
Temporal Logic

Equivalence vs. Model Checking

• Up until now, we have described correctness as a
form of equivalence between two systems
– An implementation is correct if it’s equivalent (i.e.,

strongly or branching bisimilar) to a specification

• An alternative approach: model checking
– describe correctness as a set of logical formulas
– Then, check that the implementation satisfies those

formulas

• Benefits:
– The properties are language-independent
– Modularity (easy to add/change/remove properties)

Modelling and Verification 2

Modal logics

• Reason about the sequencing and branching of
transitions in an LTS

• Basic modal operators:
– Possibility: from a state, there exists (at least) an

outgoing transition labeled by a given action and
leading to a state with a given property

– Necessity: from a state, all the outgoing transitions
labeled by a given action lead to states with a given
property

• Hennessy-Milner Logic (HML): express properties of
an LTS

Modelling and Verification 3

HML syntax

j ::= true constant “true”

| false constant “false”

| ¬j negation

| j1 Ù j2 conjunction

| j1 Ú j2 disjunction

| á a ñ j possibility (“diamond”)

| [a] j necessity (“box”)

Modelling and Verification 4

HML semantics

• When does a state s satisfy a formula j? (s ⊨ j)
– true: satisfied by all states; false: never satisfied
– s satisfies ¬j iff. it does not satisfy j
– s satisfies j1Ùj2 iff. it satisfies both j1 and j2

– s satisfies j1Új2 iff. it satisfies either j1 or j2 (or both)
– s satisfies áañj iff. there is at least one state s’

such that s —a→ s’ and s’ ⊨ j
– s satisfies [a]j iff. for every state s’,

If s —a→ s’ then s’ ⊨ j
– Notice that [a]j = ¬(áañ¬j)

• An LTS satisfies j if its initial state satisfies it

Modelling and Verification 5

HML semantics (2/2)

• Given an LTS with states S and transition relation
T, for every HML formula j we define [[j]] as the
set of states in S that satisfy j
– [[true]]	=	S,	[[false]]	=	Ø
– [[¬j]]	=	S	\ [[j]]
– [[j1 Ù j2]]	=	[[j1]]	Ç [[j2]]	
– [[j1 Ú j2]]	=	[[j1]]	È [[j2]]	
– [[á a ñ j]]	=	{	s	Î S	|	$ s’	.		s	–a→	s’	Ù s’	Î [[j]]	}
– [[[a] j]]	=	{	s	Î S	|	" s’	.	s	–a→	s’	Þ s’	Î [[j]]	}

• An LTS satisfies j if its initial state is in [[j]]

Modelling and Verification 6

Action formulas

• áañj = “After action a, possibly j”
• [a]j = “After action a, necessarily j”

Sometimes it’s useful to have shorter notations:
• áa1 Ú a2ñ j = áa1ñj Ú áa2ñj

– “After a1 or a1, possibly j”

• [a1 Ú a2] j = [a1]j Ù [a2]j
• [¬a2]j = “After anything except a2, necessarily j”
• átrueñj = “After anything, possibly j”

Modelling and Verification 7

HML Patterns

Property Is satisfied by s iff.
• áañtrue s can perform a
• [a]false s cannot perform a

• átrueñ true s is not deadlocked
– Same as áa1ñtrue Ú áa2ñtrue Ú … (for all actions ai)

• [true] false s is deadlocked
– Same as [a1]false Ù [a2]false Ù … (for all actions ai)

Modelling and Verification 8

Exercises

Write the following properties in HML:

1. From this state, only action a should be performed
2. From this state we can perform the sequence “a, b”
3. After a, action b is forbidden

Modelling and Verification 9

Solutions

Write the following properties in HML:

1. From this state, only action a should be performed
2. From this state we can perform the sequence “a, b”
3. After performing a, action b is forbidden

1. áañ true Ù [¬a] false
2. áañ ábñ true
3. [a][b] false

Modelling and Verification 10

Limitations of HML

• With HML (as shown so far), we can only describe
a finite part of an LTS (up to a certain depth from
the initial state)

