Timed automata

Limitation with LTSs

- They allow to express sequences of actions, choices, loops, and concurrency
- But they cannot model time and time-dependent constraints
- Time is essential in many real-world scenarios
 - Railway systems, e.g.: a crossing barrier takes x seconds to get lowered, and must be lowered y seconds before the train arrives
 - Embedded controllers, e.g.: a safety system in a power plant must react within *x* seconds
- Idea: extend LTSs by adding time

Timed LTS (TLTS)

A TLTS is a 6-ple $\langle S, A, \Delta, T, \Theta, s_0 \rangle$

- S: States, A: Actions, $T \subseteq S \times A \times S$: Labelled transition relation, s_0 : Initial state (like LTS)

• Δ : Time domain

- Usually, $\Delta = \Re^{\geq 0}$ (real numbers ≥ 0)

• $\Theta \subseteq S \times \Delta \times S$: Timed transition relation

- $s - t \rightarrow s'$: From state s, the system can reach state s' by waiting for a time t

TLTS: Constraints on \Theta

We need to introduce these constraints so that the TLTS "makes sense" (i.e., it respects our intuitions about time)

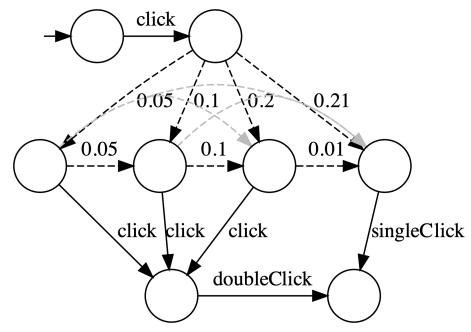
- Time determinism
 - If $s \rightarrow s'$ and $s \rightarrow t \rightarrow s''$ then s' = s''
 - Waiting cannot lead to different states
- Time additivity
 - If $s t_1 \rightarrow s'$ and $s' t_2 \rightarrow s''$ then $s (t_1 + t_2) \rightarrow s''$
 - Waiting t_1 and then t_2 is the same as waiting (t_1+t_2)

Representation of TLTSs (1/2)

- We were able to represent LTSs as graphs with labelled edges. We cannot give a similar, graphical representation of TLTS
- Let's try anyway...
- Example: double click in a GUI
 - At time t = 0, user clicks the mouse button.
 - If user clicks the button again while $t \le 0.2s$, the computer registers a double click
 - Otherwise, the computer registers a single click

Representation of TLTSs (2/2)

- The user can do the 2nd click at any moment in that 0.2 seconds timespan
- •
 •
 • and S will have an infinite (non-countable)
 number of elements!

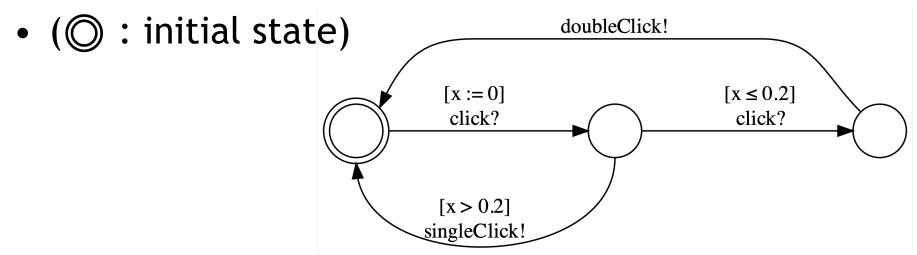


Timed automata

- A "compact" formalism to describe TLTSs
- Communicating automata + clocks
 - Clocks = variables whose values increase continuously
 - The values of all clocks increase at the same speed
 - Can be tested: is the value of $c (\leq, \geq, =, \neq)$ some value?
 - Can be reset to 0
- Software support: Uppaal <u>www.uppaal.org</u>

