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Quick history of process calculi (1/3) 

 Research on process calculi started in the late 70s 
 Finding a better paradigm than shared memory 
 Earlier attempts: 

Actor model (Hewitt, 1973) 
monitors (Hoare 1974, Brinch Hansen 1975) 
guarded commands (Dijkstra, 1975) 

 Communicating Sequential Processes (CSP) 
a new language proposed by C.A.R. Hoare (1978) 
finite set of concurrent processes 
message passing communications (‘rendezvous’) 
binary communication scheme (one sender, one receiver) 
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Quick history of process calculi (2/3) 

 Calculus of Communicating Systems (CCS) 
a small language and a book by Robin Milner (1980) 
underlying semantic model: labelled transition systems (LTS) 
formally-defined operational semantics (SOS rules) 
use of equivalence relations (bisimulations) to compare LTS  
algebraic theorems 
new book by Robin Milner (1989) 

 Theoretical CSP 
revised version of CSP (Brookes, Hoare, Roscoe, 1984) 
book by C.A.R. Hoare (1985) 
multiway rendez-vous (more than two parties) 
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Quick history of process calculi (3/3) 
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 Algebra of Communicating Processes (ACP) 
papers by Bergstra, Baeten, Klop (1984-1987) 
emphasis on algebraic semantics (rather than operational) 
symmetric sequential composition 

 Then, a plethora of derived languages 
CHP, CIRCAL, FSP, LOTOS, µCRL, OCCAM, pi-calculus, PSF, etc. 

 Tool development: compilers, verifiers, etc 
for CSP: FDR2 
for CCS: CWB (Concurrency Workbench) 
for FSP: LTSA 
for LOTOS: CADP (Construction and Analysis of Distributed Processes) 
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 Different stages in system/software life cycle 
Requirements  →  Models  →  Programs 
models are higher level (more abstract) than programs 
models may be formal or not 
models may be executable or not 
models help to detect errors as early as possible 
 

Process calculi = models for concurrency 
focus on control aspects (later only, data aspects) 
process calculi are formal models for mathematical studies 
process calculi were not necessarily meant to be executable 
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 A general computation model 
quest for generality and abstraction 
not restricted to software (contrary to shared variables) 
applicable to hardware, software, security, biology, music etc. 
but not really intended to complex sequential algorithms! 

 

 Key ideas 
system = set of actors (or processes) executing in parallel 
no shared memory (if needed, it can be modelled explicitly) 
message-passing communication (based on rendezvous) 



Syntax 

 A minimal (or small) set of algebraic operators 
each operator does one single thing 
operators can be combined freely (the ‘Lego’ principle) 
this gives algebraic terms ( ≅ ‘programs’) 

 
 Small example: subset of basic CCS 

set of actions (or events): a, b, c, … 
set of process behaviour expressions: P, P0 , P1 ,  P2 , etc. 
P ::= nil         -- inaction: does nothing 
    |  a . P0     -- prefix: does action a, then behave as P0 
    | P1 +  P2   -- choice: does either P1 or  P2 
    | P1 || P2   -- parallel: does P1 and  P2  concurrently 
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Algebraic/Axiomatic semantics 

 A first approach to define the semantics 
 A finite set of algebraic axioms 
     P1 + P2 = P2 + P1                             -- commutativity of + 
     (P1 + P2) + P3 =  P1 + (P2 + P3)          -- associativity of + 
     nil + P = P                                      -- nil neutral for + 
     P1 || P2 = P2 || P1                          -- commutativity of || 
    (P1 || P2) || P3 =  P1 || (P2 || P3)   -- associativity of || 
    (a . P1) || (b . P2) = a . (P1 || b . P2) + b . (a . P1 || P2) 
                                                   -- interleaving expansion law 

goal: obtain a consistent and complete set of axioms 
can be used to prove the equivalence of programs 
mathematically interesting, but not really useful in practice 
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 The mainstream approach to define the semantics 
of process calculi 
Main ideas: 

operational semantics: describes the execution of a 
high-level program in terms of a low-level machine (or 
by translation to a low-level model) 
here, the high-level ‘programs’ are algebraic terms 
here, the low-level machine is a state/transition graph 
therefore, operational semantics of process calculi is a 
translation of terms into graphs 



Labelled Transition Systems (LTS) 

