
Hubert Garavel
Alexander Graf-Brill

Applied Concurrency Theory
Lecture 1 : Introduction

About us

 Hubert Garavel
Directeur de recherche Inria (Grenoble, France)
One week per month in Saarbrücken (Humboldt foundation)
E-mail: garavel@mx.uni-saarland.de

 Alexander Graf-Brill

Master student (Saarland U., Depend group)
Block Course Assistant
E-mail: agrafbrill@depend.cs.uni-saarland.de

2

Lecture 1

What is concurrency?
3

Lecture 1

What is concurrency?

 A branch of computer science
 Several actors (or subsystems, machines, computers,
processors, components, processes, threads…)

Each actor behaves individually
A common task to accomplish by all actors
(often:) Shared resources between actors
Co-operation between actors (accomplish the common task)
Competition between actors (access the shared resources)

 Specific problems
 Corpus of mathematical results (‘Concurrency
theory’)

4

Lecture 1

Concurrency is everywhere

 In computer hardware:
in processors, fast memories, buses, embedded devices, etc.
from the lowest levels (gates, netlists)
to the highest levels (supercomputers)

 In computer software:
multi-user, multi-task operating systems
parallel programming (threads, processes)

 In networking and distributed systems:
computer networks, Internet, GSM
aerospace, trains, power grids, etc.

5

Lecture 1

Concurrency is difficult

 Faster but more difficult than sequential computing

 Frequent errors

Deadlocks
Race conditions
Loss of global consistency

 Additional reasons for complexity
Communication may fail (e.g., unreliable network)
Some actors may fail (e.g., node crash)

6

Lecture 1

Strategies to handle concurrency

 1. Don’t use it
 Avoid concurrency as much as possible

 2. Only use ‘easiest’ forms of concurrency

Pipelining (actors organized along a simple flow of data)
Synchronous computing (actors scheduled by a central clock)

 3. When concurrency is absolutely needed:
 Learn how to master it

7

Lecture 1

A brief history of concurrency
8

Lecture 1

Overview

Lecture 1

9

 Concurrency in computing: since the 60s
hardware design
software and system design

 Before: concurrency studied in other contexts

coordination of humans acting together (work, dance, music)
coordination of machines (e.g., trains)

 In computing, concurrency has no linear history
no continuous progress
past knowledge is often forgotten
major scientific/technical regressions

Concurrency in hardware design (1/3)

Lecture 1

10

 Initially, asynchronous logics
the first hardware designs were asynchronous (in the 60s)
but too difficult at that time

 Then, advent of synchronous logics
all parts of the circuit scheduled by a clock
a proper methodology for designing reliable complex circuits
today: most ASICs and CAD tools are synchronous

 Today, synchronous logics faces limitations
problems scaling up to high frequencies and complex VLSI
energy (clocks waste energy), secrecy (EM radiations)

Asychronous logics is back!

Concurrency in hardware design (2/3)

 In the first computers, a single CPU did everything
 Then, advent of multiprocessing (60s and 70s)

asymmetric: dedicated processors (I/O, arithmetic, graphics, crypto)
symmetric: multiple identical CPUs
shared memories, caches
parallel computing

 Progressive merge with telecommunications/networking
client/server applications
distributed systems
networks of workstations (NoW)
clusters, grids
Web services
supercomputing, high-performance computing

11

Lecture 1

Concurrency in hardware design (3/3)

Lecture 1

12

Lot of concurrency inside CPUs:
 Pipelining
 Multi-level caching
 Branch prediction

Moore law coming to an end:

 Clock frequency cannot increase any more
 Sequential processors reached performance peak
 Next step: multi-core (‘many-core’) processors

Concurrency in software design (1/3)

 Goal: How to program parallel computers?

 Low-level (hardware-oriented) approaches

shared memory / shared variables
study of problems: e.g., race conditions, deadlocks

 Higher-level (language-oriented) approaches
Petri nets (1962)
Simula (1967): multiple actors and coroutines
Algol 68 (1968): begin A , B end
PL/1 (1973): multitasking
Unix Bourne shell (1977): operators & (concurrent) and | (pipeline)
(concurrency much less easier in today’s mainstream languages!)

13

Lecture 1

Concurrency in software design (2/3)

Lecture 1

14

 In the 70s
deep studies to understand concurrency issues
new language features for safer concurrent programming
(semaphores, critical sections, monitors, rendezvous, etc.)

