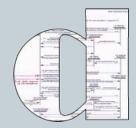
Applied Concurrency Theory Lecture 2 : process calculi

Hubert Garavel Alexander Graf-Brill



Process calculi Process algebras

2

Quick history of process calculi (1/3)

- Research on process calculi started in the late 70s
- Finding a better paradigm than shared memory
- Earlier attempts:
 - Actor model (Hewitt, 1973)
 - monitors (Hoare 1974, Brinch Hansen 1975)
 - guarded commands (Dijkstra, 1975)
- Communicating Sequential Processes (CSP)
 - a new language proposed by C.A.R. Hoare (1978)
 - finite set of concurrent processes
 - message passing communications ('rendezvous')
 - binary communication scheme (one sender, one receiver)

Quick history of process calculi (2/3)

- Calculus of Communicating Systems (CCS)
 - a small language and a book by Robin Milner (1980)
 - underlying semantic model: labelled transition systems (LTS)
 - formally-defined operational semantics (SOS rules)
 - use of equivalence relations (bisimulations) to compare LTS
 - algebraic theorems
 - new book by Robin Milner (1989)
- Theoretical CSP
 - revised version of CSP (Brookes, Hoare, Roscoe, 1984)
 - book by C.A.R. Hoare (1985)
 - multiway rendez-vous (more than two parties)

Quick history of process calculi (3/3)

- Algebra of Communicating Processes (ACP)
 - papers by Bergstra, Baeten, Klop (1984-1987)
 - emphasis on algebraic semantics (rather than operational)
 - symmetric sequential composition
- Then, a plethora of derived languages
 - ► CHP, CIRCAL, FSP, LOTOS, μCRL, OCCAM, pi-calculus, PSF, etc.
- Tool development: compilers, verifiers, etc
 - ▶ for CSP: FDR2
 - For CCS: CWB (Concurrency Workbench)
 - for FSP: LTSA
 - For LOTOS: CADP (Construction and Analysis of Distributed Processes)

Process calculi as 'models'

Different stages in system/software life cycle

- ► Requirements → Models → Programs
- models are higher level (more abstract) than programs
- models may be formal or not
- models may be executable or not
- models help to detect errors as early as possible

Process calculi = models for concurrency

- focus on control aspects (later only, data aspects)
- process calculi are formal models for mathematical studies
- process calculi were not necessarily meant to be executable

Process calculi: Scope

A general computation model

- quest for generality and abstraction
- not restricted to software (contrary to shared variables)
- applicable to hardware, software, security, biology, music etc.
- but not really intended to complex sequential algorithms!

Key ideas

- system = set of actors (or processes) executing in parallel
- no shared memory (if needed, it can be modelled explicitly)
- message-passing communication (based on rendezvous)

Syntax

A minimal (or small) set of algebraic operators

- each operator does one single thing
- operators can be combined freely (the 'Lego' principle)
- this gives algebraic terms (\cong 'programs')

Small example: subset of basic CCS

- set of actions (or events): a, b, c, ...
- ▶ set of process behaviour expressions: P, P₀, P₁, P₂, etc.
 - P ::= nil -- inaction: does nothing
 - | a . P₀ -- prefix: does action a, then behave as P₀
 - $| P_1 + P_2 |$ -- choice: does either P_1 or P_2
 - $|P_1||P_2$ -- parallel: does P_1 and P_2 concurrently

Algebraic/Axiomatic semantics

9

A first approach to define the semantics
A finite set of algebraic axioms

 $P_{1} + P_{2} = P_{2} + P_{1}$ (P_{1} + P_{2}) + P_{3} = P_{1} + (P_{2} + P_{3}) nil + P = P

 $P_1 || P_2 = P_2 || P_1$

- -- commutativity of +
- -- associativity of +
 - -- nil neutral for +
- -- commutativity of ||
- $(P_1 || P_2) || P_3 = P_1 || (P_2 || P_3)$ -- associativity of ||
- $(a \cdot P_1) || (b \cdot P_2) = a \cdot (P_1 || b \cdot P_2) + b \cdot (a \cdot P_1 || P_2)$

-- interleaving expansion law

- goal: obtain a consistent and complete set of axioms
- can be used to prove the equivalence of programs
- mathematically interesting, but not really useful in practice

