
Test Synthesis

Model-based Testing

• General idea: we have
– A system under test (SUT)
– A model (M) describing acceptable behaviour
– Question: does SUT conform to M?

• A test suite (T) is a collection of test cases (TC)
– TCs “capture” properties of M
– We can run a TC on SUT and get a verdict (pass or fail

or inconclusive)
– Ideally, we want a test suite T such that

SUT conforms to M ⇔ SUT passes all cases in T

Modelling and Verification 2

IOLTSs

• We will describe models, SUTs, and test cases via
input/output LTSs
– All actions are either outputs (!action) or inputs

(?action), or the invisible action τ.
– L1 || L2 (Parallel composition) = LTS product with

synchronization on input/output pairs

• Test hypothesis: we can use the same formalism
(namely IOLTS) for models (M) and
implementations (SUT)

Modelling and Verification 3

Input-Output Conformance (ioco)

• A trace of an LTS with initial state s0 is a sequence
of actions σ = (σ1, σ2, …, σn) such that

𝑠!→
"! 𝑠#→

"" 𝑠$→
"#…

"$ 𝑠%
For some states s1,2,…,n in the LTS.
• We say that (a system SUT) ioco (a model M) if, for

all traces σ of M:
– When SUT can perform an output !x after a trace σ, M

can also perform !x after σ
– When SUT cannot perform any output after a trace σ,

the same must be true of M

Modelling and Verification 4

Exercises

• S1 ioco M ?
• S2 ioco M ?

Modelling and Verification 5

Solution

• S1 not ioco M (M cannot do !milk after ?dime)
• S2 ioco M (ioco “does not care” about ?nickel)

– but M not ioco S2 (ioco is not symmetrical)

Modelling and Verification 6

Suspension automata (1/2)

• A state is quiescent if:
– Has no outgoing actions at all (deadlock)
– Can only wait for some input (outputlock)
– Is part of a cycle of internal actions (livelock)

• For ioco to “work”, we must make quiescence
explicit

• To do so, we find all quiescent states s and add a

special self-transition 𝑠→
!'
𝑠 to them

• The result is called a suspension automaton

Modelling and Verification 7

Example (1/2)

• Example: suspension automata for M
– Initial state is outputlocked (must wait for !dime)
– States at the bottom are deadlocked

Modelling and Verification 8

Example (2/2)

Modelling and Verification 9

Model

Test case

• Informally, a test case TC is an IOLTS where:
– The I/Os of the TC correspond to O/Is of a SUT
– some states are marked pass, fail, or inconclusive
– Special action ?θ that complements !δ

• “Running” a TC on a SUT = compute traces of
TC || SUT and check which marked states are reached
– Verdict = pass/fail/inconc, depending on state reached

Modelling and Verification 10

Test purposes

• TCs are somewhat too “low-level” to be practical
– Idea: select/generate TCs based on a more abstract

description called test purpose

• A TP is an IOLTS (again) which describes some
desired behaviours of the SUT

• Some states in a TP are marked accept or refuse
– An accept state is reached = the desired behaviour has

been observed (corresponds to a pass in the test case)
– When a refuse state is reached, it means that this

execution is not relevant to the test purpose. It does
not correspond to a failure!

Modelling and Verification 11

Test synthesis

• From a model M and a test purpose, generate a
complete test graph (CTG)

• CTG
– Describes one or more test cases
– Obtained by “combining” the TP with the model,

marking states as pass/fail/inconclusive based on the
TP, etc.

• On-line testing
– Generate CTG
– Compute traces of CTG || SUT
– All at the same time

Modelling and Verification 12

Example of an LNT test purpose

• Use loops to mark accept/refuse states
– Desired behaviour: y followed by z
– If you observe z: do not care about what’s next
process TP
[TESTOR_ACCEPT, TESTOR_REFUSE, y, z: none] is

select
y; z; loop TESTOR_ACCEPT end loop

[]
z; loop TESTOR_REFUSE end loop

end select
end process

Modelling and Verification 13

Soundness, exhaustiveness,
completeness (1/2)

• A suite T is sound (with respect to a model M) if
SUT conforms to M ⇒ SUT passes T

(non-conforming SUTs might pass!)

• A suite T is exhaustive (wrt. M) if
SUT passes T ⇒ SUT conforms to M

(conforming SUTs might fail!)

• It is complete if it is sound and exhaustive
• Unfortunately, exhaustiveness is difficult to

achieve (it may need infinitely many test cases)
– So we focus on generation of sound test suites

Modelling and Verification 14

Soundness, exhaustiveness,
completeness (2/2)

Modelling and Verification

All SUTs (including those
not conforming to M)

15

SUTs that pass Ts

SUTs that conform to M

Assume that Te is exhaustive and Ts is sound with respect to
some model M. Then you have the following sets of SUTs:

SUTs that pass Te

Testor

• Example invocation:
lnt.open model.lnt testor –io actions.io
purpose.bcg testcase.bcg

– model.lnt: LNT description of the model
– actions.io: specifies which actions are inputs/outputs
– purpose.bcg: IOLTS of the test purpose
– testcase.bcg: filename of generated LTS (test case)

• You can use generator to create a purpose.bcg
from a purpose.lnt

Modelling and Verification 16

bcg_execute and Testor (1/2)

• Goal: we want to execute CTG || SUT
• bcg_execute: utility to execute a SUT, described

in BCG format
– Output actions will be printed
– User provides input actions from command line
– E.g., the SUT waits on ?x until the user types x<Enter>

• We can also generate/execute the CTG on-line,
with testor -interactive
– Can we send CTG outputs to SUT and vice versa?
– On Linux/macOS, we can, by using named pipes

Modelling and Verification 17

bcg_execute and Testor (2/2)

• Example:
mkfifo sut.input
mkfifo sut.output
bcg_execute sut.bcg –io sut.io > sut.output <
sut.input &
testor –interactive –io sut.io tp.bcg < sut.output
2> sut.input

• If SUT is nondeterministic, multiple runs can lead
to different results

Modelling and Verification 18