 In the 80s
Pascal and C take off: no support for concurrency
yet, Ada and Erlang have built-in concurrency
automated verification techniques for concurrent problems
(protocol engineering, state exploration, model checking)
theoretical advances (process calculi, process algebra)

Concurrency in software design (3/3)

Lecture 1

15

 In the 90s
C++: no support at all for concurrency
Java: a major regression to low-level programming
ignores all lessons in designing better concurrent languages
strong criticisms: Per Brinch Hansen, William Pugh
UML: an imprecise model of concurrency
silent progress in parallel compilers

 In the 2000s
significant progress in analyzing concurrent systems with:

probabilistic behaviours
(hard or soft) real-time aspects

Concurrency today
16

Lecture 1

Concurrent machines at hand

 For long, concurrent machines were rare:
Reserved to big military or civil projects
Sometimes available in research labs

 Now, they are available to the masses:

Your laptop is probably dual-core or quad-core
Machines with 24 cores already exist
Clusters and grids accessible from the desktop

 Concurrency is now a major concern in industry

17

Lecture 1

Impact on software (1/2)

Lecture 1

18

 Most existing software
was designed for sequential machines (e.g., Wintel)
is not ready for concurrency

 Major revisions will be needed for:

exploiting multi-core machines
exploiting cloud computing resources
developing reliable concurrent systems and programs

Impact on software (2/2)

Lecture 1

19

 Mainstream programming languages are not ready:
C and C++: nothing for concurrency
Java: a catastrophe
Ada and Erlang: barely used

New software must be developed to help designing
and verifying

asynchronous circuits / architectures
concurrent software programs

Goals of the block course
20

Lecture 1

Three goals

 Get acquainted with concurrency
Recognize concurrent problems where they are
Learn vocabulary and key concepts

 Learn various languages for concurrency
Process calculi
Automata-based languages
Semantic concepts: SOS, LTS, etc.

 Experiment with state-of-the-art tools
a ‘Matlab reflex’ for concurrency
Tools from Grenoble, Oxford, and Saarland

21

Lecture 1

Key concepts of concurrency
22

Lecture 1

Interleaving

 Several actors have to execute actions
independently
 A global observer sees ‘diamonds’ of actions

23

Lecture 1

|| =
B’

B’

B’

B’

A

B

B

B

B

A’
A

A

A

A’

A’

A’

State explosion – combinatorial explosion

Lecture 1

24

 A consequence of interleaving

 The number of states is exponential in the number
of concurrent actors:

two actors: planary diamonds
three actors: cubes
N actors: hypercube with N dimensions

 State explosion is a major problem for verification
techniques based on exhaustive state explorations

Processes vs Threads

Two main approaches to communication between actors
shared memory (e.g., blackboards)
message passing (e.g. e-mail)

 Shared memory → actors are called ‘threads’

Close to hardware and usually efficient
Multiple incompatible semantics (Posix, etc.)
Often dependent on hardware ⇒ portability problems
Low-level ⇒ makes proofs and automated reasoning difficult

 Message passing → actors are called ‘processes’

Higher abstraction level, more suitable for formal analysis
Can model hardware, software, and networking problems
Perhaps less efficient to implement (?)

25

Lecture 1

Nondeterminism

Lecture 1

26

 A concept borrowed from particle physics

 The future evolution of a concurrent program cannot
be predicted, even if one fully knows its past history
and its current state

Each actor evolves at its own speed
Some algorithms are intrinsically nondeterministic

 A major difference wrt sequential programming

 Nondeterminism makes life much harder:

each state may have several possible futures
execution runs / tests are not reproducible

Race conditions

 Nondeterministic behaviour arising from threads
accessing a common resource (shared variable)

 Example: 2 threads and 1 shared variable X
Initially: X = 0

thread 1: X := X + 1
thread 2: if X = 0 then X := 2 * X + 1
(hypothesis: testing X and assiging X are two different steps)

Finally: X = 1, 2, or 3 depending on relative execution speeds

Race condition also exists with electronic signals

27

Lecture 1

Critical sections

Lecture 1

28

 Approaches proposed to avoid race conditions:
while an actor is accessing shared resources, block other actors
other actors have to wait until the first actor has finished

Test-and-set instructions

simplest form, implemented as microprocessor instructions
 example: if X = 0 then X := 1 (single, atomic instruction)

Locks

one thread becomes ‘owner’ for a limited time (aquire/release)
examples: semaphores, object locks in Java

Critical sections

piece of code to be executed atomically
example: critical_begin if X = 0 then X := 2 * X + 1 critical_end
examples: monitors, conditional critical sections, etc.