Operational semantics

- The mainstream approach to define the semantics of process calculi
- Main ideas:
 - operational semantics: describes the execution of a high-level program in terms of a low-level machine (or by translation to a low-level model)
 - here, the high-level 'programs' are algebraic terms
 - here, the low-level machine is a state/transition graph
 - therefore, operational semantics of process calculi is a translation of terms into graphs

Labelled Transition Systems (LTS)

The standard model for process calculi semantics

LTS = 4 components:

- a (non-empty) set S of states
- an initial state s₀ belonging to S
- a (non-empty) set A of 'visible' actions (or labels), which contains a 'hidden/internal' action noted τ
- a transition relation on S x A x S each transition is a triple: (source state, action, target state)
- States are opaque: no information attached to them
 - one can only distinguish the initial state from the other states
- Transition labels may contain 'rich' data
 - channel names
 - lists of typed values

Three uses of LTSs for verification (1/2)

1. Visual checking

- to check a program P, generate LTS (P) and look if it is correct
- caveat: only works if LTS (P) is small enough to be inspected
- there exist funny tools for exploring very large graphs

2. Model checking

- to check if LTS (P) satisfies a temporal logic formula e.g.: absence of deadlocks, absence of race condition, etc.
- the model checker can diosplay counter-examples
- caveat: only works if LTS (S) is small enough (< 10 billion states)

Three uses of LTSs for verification (2/2)

3. Equivalence checking

- with axiomatic semantics, one compares terms algebraically
- with operational semantics, one compares graphs
- special equivalences for concurrency: 'bisimulations'
- special inclusion relations for concurrency: simulation preorders
- one can reduce any LTS to a minimal LTS without loosing behaviourally important information
- caveat: only works if LTS (S) is small enough (< 1 billion states)

Alternative models to LTS

- Action-based models vs state-based models
 - Labelled Transition Systems: information on labels only
 - Kripke Structures: information on states only
 - Kripke Transition Systems: information on states and labels
 - in theory: action-based and state-based are dual notions
 - In practice: action-based is more abstract and better resists evolutions because it only refers to system interfaces rather to system internal variables
- Branching-time models vs linear-time models
 - LTS are branching-time (= graphs)
 - traces are linear-time (= sequences of states/transitions)
 - branching-time models are more compact and adapted to concurrency

Structured Operational Semantics (SOS)

15

The semantics of a language is described by a small set of semantic rules

$$\frac{true}{(\mathbf{i} ; B_0) \xrightarrow{\mathbf{i}} B_0}$$

$$\frac{(B_0 \stackrel{L}{\longrightarrow} B'_0) \land (V_0 = true)}{([V_0] \dashrightarrow B_0) \stackrel{L}{\longrightarrow} B'_0}$$

SOS rules have a mechanically checkable format

Principles of translation

- each state of the LTS is a process calculus algebraic term
- the initial state is the source program itself
- this program will be rewritten progressively as it executes
- one advances step by step (each step 'fires' an action of A)

What is LOTOS?

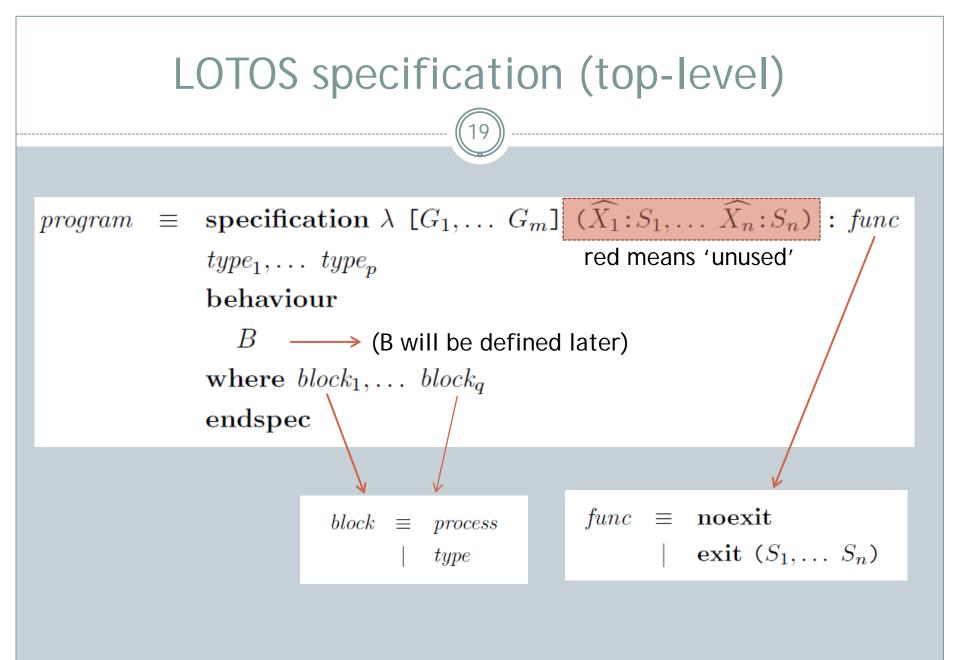
- A international effort to standardize process calculi
 - defined between 1983 and 1989
 - ISO international standard (1989)
 - control part: unifies the best features of CCS and CSP
 - data part: based on abstract data types (ADT)
- Qualities
 - expressivity
 - applicable to many different systems
- Drawbacks
 - too different from usual languages (steep learning curve)
 - data types are cumbersome

