Applied Concurrency Theory
Lecture 2 : process calculi

O

Process calculi

Process algebras

m Research on process calculi started in the late 70s
m Finding a better paradigm than shared memory

m Earlier attempts:
» Actor model (Hewitt, 1973)
» monitors (Hoare 1974, Brinch Hansen 1975)
» guarded commands (Dijkstra, 1975)

m Communicating Sequential Processes (CSP)
» a new language proposed by C.A.R. Hoare (1978)
» finite set of concurrent processes
» message passing communications (‘rendezvous’)
» binary communication scheme (one sender, one receiver)

m Calculus of Communicating Systems (CCS)
» a small language and a book by Robin Milner (1980)
» underlying semantic model: labelled transition systems (LTS)
» formally-defined operational semantics (SOS rules)
» use of equivalence relations (bisimulations) to compare LTS
» algebraic theorems
» Nnew book by Robin Milner (1989)

m Theoretical CSP
» revised version of CSP (Brookes, Hoare, Roscoe, 1984)
» book by C.A.R. Hoare (1985)
» multiway rendez-vous (more than two parties)

m Algebra of Communicating Processes (ACP)
» papers by Bergstra, Baeten, Klop (1984-1987)
» emphasis on algebraic semantics (rather than operational)
» Symmetric sequential composition

m Then, a plethora of derived languages
» CHP, CIRCAL, FSP, LOTOS, uCRL, OCCAM, pi-calculus, PSF, etc.

m Tool development: compilers, verifiers, etc
» for CSP: FDR2
» for CCS: CWB (Concurrency Workbench)
» for FSP: LTSA
» for LOTOS: CADP (Construction and Analysis of Distributed Processes)

m Different stages in system/software life cycle
» Requirements — Models — Programs
» models are higher level (more abstract) than programs
» models may be formal or not
» models may be executable or not
» models help to detect errors as early as possible

m Process calculi = models for concurrency
» focus on control aspects (later only, data aspects)
» process calculi are formal models for mathematical studies
» process calculi were not necessarily meant to be executable

m A general computation model
» quest for generality and abstraction
» Not restricted to software (contrary to shared variables)
» applicable to hardware, software, security, biology, music etc.
» but not really intended to complex sequential algorithms!

m Key ideas
» System = set of actors (or processes) executing in parallel
» No shared memory (if needed, it can be modelled explicitly)
» message-passing communication (based on rendezvous)

m A minimal (or small) set of algebraic operators

» each operator does one single thing
» operators can be combined freely (the ‘Lego’ principle)

» this gives algebraic terms (= ‘programs’)

m Small example: subset of basic CCS

» set of actions (or events): a, b, c, ...
» set of process behaviour expressions: P, P,, P, , P,, etc.
P::=nil -- Inaction: does nothing
| a.P, --prefix: does action a, then behave as P,
| P, + P, --choice: does either P, or P,
| P, || P, -- parallel: does P, and P, concurrently

m A first approach to define the semantics
m A finite set of algebraic axioms

» goal: obtain a consistent and complete set of axioms
» can be used to prove the equivalence of programs
» mathematically interesting, but not really useful in practice

m The mainstream approach to define the semantics
of process calculi

m Main 1deas:

» Operational semantics: describes the execution of a
high-level program in terms of a low-level machine (or
by translation to a low-level model)

» here, the high-level ‘programs’ are algebraic terms
» here, the low-level machine is a state/transition graph

» therefore, operational semantics of process calculi is a
translation of terms into graphs

m The standard model for process calculi semantics

m LTS =4 components:
» a (non-empty) set S of states
» an initial state s, belonging to S

» a (non-empty) set A of “visible’ actions (or labels),
which contains a ‘hidden/internal’ action noted <

» a transition relation on S XA X S
each transition is a triple: (source state, action, target state)

m States are opadgue: no information attached to them
» one can only distinguish the initial state from the other states

m Transition labels may contain ‘rich’ data
» channel names
» lists of typed values

m 1. Visual checking

» to check a program P, generate LTS (P) and look if it is
correct

» caveat: only works if LTS (P) 1s small enough to be inspected
» there exist funny tools for exploring very large graphs

m 2. Model checking

» to check If LTS (P) satisfies a temporal logic formula
e.g.. absence of deadlocks, absence of race condition, etc.