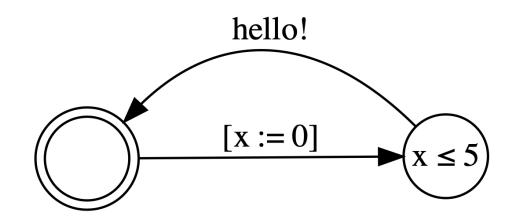
TA example: double click

- ? and ! denote input and output actions
- x is a clock
 - 1st click resets x (x := 0)
 - If a 2nd click happens while $x \le 0.2$, a double click is registered
 - Otherwise, a single click is registered



Clock conditions (1/2)

- Guards (Attached to transitions)
 - The transition is enabled iff. the guard is satisfied
- Invariants (Attached to states)
 - The invariant is true as long as the system stays in that state
 - Example: this TA ouputs "hello" before x > 5



Clock conditions (2/2)

- A condition can be:
 - A comparison of the value of a clock *x* with a constant *c*
 - A comparison of (x x') with c
 - A negation (NOT) of a condition, or a conjunction (AND) or disjunction (OR) of conditions

$$\Psi ::= x \text{ op } c \mid x - x' \text{ op } c \mid \neg \Psi \mid \Psi \land \Psi \mid \Psi \lor \Psi$$

op ::= < | > | ≤ | ≥ | = | ≠

TA: Definition

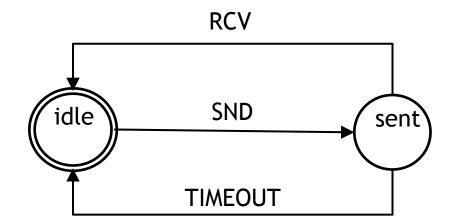
A TA is a 6-ple $\langle S, A, X, T, Inv, s_0 \rangle$

- S: States, A: Actions, s_0 : Initial state (like LTS)
- X: Set of clocks
- T: Transition relation: set of 6-ples (s, a, g, r, s')
 - *s*, *s*': source and target states
 - $-a \in A$: action
 - $g \in \Psi$: a guard over clocks
 - $r \subseteq X$: a subset of clocks that will be reset
- Inv : $S \rightarrow \Psi$ maps each state to an invariant
- All sets are finite

Exercise: Communication medium with timeout

Complete the following CA to make a TA such that:

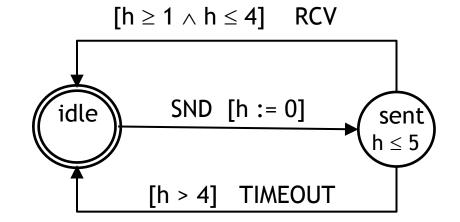
- Action RCV can occur between 1 and 4 TU after action SND
- If action RCV has not occurred after 4 TU, then action TIMEOUT occurs within 1 TU



Solution

Complete the following CA to make a TA such that:

- Action RCV can occur between 1 and 4 TU after action SND
- If action RCV has not occurred after 4 TU, then action TIMEOUT occurs within 1 TU

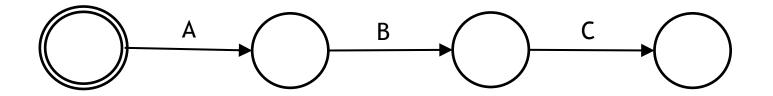


Exercise

Complete the following CA to make a TA such that:

- Action B occurs between 2 and 4 TU after action A
- Action C occurs at least 4 TU after action A and at least 1 TU after action B

Hint: use two clocks

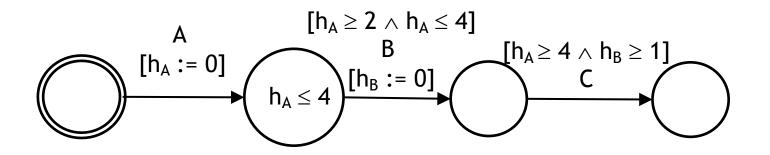


Solution

Complete the following CA to make a TA such that:

- Action B occurs between 2 and 4 TU after action A
- Action C occurs at least 4 TU after action A and at least 1 TU after action B

Hint: use two clocks



Semantics of TA (1/2)

- General idea: associate a TLTS to every TA $TA = \langle S, A, X, T, Inv, s_0 \rangle$ $TLTS = \langle S \times V, A, \Re^{\geq 0}, T', \Theta, (s_0, v_0) \rangle$
- States of TLTS = (States of TA) × (clock valuation)
 -A valuation v: X→ ℜ^{≥0} is a function that assigns a value to every clock. V is the set of all valuations
 - $-v_0$ is the valuation such that all clocks are set to 0.