LOTOS: lexical elements

18

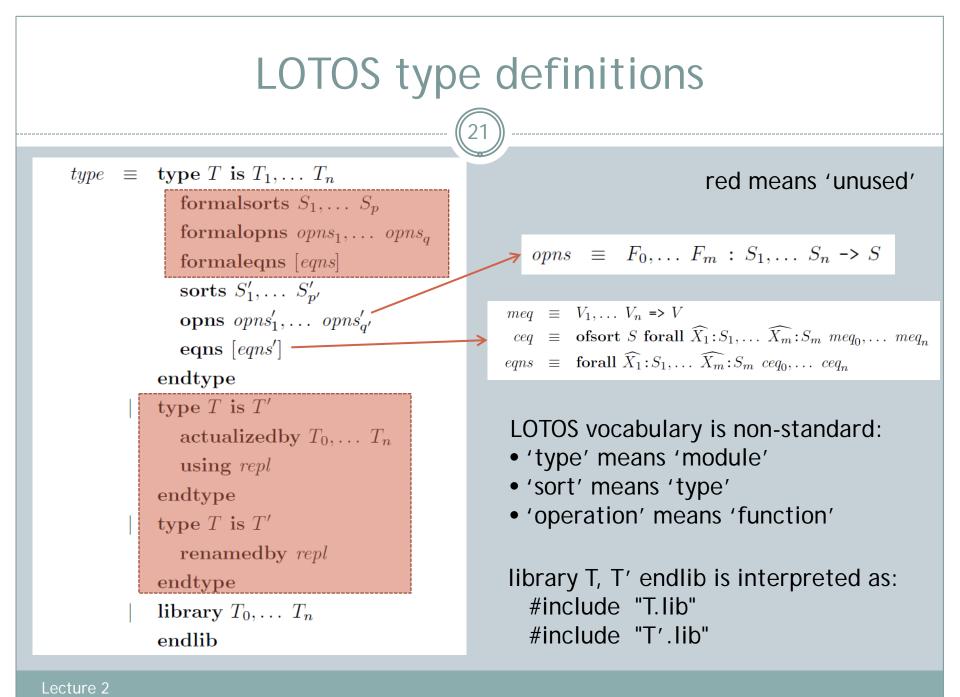
7 classes of LOTOS identifiers:

- T : type name
- S : sort name
- F : function name (official term: operation identifier)
- X : variable name (official term: value identifier)
- P : process name
- G : gate name (two special gates: au and δ)
- λ : specification identifier (used only once after 'specification')
- These 7 name spaces are disjoint
- identifier 'i' is reserved for the hidden gate τ
 Comments are noted (* ... *)



LOTOS data types

20



LOTOS value expressions

A value expression (non-terminal symbol: V) is either:

- a variable
- a function call with a (possibly empty) list of value expressions
- an equality test between two values

$$V \equiv X$$

$$\mid F (V_1, \dots V_n)$$

$$\mid V_1 = V_2$$

notation 'V of S' means that V has sort S (to resolve type ambiguities)

