
Hubert Garavel
Alexander Graf-Brill

Applied Concurrency Theory
Lecture 2 : process calculi

Process calculi
Process algebras

2

Lecture 2

Quick history of process calculi (1/3)

 Research on process calculi started in the late 70s
 Finding a better paradigm than shared memory
 Earlier attempts:

Actor model (Hewitt, 1973)
monitors (Hoare 1974, Brinch Hansen 1975)
guarded commands (Dijkstra, 1975)

 Communicating Sequential Processes (CSP)
a new language proposed by C.A.R. Hoare (1978)
finite set of concurrent processes
message passing communications (‘rendezvous’)
binary communication scheme (one sender, one receiver)

3

Lecture 2

Quick history of process calculi (2/3)

 Calculus of Communicating Systems (CCS)
a small language and a book by Robin Milner (1980)
underlying semantic model: labelled transition systems (LTS)
formally-defined operational semantics (SOS rules)
use of equivalence relations (bisimulations) to compare LTS
algebraic theorems
new book by Robin Milner (1989)

 Theoretical CSP
revised version of CSP (Brookes, Hoare, Roscoe, 1984)
book by C.A.R. Hoare (1985)
multiway rendez-vous (more than two parties)

4

Lecture 2

Quick history of process calculi (3/3)

Lecture 2

5

 Algebra of Communicating Processes (ACP)
papers by Bergstra, Baeten, Klop (1984-1987)
emphasis on algebraic semantics (rather than operational)
symmetric sequential composition

 Then, a plethora of derived languages
CHP, CIRCAL, FSP, LOTOS, µCRL, OCCAM, pi-calculus, PSF, etc.

 Tool development: compilers, verifiers, etc
for CSP: FDR2
for CCS: CWB (Concurrency Workbench)
for FSP: LTSA
for LOTOS: CADP (Construction and Analysis of Distributed Processes)

Process calculi as ‘models’

Lecture 2

6

 Different stages in system/software life cycle
Requirements → Models → Programs
models are higher level (more abstract) than programs
models may be formal or not
models may be executable or not
models help to detect errors as early as possible

Process calculi = models for concurrency
focus on control aspects (later only, data aspects)
process calculi are formal models for mathematical studies
process calculi were not necessarily meant to be executable

Process calculi: Scope

Lecture 2

7

 A general computation model
quest for generality and abstraction
not restricted to software (contrary to shared variables)
applicable to hardware, software, security, biology, music etc.
but not really intended to complex sequential algorithms!

 Key ideas
system = set of actors (or processes) executing in parallel
no shared memory (if needed, it can be modelled explicitly)
message-passing communication (based on rendezvous)

Syntax

 A minimal (or small) set of algebraic operators
each operator does one single thing
operators can be combined freely (the ‘Lego’ principle)
this gives algebraic terms (≅ ‘programs’)

 Small example: subset of basic CCS

set of actions (or events): a, b, c, …
set of process behaviour expressions: P, P0 , P1 , P2 , etc.
P ::= nil -- inaction: does nothing
 | a . P0 -- prefix: does action a, then behave as P0
 | P1 + P2 -- choice: does either P1 or P2
 | P1 || P2 -- parallel: does P1 and P2 concurrently

8

Lecture 2

Algebraic/Axiomatic semantics

 A first approach to define the semantics
 A finite set of algebraic axioms
 P1 + P2 = P2 + P1 -- commutativity of +
 (P1 + P2) + P3 = P1 + (P2 + P3) -- associativity of +
 nil + P = P -- nil neutral for +
 P1 || P2 = P2 || P1 -- commutativity of ||
 (P1 || P2) || P3 = P1 || (P2 || P3) -- associativity of ||
 (a . P1) || (b . P2) = a . (P1 || b . P2) + b . (a . P1 || P2)
 -- interleaving expansion law

goal: obtain a consistent and complete set of axioms
can be used to prove the equivalence of programs
mathematically interesting, but not really useful in practice

