
Exercises:
Temporal logic
Test synthesis

Exercise

• Satisfaction of HML formulas:
– [[true]]	=	S,	[[false]]	=	Ø
– [[¬j]]	=	S	\ [[j]]
– [[j1 Ù j2]]	=	[[j1]]	Ç [[j2]]	
– [[j1 Ú j2]]	=	[[j1]]	È [[j2]]	
– [[á a ñ j]]	=	{	s	Î S	|	$ s’	.		s	–a→	s’	Ù s’	Î [[j]]	}
– [[[a] j]]	=	{	s	Î S	|	" s’	.	s	–a→	s’	Þ s’	Î [[j]]	}

• Show that á a ñj1 Ú á a ñj2	=	á a ñ(j1 Ú j2)
– I.e., they are satisfied by the same subset of S

Modelling and Verification 2

Exercise

Check the following properties on the LTS below.
1. s ⊧	áañtrue
2. s ⊧	[b]false

3. s ⊧	áañ[b]false
4. s ⊧	áañ(áañtrue ∧	ábñtrue)
5. s ⊧	[a]áañ[a][b]	false

Modelling and Verification 4

Exercise

Given the LTS below, compute the following sets:
1. [[áañtrue]]
2. [[áañtrue ∧	[b]false]]
3. [[[a][b]false]]

Modelling and Verification 6

Branching bisimulation

A branching bisimulation is a relation R such that, if
=, ? ∈ A and = →

!
=′ for some action, then either:

• D = E and	 =′, ? ∈ A or

• There is some ?′ such that ? →
"
…→

"
?#→

!
?## and

=, ?′ ∈ A, =#, ?## ∈ A.

• The same must hold for s	(if s→
!
?′ ,	then either…)

• Note that two states that are strongly bisimilar are
always branching bisimilar

Modelling and Verification 7

Exercise

Modelling and Verification 8

Are ?$, I$ branching bisimilar?

Are ?$, I$ branching bisimilar?

Exercise

Modelling and Verification 10

Exercise

• Check ii ioco sj for the following IOLTSs

Modelling and Verification 12

Addendum: why i4 ioco s4?

• In i4, after ?a, two things may happen:
– !x

– Quiescence

• In s4, after ?a, two things may happen:
– !x

– Internal action, then quiescence

• We are talking about input-output conformance
– The τ action is not visible

– Thus, for s4, after ?a we see !x or quiescence

– Therefore, i4 ioco s4

Modelling and Verification 14

Lab session:
CADP and TESTOR

Overview of JardJeron05 (1/2)

Example from the first paper about the TGV tool
– C. Jard and T. Jéron, “TGV: theory, principles and

algorithms,” Int. J. Softw. Tools Technol. Transf. 7.

First let’s take a look at the specification
• All files are in ~/Desktop/TESTOR/demo
• Open jard_jeron_05_spec.lnt
• Generate and view its LTS
• Take a look at jard_jeron_05.io

Modelling and Verification 17

Overview of JardJeron05 (2/2)

Left: LTS of
jard_jeron_05_spec.lnt

jard_jeron_05.io:
input

A

B

C

(X, Y, and Z are outputs)

Modelling and Verification 18

JardJeron05: Test Purpose (1/2)

Take a look at jard_jeron_05_purpose.lnt

1. What behaviour will be tested by this purpose?
2. What will happen if a Z output is observed?

Modelling and Verification 19

JardJeron05: Test Purpose (2/2)

Take a look at jard_jeron_05_purpose.lnt

1. What behaviour will be tested by this purpose?
An output action !Y followed by an output action !Z

2. What will happen if a !Z output is observed?
The behaviour after !Z is ignored (TESTOR_REFUSE)

Modelling and Verification 20

JardJeron05: Systems under test

• You have 3 files jard_jeron_05_sut<n>.aut
– n = 1, 2, 3

– Ignore the other SUTs

• They are in aut (automaton) format
– Take a look at them (with a text editor, or via cat)

– Can you guess how the aut format works?

• You can turn them into BCG thanks to bcg_io:
bcg_io jard_jeron_05_sut1.aut .bcg

Modelling and Verification 21

Intermezzo: the AUT format

• First line: description of the LTS
– des (<initial-state>, <number-of-transitions>,

<number-of-states>)

• All other lines: labelled transitions
– (<from-state>, <label>, <to-state>)

• This format predates BCG and has been largely
supplanted by it
– Pros: intuitive, can be read/written via a text editor

– Cons: inefficient for large LTSs

Modelling and Verification 22

On-the-fly testing of JardJeron05 (1/3)

• First, perform these 3 commands once:

– lnt.open jard_jeron_05_purpose.lnt generator –

rename tgv.rename tp.bcg

– mkfifo sut.input

– mkfifo sut.output

• Then, for each sut.bcg, perform these 2 commands:

bcg_execute –io sut.io sut.bcg > sut.output <

sut.input &

testor –interactive –io sut.io tp.bcg < sut.output

2> sut.input

• Write down the result

Modelling and Verification 23

On-the-fly testing of JardJeron05 (2/3)

• What did we do?
– Generate the BCG of our test purpose (-rename needed

for compatibility)

– bcg_execute … &e : run our SUT in the background

– testor –interactive: compute and run the CTG for
our test purpose

– We connected the output of the SUT to the input of the
CTG (and vice versa) via named pipes (sut.output and
sut.input)

• You should get these results:
– SUT1 and SUT3: Pass

– SUT2: Inconclusive

Modelling and Verification 24

On-the-fly testing of JardJeron05 (3/3)

• Graphical representation of our testing setup:

• More information about named pipes:
– https://www.linuxjournal.com/article/2156

– https://en.wikipedia.org/wiki/Named_pipe

Modelling and Verification 25

bcg_execute

(running the SUT)
testor

(running the CTG)

sut.output

sut.input

https://www.linuxjournal.com/article/2156
https://en.wikipedia.org/wiki/Named_pipe

Final remarks: nondeterministic SUTs

• If your SUT is nondeterministic, different runs may
produce different results
– Typically, this is fine (you want to explore different

behaviours)

– But sometimes you may not want it (e.g., you may want
to reproduce a failure)

• You can force bcg_execute to always perform the
same execution, by adding –seed <n>
– n is a number >= 0

Modelling and Verification 26