Abstract data types: example 1

23

```
type BOOLEAN is
   sorts
       BOOL
   opns
       true (*! constructor *),
       false (*! constructor *) : -> BOOL
                                  : BOOL -> BOOL
       \mathbf{not}
        _and_,
        _or_,
        _xor_,
       _implies_,
        _iff_
                                  : BOOL, BOOL -> BOOL
   eqns
       forall X, Y : BOOL
       ofsort BOOL
          not (true) = false;
          not (false) = true;
       ofsort BOOL
          X and true = X;
          X and false = false;
       ofsort BOOL
          X or true = true;
          X or false = X;
       ofsort BOOL
          X xor Y = (X \text{ and not } (Y)) \text{ or } (Y \text{ and not } (X));
          X implies Y = Y or not (X);
          X iff Y = (X \text{ implies } Y) and (Y \text{ implies } X);
endtype
```

Abstract data types: example 2

24

type RANDOM_ACCESS_QUEUE is BOOLEAN, MESSAGE, STATUS

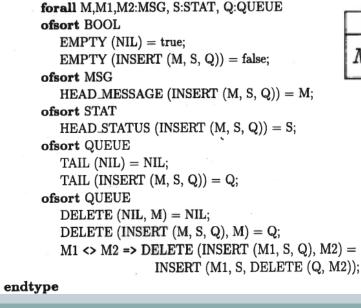
sorts

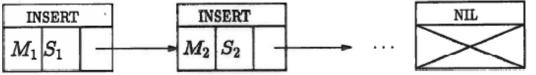
QUEUE

opns

NIL (*! constructor *)	:	-> QUEUE
INSERT (*! constructor *)	:	MSG, STAT, QUEUE -> QUEUE
EMPTY	:	QUEUE -> BOOL
HEAD_MESSAGE	:	QUEUE -> MSG
HEAD_STATUS	:	QUEUE -> STAT
TAIL	:	QUEUE -> QUEUE
DELETE	:	QUEUE, MSG -> QUEUE

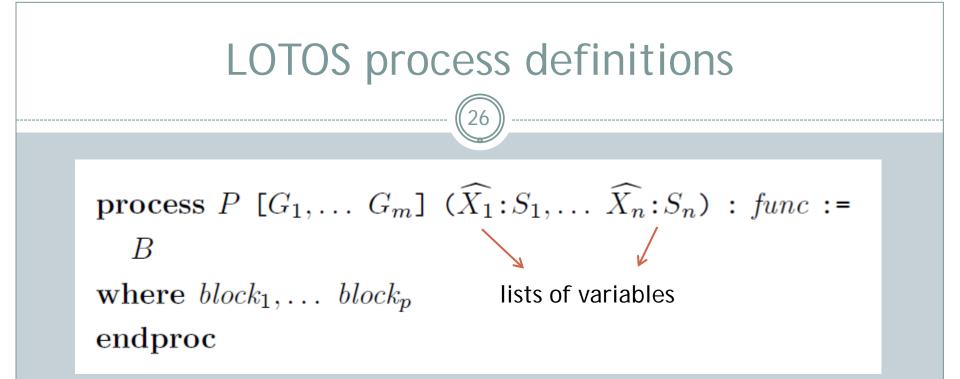
eqns





LOTOS processes

25



- P is the process identifier, whereas B is a behaviour expression defining the 'body' of P
- LOTOS processes have two lists of parameters
- betwen brackets: a list of (untyped) gates
- between parentheses: a list of (typed) variables