» the model checker can diosplay counter-examples

» caveat: only works if LTS (S) i1s small enough (< 10 billion
states)

m 3. Equivalence checking

» With axiomatic semantics, one compares terms
algebraically

» With operational semantics, one compares graphs
» Special equivalences for concurrency: ‘bisimulations’

» special inclusion relations for concurrency: simulation
preorders

» One can reduce any LTS to a minimal LTS without loosing
behaviourally important information

» caveat: only works if LTS (S) is small enough (< 1 billion
states)

m Action-based models vs state-based models
» Labelled Transition Systems: information on labels only
» Kripke Structures: information on states only
» Kripke Transition Systems: information on states and labels
» IN theory: action-based and state-based are dual notions
» IN practice: action-based is more abstract and better resists
evolutions because it only refers to system interfaces rather
to system internal variables
m Branching-time models vs linear-time models
» LTS are branching-time (= graphs)
» traces are linear-time (= sequences of states/transitions)

» branching-time models are more compact and adapted to
concurrency

m The semantics of a language is described by a small
set of semantic rules

true (Bo L, By) N (Vo = true)

(i ; Bo) — DBy ([Vol => By) —~ B}

m SOS rules have a mechanically checkable format

m Principles of translation
» each state of the LTS is a process calculus algebraic term
» the initial state is the source program itself
» this program will be rewritten progressively as it executes
» one advances step by step (each step “fires’ an action of A)

m A international effort to standardize process calculi
» defined between 1983 and 1989
» ISO international standard (1989)
» control part: unifies the best features of CCS and CSP
» data part: based on abstract data types (ADT)
m Qualities
» expressivity
» applicable to many different systems

m Drawbacks
» too different from usual languages (steep learning curve)
» data types are cumbersome

m 7/ classes of LOTOS identifiers:

T : type name

S : sort name

F : function name (official term: operation identifier)
X : variable name (official term: value identifier)

P : process nhame

¥y ¥ v v ¥

» G : gate name (two special gates: T and 0)
» A : specification identifier (used only once after ‘specification’)

m These 7 name spaces are disjoint

m Identifier ‘I’ Is reserved for the hidden gate T
m Comments are noted (* ... *)

LOTOS specification (top-level)

program = specification A\ [G1.... Gm]—: func

typey, ... type, red means ‘unused’

behaviour
B ——— (B will be defined later)
where block;. ... block,

endspec

block = process
|

type

Lecture 2

LOTOS data types

LOTOS type definitions

type = type T is 1y.... T,

S

sorts S7....

P
opns opnsy. ... opns,, meg = Vi, Ve =V .
, ceq = ofsort S forall X;:5;.... X,,: 5, meq,,... meq,
eqns [eqns'] - b -
eqns = forall X;:57,... X, : S ceqy, ... ceq,

endtype

| library Ty, ... T,
endlib

Lecture 2

A value expression (non-terminal symbol: V) is either:
» a variable
» a function call with a (possibly empty) list of value expressions
» an equality test between two values

V = X
F (V... V)
V=V

» notation “V of S” means that V has sort S (to resolve type
ambiguities)

Abstract data types: example

®

type BOOLEAN is
sorts
BOOL
opns '
true (*! constructor *¥),
false (*! constructor *) : ->BOOL
: BOOL -> BOOL
and.,
_Or.,
X0,
Jdmplies_,
iff : BOOL, BOOL -> BOOL
eqns
forall X, Y : BOOL
ofsort BOOL
not (true) = false;
not (false) = true;
ofsort BOOL
X and true = X
X and false = false;
ofsort BOOL
X or true = true;
X or false = X;
ofsort BOOL
X xor Y = (X and not (Y)) or (Y and not (X));
X implies Y = Y or not (X);
X iff Y = (X implies Y) and (Y implies X);
endtype '