 The standard model for process calculi semantics 
 LTS = 4 components: 

a (non-empty) set S of states 
an initial state s0 belonging to S 
a (non-empty) set A of ‘visible’ actions (or labels),  
which contains a ‘hidden/internal’ action noted τ 
a transition relation on S x A x S 
each transition is a triple: (source state, action, target state) 

 States are opaque: no information attached to them 
one can only distinguish the initial state from the other states 

 Transition labels may contain ‘rich’ data 
channel names 
lists of typed values 
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Three uses of LTSs for verification (1/2) 

 1. Visual checking 
to check a program P, generate LTS (P) and look if it is 
correct 
caveat: only works if LTS (P) is small enough to be inspected 
there exist funny tools for exploring very large graphs 

 

 2. Model checking 
to check if LTS (P) satisfies a temporal logic formula 
e.g.: absence of deadlocks, absence of race condition, etc. 
the model checker can diosplay counter-examples 
caveat: only works if LTS (S) is small enough (< 10 billion 
states) 
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Three uses of LTSs for verification (2/2) 
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 3. Equivalence checking 
with axiomatic semantics, one compares terms 
algebraically 
with operational semantics, one compares graphs 
special equivalences for concurrency: ‘bisimulations’ 
special inclusion relations for concurrency: simulation 
preorders 
one can reduce any LTS to a minimal LTS without loosing 
behaviourally important information 
caveat: only works if LTS (S) is small enough (< 1 billion 
states) 

 



Alternative models to LTS 

 Action-based models vs state-based models 
Labelled Transition Systems: information on labels only 
Kripke Structures: information on states only 
Kripke Transition Systems: information on states and labels 
in theory: action-based and state-based are dual notions 
in practice: action-based is more abstract and better resists 
evolutions because it only refers to system interfaces rather 
to system internal variables 

 Branching-time models vs linear-time models 
LTS are branching-time (= graphs) 
traces are linear-time (= sequences of states/transitions) 
branching-time models are more compact and adapted to 
concurrency 
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Structured Operational Semantics (SOS) 

 The semantics of a language is described by a small 
set of semantic rules 

 
 
 
 

 SOS rules have a mechanically checkable format 
 Principles of translation 

each state of the LTS is a process calculus algebraic term 
the initial state is the source program itself 
this program will be rewritten progressively as it executes 
one advances step by step (each step ‘fires’ an action of A) 
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LOTOS 
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What is LOTOS? 

 A international effort to standardize process calculi 
defined between 1983 and 1989 
ISO international standard (1989) 
control part: unifies the best features of CCS and CSP 
data part: based on abstract data types (ADT) 

 Qualities 
expressivity 
applicable to many different systems 

 Drawbacks 
too different from usual languages (steep learning curve) 
data types are cumbersome 
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LOTOS: lexical elements 

 7 classes of LOTOS identifiers: 
T : type name 
S : sort name 
F : function name (official term: operation identifier) 
X : variable name (official term: value identifier) 
P : process name 

G : gate name (two special gates: τ and δ) 
λ  : specification identifier (used only once after ‘specification’) 

 

 These 7 name spaces are disjoint 

 identifier ‘i’ is reserved for the hidden gate τ  
 Comments are noted (* … *) 
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LOTOS specification (top-level) 
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(B will be defined later) 

red means ‘unused’ 



LOTOS data types 
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LOTOS type definitions  
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LOTOS vocabulary is non-standard: 
• ‘type’ means ‘module’ 
• ‘sort’ means ‘type’ 
• ‘operation’ means ‘function’ 

red means ‘unused’ 

library T, T’ endlib is interpreted as: 
   #include  "T.lib"   
   #include  "T’.lib" 
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A value expression (non-terminal symbol: V) is either: 
a variable  
a function call with a (possibly empty) list of value expressions 
an equality test between two values 
 
 
 
 
 
notation ‘V of S’ means that V has sort S (to resolve type 
ambiguities) 
 



Abstract data types: example 1 
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Abstract data types: example 2 
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LOTOS processes 
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LOTOS process definitions 

 
 
 

 
 

