Temporal Logic

Equivalence vs. Model Checking

- Up until now, we have described correctness as a form of equivalence between two systems
 - An implementation is correct if it's equivalent (i.e., strongly or branching bisimilar) to a specification
- An alternative approach: model checking
 - describe correctness as a set of logical formulas
 - Then, check that the implementation satisfies those formulas
- Benefits:
 - The properties are language-independent
 - Modularity (easy to add/change/remove properties)

Modal logics

- Reason about the sequencing and branching of transitions in an LTS
- Basic modal operators:
 - Possibility: from a state, there exists (at least) an outgoing transition labeled by a given action and leading to a state with a given property
 - Necessity: from a state, all the outgoing transitions labeled by a given action lead to states with a given property
- Hennessy-Milner Logic (HML): express properties of an LTS

HML syntax

HML semantics

- When does a state *s* satisfy a formula φ ? ($s \vDash \varphi$)
 - true: satisfied by all states; false: never satisfied
 - s satisfies $\neg \phi$ iff. it does not satisfy ϕ
 - *s* satisfies $\phi_1 \land \phi_2$ iff. it satisfies both ϕ_1 and ϕ_2
 - *s* satisfies $\phi_1 \lor \phi_2$ iff. it satisfies either ϕ_1 or ϕ_2 (or both)
 - s satisfies $\langle \alpha \rangle \phi$ iff. there is at least one state s'

such that $s - \alpha \rightarrow s'$ and $s' \models \varphi$

- *s* satisfies $[\alpha]\phi$ iff. for every state *s*',

f
$$s - \alpha \rightarrow s'$$
 then $s' \models \varphi$

- Notice that $[\alpha]\phi = \neg(\langle \alpha \rangle \neg \phi)$

- An LTS satisfies $\boldsymbol{\phi}$ if its initial state satisfies it

HML semantics (2/2)

- Given an LTS with states S and transition relation
 T, for every HML formula φ we define [[φ]] as the set of states in S that satisfy φ
 - [[true]] = S, [[false]] = Ø
 - $\ [[\neg \phi]] = S \setminus [[\phi]]$
 - $[[\phi_1 \land \phi_2]] = [[\phi_1]] \cap [[\phi_2]]$
 - $[[\phi_1 \lor \phi_2]] = [[\phi_1]] \cup [[\phi_2]]$
 - $[[\langle \alpha \rangle \phi]] = \{ s \in S \mid \exists s' . s \neg \alpha \rightarrow s' \land s' \in [[\phi]] \}$
 - $[[[\alpha] \phi]] = \{ s \in S \mid \forall s' . s \neg \alpha \rightarrow s' \Rightarrow s' \in [[\phi]] \}$
- An LTS satisfies ϕ if its initial state is in [[ϕ]]

Action formulas

- $\langle \alpha \rangle \phi$ = "After action α , possibly ϕ "
- $[\alpha]\phi =$ "After action α , necessarily ϕ "

Sometimes it's useful to have shorter notations:

•
$$\langle \alpha_1 \lor \alpha_2 \rangle \phi = \langle \alpha_1 \rangle \phi \lor \langle \alpha_2 \rangle \phi$$

- "After α_1 or α_1 , possibly ϕ "

- $[\alpha_1 \lor \alpha_2] \phi = [\alpha_1]\phi \land [\alpha_2]\phi$
- $[\neg \alpha_2]\phi =$ "After anything except α_2 , necessarily ϕ "
- $\langle true \rangle \phi$ = "After anything, possibly ϕ "

HML Patterns

Property

- $\langle \alpha \rangle$ true
- [α]false

Is satisfied by s iff.

s can perform $\boldsymbol{\alpha}$

- s cannot perform $\boldsymbol{\alpha}$
- (true) true s is not deadlocked
 - Same as $\langle \alpha_1 \rangle$ true $\lor \langle \alpha_2 \rangle$ true $\lor \dots$ (for all actions α_i)
- [true] false s is deadlocked
 - Same as $[\alpha_1]$ false $\land [\alpha_2]$ false $\land ...$ (for all actions α_i)

Exercises

Write the following properties in HML:

- 1. From this state, only action *a* should be performed
- 2. From this state we can perform the sequence "a, b"
- 3. After *a*, action *b* is forbidden

Solutions

Write the following properties in HML:

- 1. From this state, only action *a* should be performed
- 2. From this state we can perform the sequence "*a*, *b*"
- 3. After performing *a*, action *b* is forbidden
- 1. $\langle a \rangle$ true $\land [\neg \alpha]$ false
- 2. $\langle a \rangle \langle b \rangle$ true
- 3. [a][b] false