Lecture 2

Abstract data types: example 2

type RANDOM_ACCESS_QUEUE is BOOLEAN, MESSAGE, STATUS
sorts
QUEUE
opns
NIL (*! constructor *) : => QUEUE
INSERT (*! constructor *) : MSG, STAT, QUEUE -> QUEUE

EMPTY . QUEUE -> BOOL

HEAD_MESSAGE . QUEUE -> MSG

HEAD_STATUS . QUEUE -> STAT

TAIL . QUEUE -> QUEUE

DELETE . QUEUE, MSG -> QUEUE

eqns
 forall M,M1,M2:MSG, S:STAT, Q:QUEUE

ofsort BOOL INSERT INSERT NIL
EMPTY (NIL) = true;
EMPTY (INSERT (M, S, Q)) = false; MS; | +—M|S | +——

ofsort MSG ~
HEAD_MESSAGE (INSERT (M, S, Q)) = M;

ofsort STAT
HEAD_STATUS (INSERT (M, S, Q)) = S;

ofsort QUEUE)

TAIL (NIL) = NIL;
TAIL (INSERT (M, S, Q)) = Q;
ofsort QUEUE
DELETE (NIL, M) = NIL;
DELETE (INSERT (M, S, Q), M) = Q;
M1 <> M2 => DELETE (INSERT (M1, S, Q), M2) =
INSERT (M1, S, DELETE (Q, M2));

endtype

LOTOS processes

process P [Gy.... G,,] (X71:57.... X,.:5,) ¢ func :=
B
where blocky, ... block, lists of variables

endproc

» P Is the process identifier, whereas B is a behaviour
expression defining the “‘body’ of P

» LOTOS processes have two lists of parameters
» betwen brackets: a list of (untyped) gates
» between parentheses: a list of (typed) variables

m Five symbols to be defined:
» B : behaviour expression
» O : offer (official term: experiment offer)
» Op : parallel operator
» R : result
» V : value expression (see above)

m Note:
» the ISO concrete grammar has many more non-terminals
» this presentation is much simpler, but equivalent

LOTOS behaviour expressions

Lecture 2

hide G, ...

[Vol -> By

let Xo:S0=Vo.... X,:S,=V,, in By
choice Xo:S0.... X,:Sn [1 Bo
exit (Ry,... R,)

B; >> accept)/(::Sl,... j(:,: o 1
By, [> By

P [Gy,... Gn,1 (Vi,... V)

m Trees of actions are easy to obtain by combining
» Stop (deadlock state)
» ; (action prefix)
» [] (choice)

m To create loops, one must use a recursive process

m LOTOS variables are ‘dynamic constants’
» they are assigned only once when declared (i.e., ‘X:S’)
» they cannot be modified afterwards
» except by a recursive process call: P [...](X) calls P [...](X+1)
» this is a way LOTOS ensures that variables are assigned
before used

m Parentheses rules are cumbersome, but essential

Sequential processes: example 1

process RECEIVER [GET, RDT, RACK] (B:BIT) : noexit :=
RDT ?M:MSG !B;
GET !M;
RACK !B;
RECEIVER [GET, RDT, RACK] (not (B))

(]
RDT ?M:MSG 'not (B);
RACK 'not (B);)
RECEIVER [GET, RDT, RACK] (B)

RACK 'not (B); ' RDT ?M ot B
RECEIVER [GET, RDT, RACK] (B) :

endproc
RACK !not B

Sequential processes: example 2

9,

process LINK [INPUT, OUTPUT] : noexit :=
INPUT !TOKEN;

(
OUTPUT !TOKEN;

LINK [INPUT, OUTPUT]