P is the process identifier, whereas B is a behaviour 
expression defining the ‘body’ of P 
LOTOS processes have two lists of parameters 
betwen brackets: a list of (untyped) gates 
between parentheses: a list of (typed) variables 
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 Five symbols to be defined: 
B : behaviour expression 
O : offer (official term: experiment offer) 
op : parallel operator 
R : result 
V : value expression (see above) 
 

 Note:  
the ISO concrete grammar has many more non-terminals 
this presentation is much simpler, but equivalent 
 



LOTOS behaviour expressions 
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 Trees of actions are easy to obtain by combining 
stop  (deadlock state) 
;  (action prefix) 
[]  (choice) 

 To create loops, one must use a recursive process 
 LOTOS variables are ‘dynamic constants’ 

they are assigned only once when declared (i.e., ‘X:S’) 
they cannot be modified afterwards 
except by a recursive process call: P […](X) calls P […](X+1) 
this is a way LOTOS ensures that variables are assigned 
before used 

 Parentheses rules are cumbersome, but essential 



Sequential processes: example 1 
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Parallel processes in a nutshell 
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 The rules of the game:  
one must describe sets of boxes (= processes)  
boxes can be nested one into another (= nested processes) 
boxes are connected by links (= gates) 
more than two boxes can connect on the same link (= multiway 
rendezvous) 
links can be hidden to avoid third-party interference and to make 
internal details unobservable 
all of this must be described using only the (binary) parallel 
operators and the (unary) hiding operator 

 Three parallel operators 
|| : synchronize on all visible gates (includes δ, excludes τ) 
||| : don’t synchronize on any gate (excepted δ) 
|[G0, … Gn]| : synchronize on gates G0, … Gn and δ 
the 1st and 2nd operators are particular cases of the 3rd one 
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Today’s challenge 
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 Get the LOTOS tutorial by Bolognesi & Brinksma 
 Copy the LOTOS example ‘Max3’ in ‘max.lotos’ 

from ‘specification’ to ‘endspec’ 
beware of a dozen copy-paste errors! (this is a scanned PDF) 
insert ‘(*! constructor *)’ between ‘opns zero’ and before ‘: -> nat’ 
insert ‘(*! constructor *)’ between ‘succ’ and before ‘: nat -> nat’ 
replace equation ‘largest(x, y) = largest(y, x);’ with  
‘largest(x, zero) = x;’ 
create (in the same directory) a text file named ‘max.t’ containing 
only two lines: 
#define CAESAR_ADT_EXPERT_T  5.3 
#define CAESAR_ADT_ITR_NEXT_NAT(CAESAR_ADT_0) ((CAESAR_ADT_0)++ < 5) 

(this restricts NAT values to the range 0..5) 
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 Compile the data types of your LOTOS specification: 
$ caesar.adt max.lotos 
fix the remaining syntax errors that escaped your attention 

 Compile the processes of your LOTOS specification: 
$ caesar max.lotos 
this generates an LTS stored in file max.bcg 

 Minimize this file using strong bisimulation: 
$ bcg_min max.bcg 

 Display this file: 
$ bcg_edit max.bcg 
send the PostScript drawing of this LTS to Alexander 
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T. Bolognesi and E. Brinksma. Introduction to the ISO 
specification language LOTOS. Computer Networks and 
ISDN Systems, vol. 14, num. 1, 1987. 
http://doc.utwente.nl/69857/1/Bolognesi87introduction.pdf   
 
L. Logrippo, M Faci, and M. Haj-Hussein. An 
introduction to LOTOS: learning by examples. Computer 
Networks and ISDN Systems, vol. 23, num. 5, 1992. 
http://lotos.site.uottawa.ca/ftp/pub/Lotos/Papers/tutorial.pdf  

 
More LOTOS tutorials: http://cadp.inria.fr/tutorial  

http://doc.utwente.nl/69857/1/Bolognesi87introduction.pdf
http://lotos.site.uottawa.ca/ftp/pub/Lotos/Papers/tutorial.pdf
http://cadp.inria.fr/tutorial


Tutorial on CADP tools (optional) 

 H. Garavel, F. Lang, R. Mateescu, and W. Serwe. 
CADP 2010: A Toolbox for the Construction and 
Analysis of Distributed Processes. TACAS 2011 
http://cadp.inria.fr/vasy/publications/Garavel-
Lang-Mateescu-Serwe-11.html  
 
 More CADP info: http://cadp.inria.fr/tutorial  
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