Limitations of HML

- With HML (as shown so far), we can only describe a finite part of an LTS (up to a certain depth from the initial state)
- Some properties cannot be captured in this way
 - Safety: "Something bad never happens"
 - Must hold for every state of an LTS (= at all depths)
 - Liveness: "Eventually, something good happens"
 - Every path starting from s0 must reach a state where the "good" thing happens (depth may vary)

Safety and liveness: examples

- Typical example of safety: deadlock freedom
 - Safety: it never happens that the process is "stuck"
- Typical example of liveness: starvation freedom
 - For instance, in mutual exclusion
 - A process starves if it never enters the critical section
 - Liveness: eventually, a process enters the CS

Invariance

Stronger version of safety "F invariantly holds" (where F is an HML formula)

Inv(F) =

- F (initial state satisfies F)
- ^ [true] F (all its successors satisfy F)
- ^ [true][true] F (their successors satisfy F)
- \land [true][true][true] F...

Possibility

- Weaker version of liveness "F possibly holds" (where F is an HML formula)
- Pos(F) =
 - F (F holds in the initial state)
- \vee $\langle \text{true} \rangle F$ (or in some successor)
- \vee $\langle true \rangle \langle true \rangle F$ (or in some of *their* successors)
- $\lor \quad \langle true \rangle \langle true \rangle \langle true \rangle \ F \ ... \$

Recursive HML formulas

Idea: we can use recursion

$$Inv(F) = F \land [true] F \land [true][true] F \land ...$$
$$= F \land [true] Inv(F)$$

$$Pos(F) = F \lor \langle true \rangle F \lor \langle true \rangle \langle true \rangle F \lor ... \\ = F \lor \langle true \rangle Pos(F)$$

- How do we solve such formulas?
- What do they mean?

Fixed points (1/2)

- Let S the set of states of some LTS
- Let **f** a function from subsets to subsets of states
 - We can define a f_{ϕ} for every rec. HML formula ϕ
- A fixed point for f is a set $X \subseteq S$ such that X = f(X)
- If φ does not contain $\neg X$, f_{φ} admits a unique minimal fp.and unique maximal fp.
- We will specify which one we want:
 - $\mu X.\phi(X)$ for the minimal ("mu")
 - $\nu X.\phi(X)$ for the maximal ("nu")
- s satisfies such a formula if it belongs to the fp.

Fixed points (2/2)

- How do we choose between μ and $\nu?$ Informally:
 - µ describes finite execution trees (liveness)
 - v describes infinite execution trees (safety)
- Examples: invariance and possibility
 - Inv(F) = vX . F \wedge [true] X
 - Pos(F) = μX . F $\vee \langle true \rangle X$
- HML with μ/ν is known as the modal $\mu\text{-calculus}$

Exercises

• "The system can never perform an *error* action"

- "There is a livelock in this state"
 - Remember: Livelock = infinite sequence of τ actions
 - Hint: Don't think about Inv, Pos, etc.

Solution

- "The system can never perform an *error* action"
 - Inv([error]false)
 - vX . [error]false ∧ [true]X
- "There may be a livelock in this state"
 - Remember: Livelock = infinite sequence of τ actions
 - Hint: Don't think about Inv, Pos, etc.
 - This state can do a τ action...
 - ... and go to a state that may have a livelock (recursive)
 - $\nu X \cdot \langle \tau \rangle X$

Exercise

- Possibly, the system may have a livelock
 - Remember vX . $\langle \tau \rangle X$ = "This state may have a livelock"

Solution

- Possibly, the system may have a livelock
 - Remember vX . $\langle \tau \rangle X$ = "This state may have a livelock"
 - Pos(Livelock)
 - Pos(vX . $\langle \tau \rangle X$)
 - μY . (vX . $\langle \tau \rangle X)$ V $\langle true \rangle Y$

Regular formulas

- Similar to regular expressions
- Allows to express sequences of actions
- We can use these formulas within [], $\langle\rangle$
 - This makes some properties more compact/readable
- "The system can never perform an *error* action"
 - [true*. error] false
 - true* = a sequence of any length (*) of any action (true)
 - . = concatenation

Tool support

- CAAL:
 - basic HML
 - maximal/minimal fixed points (X max=, X min=)
- CADP:
 - Basic HML + regular formulas
 - maximal/minimal fixed points (nu X., mu X.)
 - Other operators, such as infinite looping
 - "This state may have a livelock" : <i> @