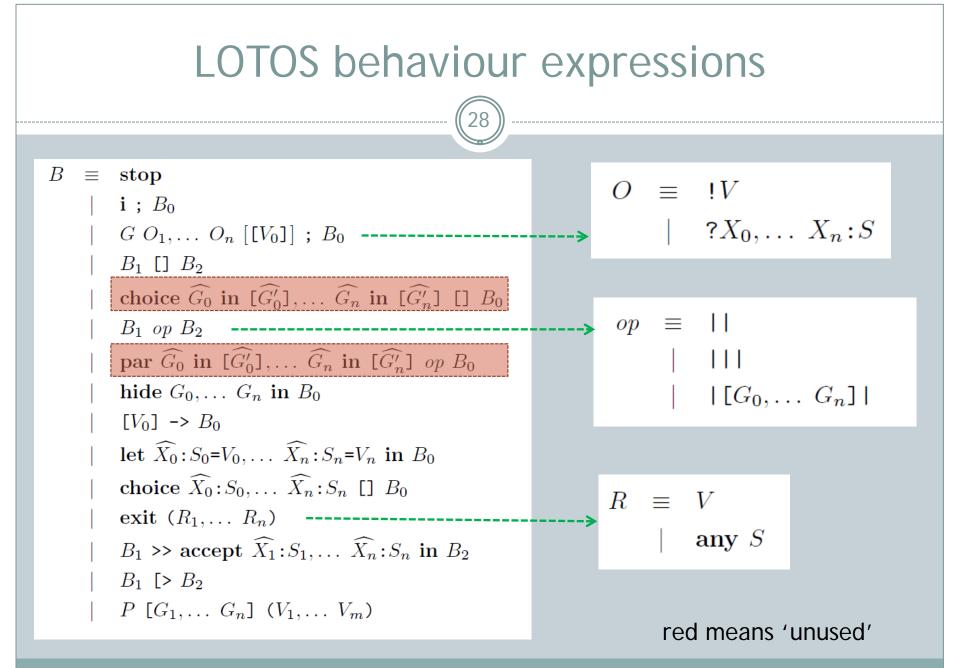
LOTOS non-terminal symbols

Five symbols to be defined:

- B : behaviour expression
- O : offer (official term: experiment offer)
- op : parallel operator
- R : result
- V : value expression (see above)

Note:

- the ISO concrete grammar has many more non-terminals
- this presentation is much simpler, but equivalent



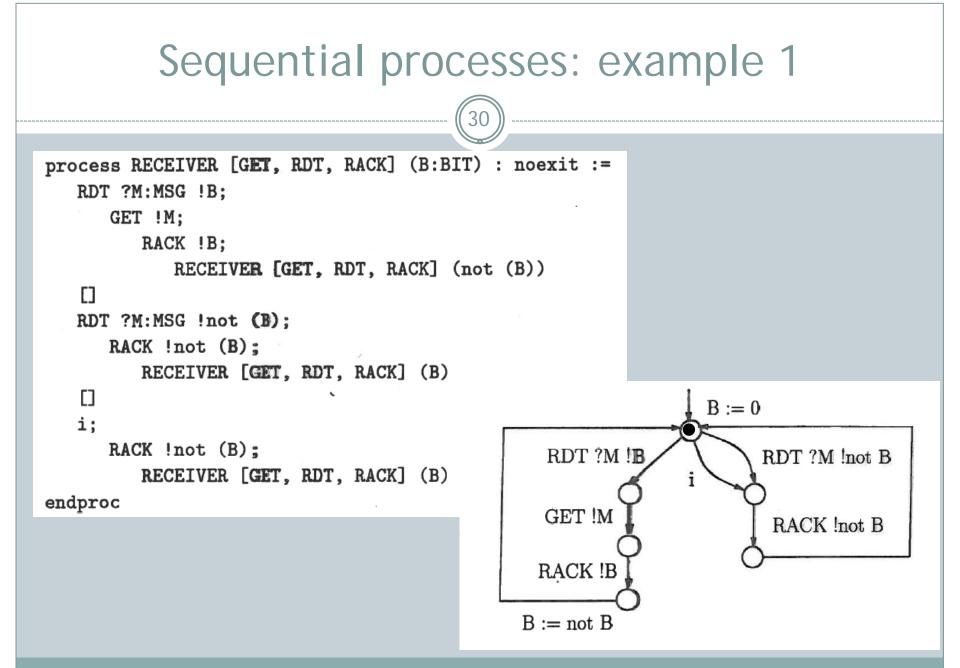
Sequential processes in a nutshell

29

Trees of actions are easy to obtain by combining

- stop (deadlock state)
- ; (action prefix)
- [] (choice)
- To create loops, one must use a recursive process
- LOTOS variables are 'dynamic constants'
 - they are assigned only once when declared (i.e., 'X:S')
 - they cannot be modified afterwards
 - except by a recursive process call: P [...](X) calls P [...](X+1)
 - this is a way LOTOS ensures that variables are assigned before used