9

Lecture 2

Operational semantics

Lecture 2

10

 The mainstream approach to define the semantics
of process calculi
Main ideas:

operational semantics: describes the execution of a
high-level program in terms of a low-level machine (or
by translation to a low-level model)
here, the high-level ‘programs’ are algebraic terms
here, the low-level machine is a state/transition graph
therefore, operational semantics of process calculi is a
translation of terms into graphs

Labelled Transition Systems (LTS)

 The standard model for process calculi semantics
 LTS = 4 components:

a (non-empty) set S of states
an initial state s0 belonging to S
a (non-empty) set A of ‘visible’ actions (or labels),
which contains a ‘hidden/internal’ action noted τ
a transition relation on S x A x S
each transition is a triple: (source state, action, target state)

 States are opaque: no information attached to them
one can only distinguish the initial state from the other states

 Transition labels may contain ‘rich’ data
channel names
lists of typed values

11

Lecture 2

Three uses of LTSs for verification (1/2)

 1. Visual checking
to check a program P, generate LTS (P) and look if it is
correct
caveat: only works if LTS (P) is small enough to be inspected
there exist funny tools for exploring very large graphs

 2. Model checking
to check if LTS (P) satisfies a temporal logic formula
e.g.: absence of deadlocks, absence of race condition, etc.
the model checker can diosplay counter-examples
caveat: only works if LTS (S) is small enough (< 10 billion
states)

12

Lecture 2

Three uses of LTSs for verification (2/2)

Lecture 2

13

 3. Equivalence checking
with axiomatic semantics, one compares terms
algebraically
with operational semantics, one compares graphs
special equivalences for concurrency: ‘bisimulations’
special inclusion relations for concurrency: simulation
preorders
one can reduce any LTS to a minimal LTS without loosing
behaviourally important information
caveat: only works if LTS (S) is small enough (< 1 billion
states)

Alternative models to LTS

 Action-based models vs state-based models
Labelled Transition Systems: information on labels only
Kripke Structures: information on states only
Kripke Transition Systems: information on states and labels
in theory: action-based and state-based are dual notions
in practice: action-based is more abstract and better resists
evolutions because it only refers to system interfaces rather
to system internal variables

 Branching-time models vs linear-time models
LTS are branching-time (= graphs)
traces are linear-time (= sequences of states/transitions)
branching-time models are more compact and adapted to
concurrency

14

Lecture 2

Structured Operational Semantics (SOS)

 The semantics of a language is described by a small
set of semantic rules

 SOS rules have a mechanically checkable format
 Principles of translation

each state of the LTS is a process calculus algebraic term
the initial state is the source program itself
this program will be rewritten progressively as it executes
one advances step by step (each step ‘fires’ an action of A)

15

Lecture 2

LOTOS
16

Lecture 2

What is LOTOS?

 A international effort to standardize process calculi
defined between 1983 and 1989
ISO international standard (1989)
control part: unifies the best features of CCS and CSP
data part: based on abstract data types (ADT)

 Qualities
expressivity
applicable to many different systems

 Drawbacks
too different from usual languages (steep learning curve)
data types are cumbersome

17

Lecture 2

LOTOS: lexical elements

 7 classes of LOTOS identifiers:
T : type name
S : sort name
F : function name (official term: operation identifier)
X : variable name (official term: value identifier)
P : process name

G : gate name (two special gates: τ and δ)
λ : specification identifier (used only once after ‘specification’)

 These 7 name spaces are disjoint

 identifier ‘i’ is reserved for the hidden gate τ
 Comments are noted (* … *)

18

Lecture 2

LOTOS specification (top-level)
19

Lecture 2

(B will be defined later)

red means ‘unused’