Deadlocks

Lecture 1

29

 Improper use of critical sections / locks / etc.
 Each actor is waiting to access shared resources
blocked by other
 Example: the dining philosophers problem

rule: each philosopher needs two forks
if each philosophers starts by taking the left
fork, then everyone is blocked
various solutions exist (see Wikipedia)

Local deadlocks and livelocks

Lecture 1

30

 A deadlock is a global problem: everyone is blocked
there are similar related issues

 Local deadlocks:

starvation: one or several actors are blocked
coalitions: certain actors join forces to prevent others from
accessing shared resources

 Livelocks:
similar to deadlocks, except that actors are not blocked but
are constantly active without being productive

Rendezvous

Lecture 1

31

 High-level alternative to shared variables and locks
 Principle:

two (or more) actors decide to meet at a given point RV
the first actor arrived at RV waits for the others (and so on)
when all actors are ready, they can exchange data
after the rendezvous, each actor restarts independently

 Combines in a single mechanism
Synchronization between actors
Communication by messages

 Clean semantics preserving modularity

Message queues

Lecture 1

32

 Rendezvous is ‘synchronous’:
all actors have to be there simultaneously
not to be confused with synchronous computing (clocks)

 Alternative approach:
an actor S sends a message M to another actor R
M is put in a message queue (e.g., FIFO queue)
S is not blocked and continues its execution after sending M
some time later, R checks the queue and reads M

 Popular model, but theoretical problems
queue is finite: overflow issues (M discarded or S blocked)
queue is infinite: S can continuously fill in the queue

Structure of the block course
33

Lecture 1

Six lectures

September
 1. Introduction
 2. Process calculi (LOTOS)
 3. Next-generation formal methods (LOTOS NT)
 4. Pi-calculus and mobility

October
 5. Probabilistic systems (PRISM)
 6. Stochastic and timed systems (MODEST)

34

Lecture 1

Four projects (lab exercises)

Lecture 1

35

September:
 Project #1. LOTOS and LOTOS NT
 Project #2. PIC (pi-calculus)

deadline is October 1st (12:00)

October:

 Project #3. PRISM
 Project #4. MODEST

deadline is October 12 (12:00)

Some challenges

 Challenges are small exercises (< 1 hour) to be
done after each lecture before the next one

 ‘Without such exercises, your students will attend
the lectures and wait until the end of September to
undertake their projects; suddenly, they will realize
that they have to produce something, that they are
late, and they will start panicking.’
 (a respected German professor)

36

Lecture 1

Today’s challenge
37

Lecture 1

Starting up

 Get from the CMS the document entitled:
How to install the software tools needed for the course?

 The ‘official’ solution is strongly advised

Install Virtual Box 4.1.22 on your machine
Install the AppliedConcurrencyTheory virtual machine
Request your CADP license to register your software

Test if the tools are properly installed:
Type the shell command: bcg_edit $CADP/demos/demo_13/A1.bcg
Save the drawing as a PostScript file
Email this file to Alexander (agrafbrill@depend.cs.uni-saarland.de)

38

Lecture 1

References
39

Lecture 1

A few references

 Wikipedia:
Usually informative and well-done
Read more about the terms mentioned in this lecture:
asynchronous circuit, nondeterminism, semaphore, deadlock, etc.

 Critical assessment of concurrency in C/C++

Hans-J. Boehm. Threads Cannot Be Implemented As a Library. PLDI
2005. http://www.hpl.hp.com/techreports/2004/HPL-2004-209.pdf

 Critical assessment of concurrency in Java
Per Brinch-Hansen. Java’s insecure parallelism. 1999.
http://brinch-hansen.net/papers/1999b.pdf
J. Manson , W. Pugh, S. V. Adve. The Java memory model. POPL
2005 http://www.cs.umd.edu/~pugh/java/memoryModel/

40

Lecture 1

http://www.hpl.hp.com/techreports/2004/HPL-2004-209.pdf
http://brinch-hansen.net/papers/1999b.pdf
http://brinch-hansen.net/papers/1999b.pdf
http://brinch-hansen.net/papers/1999b.pdf
http://www.cs.umd.edu/~pugh/java/memoryModel/

	Applied Concurrency Theory�Lecture 1 : Introduction
	About us
	What is concurrency?
	What is concurrency?
	Concurrency is everywhere
	Concurrency is difficult
	Strategies to handle concurrency
	A brief history of concurrency
	Overview
	Concurrency in hardware design (1/3)
	Concurrency in hardware design (2/3)
	Concurrency in hardware design (3/3)
	Concurrency in software design (1/3)
	Concurrency in software design (2/3)
	Concurrency in software design (3/3)
	Concurrency today
	Concurrent machines at hand
	Impact on software (1/2)
	Impact on software (2/2)
	Goals of the block course
	Three goals
	Key concepts of concurrency
	Interleaving
	State explosion – combinatorial explosion
	Processes vs Threads
	Nondeterminism
	Race conditions
	Critical sections
	Deadlocks
	Local deadlocks and livelocks
	Rendezvous
	Message queues
	Structure of the block course
	Six lectures
	Four projects (lab exercises)
	Some challenges
	Today’s challenge
	Starting up
	References
	A few references