Parentheses rules are cumbersome, but essential

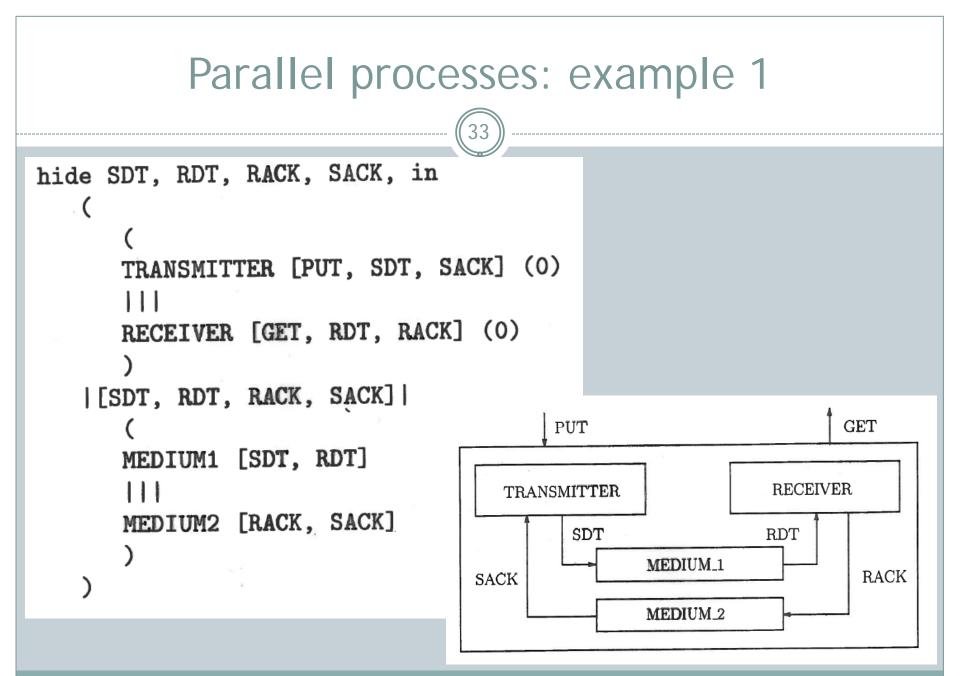


Sequential processes: example 2 process LINK [INPUT, OUTPUT] : noexit := INPUT !TOKEN; OUTPUT ! TOKEN; LINK [INPUT, OUTPUT] [] i; LINK [INPUT, OUTPUT] [] INPUT !CLAIM ?Ai:ADDR; OUTPUT !CLAIM !Ai; INPUT **TOKEN** INPUT CLAIM ?Ai LINK [INPUT, QUTPUT] [] i; LINK [INPUT, OUTPUT] OUTPUT **!TOKEN** OUTPUT !CLAIM !Ai endproc

Parallel processes in a nutshell

The rules of the game:

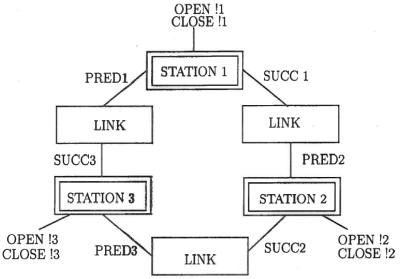
- one must describe sets of boxes (= processes)
- boxes can be nested one into another (= nested processes)
- boxes are connected by links (= gates)
- more than two boxes can connect on the same link (= multiway rendezvous)
- Inks can be hidden to avoid third-party interference and to make internal details unobservable
- all of this must be described using only the (binary) parallel operators and the (unary) hiding operator
- Three parallel operators
 - || : synchronize on all visible gates (includes δ , excludes τ)
 - ||| : don't synchronize on any gate (excepted δ)
 - $|[G_0, ..., G_n]|$: synchronize on gates $G_0, ..., G_n$ and δ
 - the 1st and 2nd operators are particular cases of the 3rd one