-v+t ($t \in \Re^{\geq 0}$) is the valuation v' where all values in v are increased by t time units: $\forall x \in X. v'(x) = v(x) + t$

• Initial state of TLTS: (s_0, v_0)

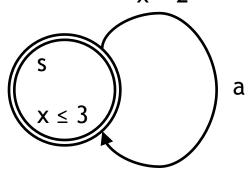
Semantics of TA (2/2)

- T' (discrete transitions): $(s, v) a \rightarrow (s', v')$ iff.
 - TA contains a transition (s, a, g, r, s')
 - Valuation v satisfies the guard g
 - All clocks in r are reset to 0 in v', while all other clocks have the same value in v and v'
 - v'satisfies the invariant Inv(s')
- Θ (timed transitions): $(s, v) t \rightarrow (s, v+t)$ iff. all valuations between v and v+t satisfy Inv(s)

$$- \forall dt \in [0, t] . v + dt \models Inv(s)$$

Timelock

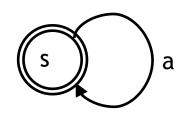
- May arise from using invariants incorrectly
- Example: x < 2



- What happens when x = 3?
 - Clock x is never reset: time stops
- Unacceptable! Either reset x, or add other edges/states describing what happens when x = 3
- Can be detected automatically via verification

Critical paths and Zeno effect

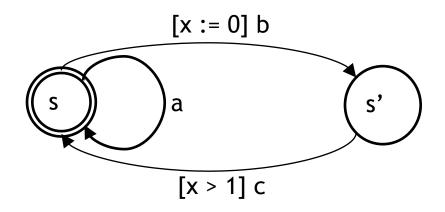
• Example:



- Critical path: infinite actions in zero time
 - $(s, \emptyset) \longrightarrow (s, \emptyset) \longrightarrow$
- Zeno effect: infinite actions in finite time
 - $(s, \emptyset) \longrightarrow (s, \emptyset) \longrightarrow$
 - Will perform an infinity of *a* actions in 1 time unit
- These kinds of paths are generally allowed, but it's good to prove that time passes (there are paths that are not critical/Zeno)

Time progress

- For some time interval *t* and some *n*, every state of the TLTS admits at least one path of length ≤ *n* such that at least *t* time units pass
- The system may still contain critical/Zeno paths
- Example:
 - "aaa..." path is critical
 - "bc" path takes at least 1 time unit



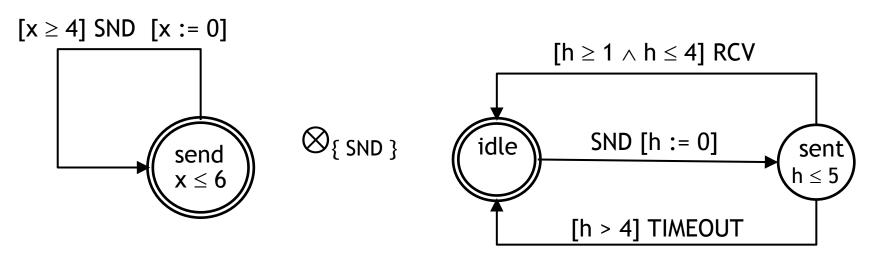
Parallel composition of TA (1/2)

- Same idea as with CA: we want to decompose complex (timed) systems into small components
- Again, rendez-vous on pairs of actions according to a synchronization set *L*
 - Symmetrical (same actions)
 - Asymmetrical (input/output pairs) (e.g., Uppaal)
- But we also have to take into account:
 - Guards
 - Resets
 - Invariants