LINK [INPUT,. OUTPUT]

(]
INPUT !CLAIM 7?Ai:ADDR;

(

OUTPUT !CLAIM !Ai;
LINK [INPUT, QUTPUT] INPUT !TOKEN INPUT !CLAIM ?Ai

[] i
i;
|

LINK [INPUT, OUTPUT]
| OUTPUT !TOKEN OUTPUT !CLAIM !Ai

)

endproc

Lecture 2

m The rules of the game:

¥y v vv

[

|

|
|
|

one must describe sets of boxes (= processes)
boxes can be nested one into another (= nested processes)
boxes are connected by links (= gates)

more than two boxes can connect on the same link (= multiway
rendezvous)

links can be hidden to avoid third-party interference and to make
internal details unobservable

all of this must be described using only the (binary) parallel
operators and the (unary) hiding operator

Three parallel operators

|| : synchronize on all visible gates (includes 8, excludes)
11| : don’t synchronize on any gate (excepted o)
1[Gy, .- G,]] : synchronize on gates G, ... G,and 6

» the 15t and 2"d operators are particular cases of the 3™ one

Parallel processes: example 1

©,

hide SDT, RDT, RACK, SACK, in

(
(
TRANSMITTER [PUT, SDT, SACK] (0)

1
RECEIVER [GET, RDT, RACK] (0)

)

| [SDT, RDT, RACK, SACK] |
(lPUT] GET
MEDIUM1 [SDT, RDT] _ '
(11 TRANSMITTER RECEIVER
?EDIUHZ [RACK, SACK] i DT

) SACK MM RACK

MEDIUM._2

Parallel processes: example 2

|

STATION [OPEN, CLOSE, PRED1, SUCC1i] (A1)

|1l
STATION [OPEN, CLOSE, PRED2, SUCC2] (A2)

| 1]
STATION [OPEN, CLOSE, PRED3, SUCC3] (A3)

) .

| [PRED1, SUCC1, PRED2, SUCC2, PRED3, SUCC3]|
(St
LINK [SUCC1i, PRED2]
1] - PRED1 | STATION 1 |N succ1
LINK [SuCC2, PRED3] //// \\\\
1] LINK LINK
LINK [SUCC3, PREDi] SUCC3 PRED2
) —r

Parallel processes: example 3
hide R_T2, R_T1, R1, R2, DEPOSE_1, DEPOSE_2, CRH in
(
m_transmitter
Il R_T2, R_T1]|
(
(
m_receiver_thread_i
Il R_T1, R1, R2, GET, CRH, DEPOSE_1i]|
m_fail_receiver_1 .
)
Il R1, R2]|
([m_transmitter J
m_receiver_thread_2
Il R_T2, R1, R2, GET, CRH, nsposzz] RT1 12
m_fail_receiver_2 [‘ .
) [m_receiver_threa,d_l] R2 En.receiver_threadj]
) CRH] | DEPOSE 11 CRH] | DEPOSE !2
) fm_faiLreceiver_l ‘] A [m _fail receiver_2 J
)

Today’s challenge

m Get the LOTOS tutorial by Bolognesi & Brinksma

m Copy the LOTOS example ‘Max3’ in ‘“max.lotos’

from “specification’ to ‘endspec’

beware of a dozen copy-paste errors! (this is a scanned PDF)

Insert “(*! constructor *)” between ‘opns zero’ and before “: -> nat’
Insert “(*! constructor *)” between ‘succ’ and before “: nat -> nat’

replace equation ‘largest(x, y) = largest(y, x);” with

‘largest(x, zero) = Xx;’

» create (in the same directory) a text file named “‘max.t’ containing
only two lines:

#define CAESAR_ADT_EXPERT T 5.3
#define CAESAR_ADT ITR_NEXT_NAT(CAESAR_ADT 0) ((CAESAR_ADT 0)++ < 5)

(this restricts NAT values to the range 0..5)