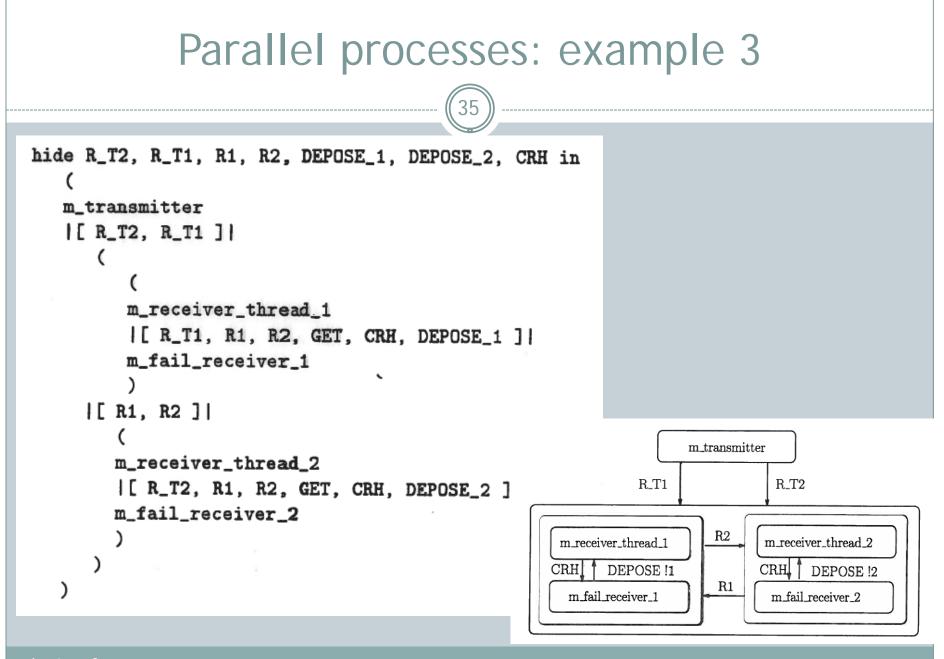


Parallel processes: example 2

34

```
STATION [OPEN, CLOSE, PRED1, SUCC1] (A1)
  STATION [OPEN, CLOSE, PRED2, SUCC2] (A2)
  STATION [OPEN, CLOSE, PRED3, SUCC3] (A3)
[PRED1, SUCC1, PRED2, SUCC2, PRED3, SUCC3]
  LINK [SUCC1, PRED2]
  LINK [SUCC2, PRED3]
  LINK [SUCC3, PRED1]
```





Today's challenge

36)

Today's challenge (1/2)

Get the LOTOS tutorial by Bolognesi & Brinksma

Copy the LOTOS example 'Max3' in 'max.lotos'

- from 'specification' to 'endspec'
- beware of a dozen copy-paste errors! (this is a scanned PDF)
- insert '(*! constructor *)' between 'opns zero' and before ': -> nat'
- insert '(*! constructor *)' between 'succ' and before ': nat -> nat'
- replace equation 'largest(x, y) = largest(y, x);' with 'largest(x, zero) = x;'
- create (in the same directory) a text file named 'max.t' containing only two lines:

#define CAESAR_ADT_EXPERT_T 5.3

#define CAESAR_ADT_ITR_NEXT_NAT(CAESAR_ADT_0) ((CAESAR_ADT_0)++ < 5)
(this restricts NAT values to the range 0..5)</pre>

Today's challenge (2/2)

38

- Compile the data types of your LOTOS specification:
 - \$ caesar.adt max.lotos
 - fix the remaining syntax errors that escaped your attention
- Compile the processes of your LOTOS specification:
 - \$ caesar max.lotos
 - this generates an LTS stored in file max.bcg
- Minimize this file using strong bisimulation:
 - \$ bcg_min max.bcg
- Display this file:
 - \$ bcg_edit max.bcg
 - send the PostScript drawing of this LTS to Alexander

References

Historical papers on CSP and CCS

- C. A. R. Hoare. Communicating sequential processes. Communications of the ACM, 21 (8), 1978.
- S. Brookes, C. A. R. Hoare, A. W. Roscoe. A Theory of Communicating Sequential Processes. Journal of the ACM, 31 (3), 1984.
- C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
- R. Milner. A Calculus of Communicating Systems. Springer Verlag. 1980.
- R. Milner. Communication and Concurrency. Prentice Hall. 1989.

Tutorials on LOTOS

T. Bolognesi and E. Brinksma. Introduction to the ISO specification language LOTOS. Computer Networks and ISDN Systems, vol. 14, num. 1, 1987.

http://doc.utwente.nl/69857/1/Bolognesi87introduction.pdf

 L. Logrippo, M Faci, and M. Haj-Hussein. An introduction to LOTOS: learning by examples. Computer Networks and ISDN Systems, vol. 23, num. 5, 1992. http://lotos.site.uottawa.ca/ftp/pub/Lotos/Papers/tutorial.pdf

More LOTOS tutorials: <u>http://cadp.inria.fr/tutorial</u>

Tutorial on CADP tools (optional)

42

H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2010: A Toolbox for the Construction and Analysis of Distributed Processes. TACAS 2011 <u>http://cadp.inria.fr/vasy/publications/Garavel-Lang-Mateescu-Serwe-11.html</u>

More CADP info: <u>http://cadp.inria.fr/tutorial</u>