LOTOS data types
20

Lecture 2

LOTOS type definitions

Lecture 2

21

LOTOS vocabulary is non-standard:
• ‘type’ means ‘module’
• ‘sort’ means ‘type’
• ‘operation’ means ‘function’

red means ‘unused’

library T, T’ endlib is interpreted as:
 #include "T.lib"
 #include "T’.lib"

LOTOS value expressions

Lecture 2

22

A value expression (non-terminal symbol: V) is either:
a variable
a function call with a (possibly empty) list of value expressions
an equality test between two values

notation ‘V of S’ means that V has sort S (to resolve type
ambiguities)

Abstract data types: example 1
23

Lecture 2

Abstract data types: example 2

Lecture 2

24

LOTOS processes
25

Lecture 2

LOTOS process definitions

P is the process identifier, whereas B is a behaviour
expression defining the ‘body’ of P
LOTOS processes have two lists of parameters
betwen brackets: a list of (untyped) gates
between parentheses: a list of (typed) variables

26

Lecture 2

lists of variables

LOTOS non-terminal symbols

Lecture 2

27

 Five symbols to be defined:
B : behaviour expression
O : offer (official term: experiment offer)
op : parallel operator
R : result
V : value expression (see above)

 Note:
the ISO concrete grammar has many more non-terminals
this presentation is much simpler, but equivalent

LOTOS behaviour expressions
28

Lecture 2

red means ‘unused’

Sequential processes in a nutshell

Lecture 2

29

 Trees of actions are easy to obtain by combining
stop (deadlock state)
; (action prefix)
[] (choice)

 To create loops, one must use a recursive process
 LOTOS variables are ‘dynamic constants’

they are assigned only once when declared (i.e., ‘X:S’)
they cannot be modified afterwards
except by a recursive process call: P […](X) calls P […](X+1)
this is a way LOTOS ensures that variables are assigned
before used

 Parentheses rules are cumbersome, but essential

Sequential processes: example 1
30

Lecture 2

.

Sequential processes: example 2

Lecture 2

31

.

Parallel processes in a nutshell

Lecture 2

32

 The rules of the game:
one must describe sets of boxes (= processes)
boxes can be nested one into another (= nested processes)
boxes are connected by links (= gates)
more than two boxes can connect on the same link (= multiway
rendezvous)
links can be hidden to avoid third-party interference and to make
internal details unobservable
all of this must be described using only the (binary) parallel
operators and the (unary) hiding operator

 Three parallel operators
|| : synchronize on all visible gates (includes δ, excludes τ)
||| : don’t synchronize on any gate (excepted δ)
|[G0, … Gn]| : synchronize on gates G0, … Gn and δ
the 1st and 2nd operators are particular cases of the 3rd one

Parallel processes: example 1

Lecture 2

33

Parallel processes: example 2

Lecture 2

34

Parallel processes: example 3

Lecture 2

35

Today’s challenge
36

Lecture 2

Today’s challenge (1/2)

Lecture 2

37

 Get the LOTOS tutorial by Bolognesi & Brinksma
 Copy the LOTOS example ‘Max3’ in ‘max.lotos’

from ‘specification’ to ‘endspec’
beware of a dozen copy-paste errors! (this is a scanned PDF)
insert ‘(*! constructor *)’ between ‘opns zero’ and before ‘: -> nat’
insert ‘(*! constructor *)’ between ‘succ’ and before ‘: nat -> nat’
replace equation ‘largest(x, y) = largest(y, x);’ with
‘largest(x, zero) = x;’
create (in the same directory) a text file named ‘max.t’ containing
only two lines:
#define CAESAR_ADT_EXPERT_T 5.3
#define CAESAR_ADT_ITR_NEXT_NAT(CAESAR_ADT_0) ((CAESAR_ADT_0)++ < 5)

(this restricts NAT values to the range 0..5)

Today’s challenge (2/2)

Lecture 2

38

 Compile the data types of your LOTOS specification:
$ caesar.adt max.lotos
fix the remaining syntax errors that escaped your attention