• Some properties cannot be captured in this way
– Safety: “Something bad never happens”
– Must hold for every state of an LTS (= at all depths)
– Liveness: “Eventually, something good happens”
– Every path starting from s0 must reach a state where

the “good” thing happens (depth may vary)

Modelling and Verification 11

Safety and liveness: examples

• Typical example of safety: deadlock freedom
– Safety: it never happens that the process is “stuck”

• Typical example of liveness: starvation freedom
– For instance, in mutual exclusion
– A process starves if it never enters the critical section
– Liveness: eventually, a process enters the CS

Modelling and Verification 12

Invariance

Stronger version of safety
“F invariantly holds” (where F is an HML formula)

Inv(F) =
F (initial state satisfies F)

Ù [true] F (all its successors satisfy F)
Ù [true][true] F (their successors satisfy F)
Ù [true][true][true] F…

Modelling and Verification 13

Possibility

Weaker version of liveness
“F possibly holds” (where F is an HML formula)

Pos(F) =
F (F holds in the initial state)

Ú átrueñ F (or in some successor)
Ú átrueñátrueñ F (or in some of their successors)
Ú átrueñátrueñátrueñ F …

Modelling and Verification 14

Recursive HML formulas

Idea: we can use recursion

Inv(F) = F Ù [true] F Ù [true][true] F Ù …
= F Ù [true] Inv(F)

Pos(F) = F Ú átrueñ F Ú átrueñ átrueñ F Ú …
= F Ú átrueñ Pos(F)

• How do we solve such formulas?
• What do they mean?

Modelling and Verification 15

Fixed points (1/2)

• Let S the set of states of some LTS
• Let f a function from subsets to subsets of states

– We can define a fj for every rec. HML formula j

• A fixed point for f is a set X ⊆ S such that X = f(X)
• If j does not contain ¬X, fj admits a unique

minimal fp.and unique maximal fp.
• We will specify which one we want:

– µX.j(X) for the minimal (“mu”)
– nX.j(X) for the maximal (“nu”)

• s satisfies such a formula if it belongs to the fp.

Modelling and Verification 16

Fixed points (2/2)

• How do we choose between µ and n? Informally:
– µ describes finite execution trees (liveness)
– n describes infinite execution trees (safety)

• Examples: invariance and possibility
– Inv(F) = nX . F Ù [true] X
– Pos(F) = µX . F Ú átrueñ X

• HML with µ/n is known as the modal µ-calculus

Modelling and Verification 17

Exercises

• “The system can never perform an error action”

• “There is a livelock in this state”
– Remember: Livelock = infinite sequence of τ actions
– Hint: Don’t think about Inv, Pos, etc.

Modelling and Verification 18

Solution

• “The system can never perform an error action”
– Inv([error]false)
– nX . [error]false Ù [true]X

• “There may be a livelock in this state”
– Remember: Livelock = infinite sequence of τ actions
– Hint: Don’t think about Inv, Pos, etc.

– This state can do a τ action…
– … and go to a state that may have a livelock (recursive)
– nX . áτñX

Modelling and Verification 19

Exercise

• Possibly, the system may have a livelock
– Remember nX . áτñX = “This state may have a livelock”

Modelling and Verification 20

Solution

• Possibly, the system may have a livelock
– Remember nX . áτñX = “This state may have a livelock”

– Pos(Livelock)
– Pos(nX . áτñX)
– µY . (nX . áτñX) ∨ átrueñY

Modelling and Verification 21

Regular formulas

• Similar to regular expressions
• Allows to express sequences of actions
• We can use these formulas within [], áñ

– This makes some properties more compact/readable

• “The system can never perform an error action”
– [true* . error] false
– true* = a sequence of any length (*) of any action (true)
– . = concatenation

Modelling and Verification 22

Tool support

• CAAL:
– basic HML
– maximal/minimal fixed points (X max=, X min=)

• CADP:
– Basic HML + regular formulas
– maximal/minimal fixed points (nu X., mu X.)
– Other operators, such as infinite looping
– “This state may have a livelock” : <i> @

Modelling and Verification 23

