OddOrEven [odd, even] (4) -- invocation
end process

• Similar to function parameters
• The behaviour of OddOrEven changes according to

the actual parameter (in this case, 4).
• Main cannot have parameters!

Modelling and Verification 11

Variables and assignments

• var is used to declare one or more variables.
• Variables are never shared, always local
• Within processes, assignments (:=) may be

deterministic or not (any)
• Nondet. assignments may be constrained (where)

var x : nat in
x := 3 * 4 + 1 ;
x := any nat ;
x := any nat where x < 4

end var -- x cannot be accessed after this
Modelling and Verification 12

Semantics of any … where

Nondeterministic assignment is equivalent to a
select of deterministic assignments for every
possible value (possibly constrained by where)

x := any nat where x < 4

is equivalent to

select
x := 0 [] x := 1 [] x := 2 [] x := 3

end select
Modelling and Verification 13

Exercise

Write an LNT process that
• Performs do a, b, c in any order
• After performing all of the above, if performs

either d or e

• Hints
– You will need all the basic composition operators
(; , select, par)
– Use a gate for each action

Modelling and Verification 14

Solution

process Exercise1 [a, b, c, d, e : none] is
par a || b || c end par ;
select d [] e end select

end process

Notice that ; is an operator, not a terminator
– unlike C or Java

So you must not put ; after end select

Modelling and Verification 15

Gates and channels (1/2)

• A gate is a communication endpoint for a process
• Until now, we have only seen none gates

– Pure synchronization, without exchange of data
– Like CCS, but symmetrical (no complementary actions)

• In general, LNT allows to describe gates where
data can be sent and received

• We can constrain the type of data allowed on a
gate, by means of channels
– none: no data is allowed
– any: everything is allowed

Modelling and Verification 16

Gates and channels (2/2)

• Example
channel natChannel is nat end channel
process P [g1: none, g2 : natChannel] is
g1 ; -- Synchronise over gate g1
g2 (10) -- Offer “10” over gate g2

end process

• More complex channel definitions:
-- either one nat or a pair of ints
channel chan is nat, (int, int) end channel

• Predefined types: bool, char, nat, int, real, string

Modelling and Verification 17

Data reception (1/2)

process P1 [g : any] is
var n : nat in

g (?n)
end var

end process

var is used to declare a variable
g(?n) = if someone else sends a nat over gate g, P1
will receive it and store it in variable n

Modelling and Verification 18

Data reception (2/2)

We can add constraints on the data we want to
receive with where

process P1 [g : any] is
var n : nat in

g (?n) where n > 10
end var

end process

P1 will only accept values > 10

Modelling and Verification 19

Semantics of reception

• These 3 fragments are equivalent (n is a variable
of type nat):
– g(?n)
– n := any nat ; g(n)
– select n := 0 [] … end select ; g(n)

• Reception looks like an asymmetrical rendezvous,
but is actually symmetrical

• When, say, g(10) synchronises with g(?n), it is
actually synchronising with the branch where n has
been set to 10 (thus, both processes are
performing an action g(10))

Modelling and Verification 20

User-defined data types

LNT allows user-defined types, for instance:
• Enums
type Answer is Yes, No, Maybe end type

• Records
type Point2D is point (x: Int, y: Int) end type

• Arrays (static size)
type Triangle is array [0..2] of Point2D end type

After being defined, they can be used just like
predefined types (e.g., in channels)

Modelling and Verification 21

null and stop

null is a “null operation”, while stop is the
deadlocked process

• null ; P is equivalent to P
– null simply terminates without visible actions

• stop ; P is equivalent to stop
– stop does not terminate, thus P can never be executed

Modelling and Verification 22

Parallel composition (1/2)

• No synchronization
par P1[g1, g2…] || P2[…] || … || Pn[…] end par

• Global synchronization
par g1, g2, … in … end par

• Partial synchronization
par

g1 -> P1 [… , g1, …]
|| g1 -> P2 [… , g1, …]
|| g2 -> P3 [g1 , g2, …]

end par -- P3 won’t sync with P1, P2

Modelling and Verification 23

Parallel composition (2/2)

• Partial synchronization: process g1, … -> P must
synchronize with all other processes having g1 in
their synchronization list (…, g1, … -> Q)

• Think graphically:
par

x, y -> A
|| x, z -> B
|| z, t -> C
|| y, z, t -> D
end par

Modelling and Verification 24

LNT control part: other constructs

• Conditionals
– if c1 then P elsif c2 then P2 else P3 end if
– only if c1 then P1 elsif c2 then P2 end if

• Same as if … else stop end if

• Loops
– loop P end loop (infinite)
– loop L in … break L … end loop (breakable)
– while c loop … end loop
– for x:=0 while x<10 by x:=x+1 loop … end loop

• Pattern matching (similar to C’s switch)
– case x in case1 -> P1 | … | any -> P2 end case

Modelling and Verification 25

Exercise

• Encode this LTS as an
LNT process P

• Hints:
– You only need ; and
select (no par)

– For cyclic behaviour,
You can either use
loops or recursion (up
to you)

Modelling and Verification 26

Solution (with loops)

process P [A,B,C,D,E:none] is
loop

A ;
select

B
[] C ;

select
D ; stop [] E

end select
end select

end loop
end process

Modelling and Verification 27

Solution (with recursion)

process P [A,B,C,D,E:none] is
A ;
select

B; P[A,B,C,D,E]
[] C ;

select
D ; stop

[]
E ; P [A,B,C,D,E]

end select
end select

end process
Modelling and Verification 28

DATA PART
LNT

Modelling and Verification 29

Functions

• Definition
function myFunction (parameters): returnType is

…
end function

• Similar to processes, but:
– Cannot have gates
– May have a return type: for instance:

function sum (x, y: nat): nat is
return x + y

end function

Modelling and Verification 30

Differences between control/data parts

• LNT functions are deterministic and sequential
• Within a function, you cannot use:

• You cannot call processes from functions
• (You can call functions from processes)
• You can use return only in functions

Modelling and Verification 31

– stop, only if
– gate actions

– any
– select , par, hide

Exercise (1/2)

Modelling and Verification 32

Exercise (2/2)

• Describe H, N, W as LNT processes
– Disregard ?/! and temporal constraints
– The invisible action τ is written i in LNT

• Write a Main process such that:
– H and W synchronise on start, done
– H and N synchronise on hit

Modelling and Verification 33

Solution (1/3)

• Processes N and W: use unbreakable loops
• Of course, recursive processes can also be used

process N [hit: none] is
loop hit; hit; i end loop

end process

process W [start, done: none] is
loop start; done end loop

end process

Modelling and Verification 34

Solution (2/3)

• Process H: use a breakable loop to describe the
hit self-transition in the busy state

process H [start, done, hit: none] is
loop

start;
loop L in select

hit [] break L
end select end loop;
done

end loop
end process

Modelling and Verification 35

Solution (3/3)

• Process Main: use partial synchronization

process Main [start, done, hit: none] is
par

start, done, hit -> H[start, done, hit]
||

start, done -> W[start, done]
||

hit -> N[hit]
end par

end process

Modelling and Verification 36

LNT reference manual

• Champelovier et al., “Reference Manual of the LNT to
LOTOS Translator”
– Technical report, available on the CADP website
– Complete description of LNT
– Despite the title, no knowledge of LOTOS is required

• Relevant sections:
– Ch. 5, 6, 7, 8: types, channels, functions, processes
– Appendix B: Built-in functions and operators

Modelling and Verification 37

http://cadp.inria.fr/ftp/publications/cadp/Champelovier-Clerc-Garavel-et-al-10.pdf