 Compile the processes of your LOTOS specification:
$ caesar max.lotos
this generates an LTS stored in file max.bcg

 Minimize this file using strong bisimulation:
$ bcg_min max.bcg

 Display this file:
$ bcg_edit max.bcg
send the PostScript drawing of this LTS to Alexander

References
39

Lecture 2

Historical papers on CSP and CCS

Lecture 2

40

 C. A. R. Hoare. Communicating sequential processes.
Communications of the ACM, 21 (8), 1978.
 S. Brookes, C. A. R. Hoare, A. W. Roscoe. A Theory of
Communicating Sequential Processes. Journal of the
ACM, 31 (3), 1984.
C. A. R. Hoare. Communicating Sequential Processes.
Prentice Hall, 1985.
R. Milner. A Calculus of Communicating Systems.
Springer Verlag. 1980.
 R. Milner. Communication and Concurrency. Prentice
Hall. 1989.

Tutorials on LOTOS

Lecture 2

41

T. Bolognesi and E. Brinksma. Introduction to the ISO
specification language LOTOS. Computer Networks and
ISDN Systems, vol. 14, num. 1, 1987.
http://doc.utwente.nl/69857/1/Bolognesi87introduction.pdf

L. Logrippo, M Faci, and M. Haj-Hussein. An
introduction to LOTOS: learning by examples. Computer
Networks and ISDN Systems, vol. 23, num. 5, 1992.
http://lotos.site.uottawa.ca/ftp/pub/Lotos/Papers/tutorial.pdf

More LOTOS tutorials: http://cadp.inria.fr/tutorial

http://doc.utwente.nl/69857/1/Bolognesi87introduction.pdf
http://lotos.site.uottawa.ca/ftp/pub/Lotos/Papers/tutorial.pdf
http://cadp.inria.fr/tutorial

Tutorial on CADP tools (optional)

 H. Garavel, F. Lang, R. Mateescu, and W. Serwe.
CADP 2010: A Toolbox for the Construction and
Analysis of Distributed Processes. TACAS 2011
http://cadp.inria.fr/vasy/publications/Garavel-
Lang-Mateescu-Serwe-11.html

 More CADP info: http://cadp.inria.fr/tutorial

42

Lecture 2

http://cadp.inria.fr/vasy/publications/Garavel-Lang-Mateescu-Serwe-11.html
http://cadp.inria.fr/vasy/publications/Garavel-Lang-Mateescu-Serwe-11.html
http://cadp.inria.fr/tutorial

	Applied Concurrency Theory�Lecture 2 : process calculi
	Process calculi�Process algebras
	Quick history of process calculi (1/3)
	Quick history of process calculi (2/3)
	Quick history of process calculi (3/3)
	Process calculi as ‘models’
	Process calculi: Scope
	Syntax
	Algebraic/Axiomatic semantics
	Operational semantics
	Labelled Transition Systems (LTS)
	Three uses of LTSs for verification (1/2)
	Three uses of LTSs for verification (2/2)
	Alternative models to LTS
	Structured Operational Semantics (SOS)
	LOTOS
	What is LOTOS?
	LOTOS: lexical elements
	LOTOS specification (top-level)
	LOTOS data types
	LOTOS type definitions
	LOTOS value expressions
	Abstract data types: example 1
	Abstract data types: example 2
	LOTOS processes
	LOTOS process definitions
	LOTOS non-terminal symbols
	LOTOS behaviour expressions
	Sequential processes in a nutshell
	Sequential processes: example 1
	Sequential processes: example 2
	Parallel processes in a nutshell
	Parallel processes: example 1
	Parallel processes: example 2
	Parallel processes: example 3
	Today’s challenge
	Today’s challenge (1/2)
	Today’s challenge (2/2)
	References
	Historical papers on CSP and CCS
	Tutorials on LOTOS
	Tutorial on CADP tools (optional)