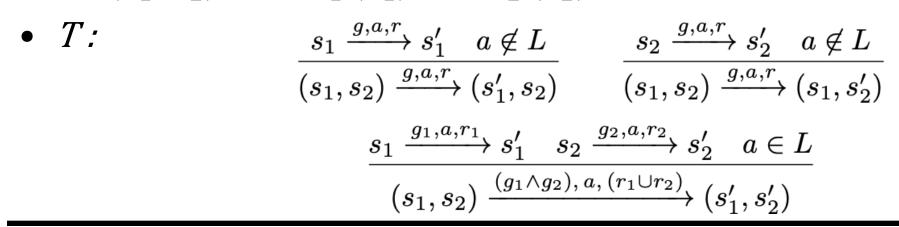
Parallel composition of TA (2/2)

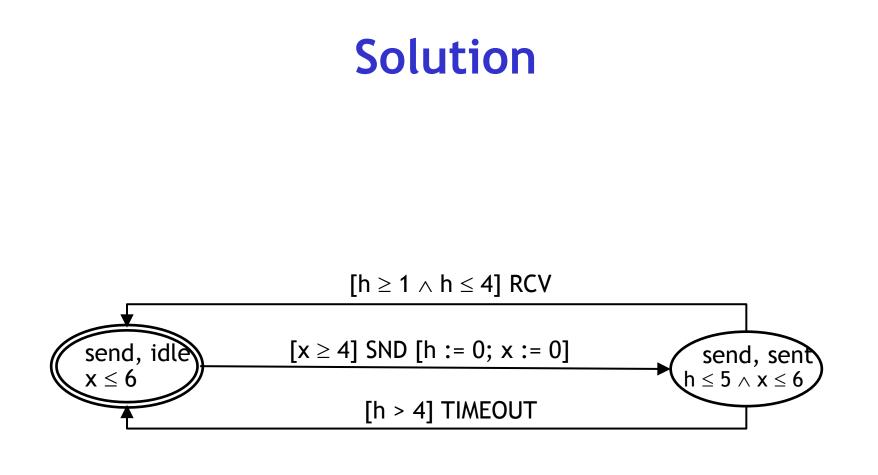
- $TA_1 = \langle S_1, A_1, X_1, T_1, Inv_1, s_{01} \rangle$,
- $TA_2 = \langle S_2, A_2, X_2, T_2, Inv_2, s_{02} \rangle$ with $X_1 \cap X_2 = \emptyset$
- $L \subseteq A_1 \cap A_2$ (synchronization actions) Then,
- $\mathsf{TA}_{1} \otimes_{\mathsf{L}} \mathsf{TA}_{2} = \langle S_{1} \times S_{2}, A_{1} \cup A_{2}, X_{1} \cup X_{2}, T, Inv, (s_{01}, s_{02}) \rangle$ • $Inv(s_{1}, s_{2}) = Inv_{1}(s_{1}) \wedge Inv_{2}(s_{2})$
- T: $\frac{s_1 \xrightarrow{g,a,r} s'_1 \quad a \notin L}{(s_1,s_2) \xrightarrow{g,a,r} (s'_1,s_2)} \qquad \frac{s_2 \xrightarrow{g,a,r} s'_2 \quad a \notin L}{(s_1,s_2) \xrightarrow{g,a,r} (s_1,s'_2)}$ $\frac{s_1 \xrightarrow{g_1,a,r_1} s'_1 \quad s_2 \xrightarrow{g_2,a,r_2} s'_2 \quad a \in L}{(s_1,s_2) \xrightarrow{(g_1 \wedge g_2), a, (r_1 \cup r_2)} (s'_1,s'_2)}$

Exercise



 $\mathsf{TA}_{1} \otimes_{\mathsf{L}} \mathsf{TA}_{2} = \langle S_{1} \times S_{2}, A_{1} \cup A_{2}, X_{1} \cup X_{2}, T, Inv, (s_{01}, s_{02}) \rangle$ • $Inv(s_{1}, s_{2}) = Inv_{1}(s_{1}) \wedge Inv_{2}(s_{2})$





Conclusions

- TA allow to describe systems where time matters
- This introduces additional complexities
 - Underlying model (TLTS) has uncountably
 states and transitions
 - Timelocks, critical paths, Zeno effect...
- We can compose TAs via a product \otimes
- Automated tools can verify several aspects related to TA correctness