¥y ¥ v v ¥

m Compile the data types of your LOTOS specification:
» $ caesar.adt max.lotos
» fix the remaining syntax errors that escaped your attention

m Compile the processes of your LOTOS specification:
» $ caesar max.lotos
» this generates an LTS stored in file max.bcg

m Minimize this file using strong bisimulation:
» $ bcg_min max.bcg

m Display this file:
» $ bcg_edit max.bcg
» send the PostScript drawing of this LTS to Alexander

References

m C. A. R. Hoare. Communicating sequential processes.
Communications of the ACM, 21 (8), 1978.

m S. Brookes, C. A. R. Hoare, A. W. Roscoe. A Theory of
Communicating Sequential Processes. Journal of the
ACM, 31 (3), 1984.

m C. A. R. Hoare. Communicating Sequential Processes.
Prentice Hall, 1985.

m R. Milner. A Calculus of Communicating Systems.
Springer Verlag. 1980.

m R. Milner. Communication and Concurrency. Prentice
Hall. 1989.

m T. Bolognesi and E. Brinksma. Introduction to the I1SO
specification language LOTOS. Computer Networks and
ISDN Systems, vol. 14, num. 1, 1987.
http://doc.utwente.nl/69857/1/Bolognesi87introduction.pdf

m L. Logrippo, M Faci, and M. Haj-Hussein. An
Introduction to LOTOS: learning by examples. Computer

Networks and ISDN Systems, vol. 23, num. 5, 1992.
http://lotos.site.uottawa.ca/ftp/pub/Lotos/Papers/tutorial.pdf

m More LOTOS tutorials: http://cadp.inria.fr/tutorial

http://doc.utwente.nl/69857/1/Bolognesi87introduction.pdf
http://lotos.site.uottawa.ca/ftp/pub/Lotos/Papers/tutorial.pdf
http://cadp.inria.fr/tutorial

Tutorial on CADP tools (optional)

m H. Garavel, F Lang, R. Mateescu, and W. Serwe.
CADP 2010: A Toolbox for the Construction and
Analysis of Distributed Processes. TACAS 2011
http://cadp.inria.fr/vasy/publications/Garavel-
Lang-Mateescu-Serwe-11.html

m More CADP info: http://cadp.inria.fr/tutorial

http://cadp.inria.fr/vasy/publications/Garavel-Lang-Mateescu-Serwe-11.html
http://cadp.inria.fr/vasy/publications/Garavel-Lang-Mateescu-Serwe-11.html
http://cadp.inria.fr/tutorial

	Applied Concurrency Theory�Lecture 2 : process calculi
	Process calculi�Process algebras
	Quick history of process calculi (1/3)
	Quick history of process calculi (2/3)
	Quick history of process calculi (3/3)
	Process calculi as ‘models’
	Process calculi: Scope
	Syntax
	Algebraic/Axiomatic semantics
	Operational semantics
	Labelled Transition Systems (LTS)
	Three uses of LTSs for verification (1/2)
	Three uses of LTSs for verification (2/2)
	Alternative models to LTS
	Structured Operational Semantics (SOS)
	LOTOS
	What is LOTOS?
	LOTOS: lexical elements
	LOTOS specification (top-level)
	LOTOS data types
	LOTOS type definitions
	LOTOS value expressions
	Abstract data types: example 1
	Abstract data types: example 2
	LOTOS processes
	LOTOS process definitions
	LOTOS non-terminal symbols
	LOTOS behaviour expressions
	Sequential processes in a nutshell
	Sequential processes: example 1
	Sequential processes: example 2
	Parallel processes in a nutshell
	Parallel processes: example 1
	Parallel processes: example 2
	Parallel processes: example 3
	Today’s challenge
	Today’s challenge (1/2)
	Today’s challenge (2/2)
	References
	Historical papers on CSP and CCS
	Tutorials on LOTOS
	Tutorial on CADP tools (optional)

