Applied Concurrency Theory
Lecture 4 : bisimulations,
CCS, and pi-calculus

O

Bisimulations

m Process algebraists use equivalences because this is
the only way for them to verify programs

m With operational semantics:
» we translate (well, not to large) programs into graphs
» we can do visual checking
» we can do model checking
» also, equivalences are more expensive than model checking
-- roughly: O (n log n) vs O (n)
» do we still need equivalences?
m Yes. Equivalences are useful
to minimize LTSs (e.g. before visual or model checking)
to avoid writing complex temporal logic formulas
to check If certain traces are accepted by an LTS

|
|
|
» to fight state explosion (compositional minimization)

m Automata equivalence checks whether two
automata accept the same language
» Same language = same set of accepted words (or traces)
» this is perfect for regular expressions and compiler scanners

m This Is not suitable for studying concurrency

» comparing languages is not enough

» two LTS may have the same language but behave differently

b

’-\‘
[]
w

.
aln 3
@ -

a
a + ¢
o
C o)
O

‘coffee-vending machine’ example

a

’-\‘
[]
w

a0
[]
L 4

both LTSs recognize the
same traces {a.b, a.c} but
putting them in parallel
with a.b generates a
deadlock in the 2"d case

m In the literature, there are nearly 50 different
equivalences for LTSs

m In practice, only two or three are needed:

» Strong bisimulation: preserves all properties on LTSs
(well, not the number of states nor the branching factor)

» Weak bisimulation: try to eliminate or collapse sequences of
t-transitions which are not observable anyway. Branching
bisimulation is a suitable weak bisimulation.

» some divergence-preserving bisimulation

m Also useful:
» equivalences taking time and/or probabilities into account

A critical look at CCS

Syntax of CCS

9,

(channel, port) names: a,b,c,...

co-names: 3a,b.c,...

silent action: T

actions, prefixes: p:i=a | a | 7

processes: P,Q = 0 inaction

1. P prefix

P | Q parallel

P+ Q (external) choice

(va)P restriction

reck P process P with definition K = P
K (defined) process name

Lecture 4

Dynamic semantics of CCS

PE P iaa
[Act uPL P [Res] (va)P £ (va)P’

PL p QL @
[Sum1] QP [Sum2] 0l o

QL o
PlQ L PQ

PLE P
Pm]moiww

[Par2]

Plreck P/K] & P’
reck P £ P/

PEP Qlq
PlQZ P/|Q

[Gom [F{ec]

Lecture 4

= Minimality
» appealing in academia, but does not scale up to real problems
» the LOTOS ISO committee added the required extensions

m Sequential composition
» CCS action-prefix proved to be a bad language design decision
» see Lecture 3 for a discussion (LOTOS vs LOTOS NT)

m Parallel composition
» CCS parallel composition is worse than the one of CSP/LOTOS

» only supports binary rendez-vous (co-names are a mistake)
» even the binary communication is badly designed

K pt e
[Paﬂ] P T P [F’arE] Q - Q
PlQ L P|Q PlQ L Pl
2 PL P L#aa
[Com PEP Qi [Res] T
PIQ Z P/|Q (va)P — (va)P

» No list of gates on which to synchronize or not

» [Parl] and [Par2]: each parallel process can always evolve
alone and ignore the rendez-vous!

» [Com]: the rendezvous is immediately renamed into t
Impossible to observe in the LTS = verification impossible
a (:::) 5
— — a restriction on a is required
a.o I a.0= @ vt » to force the rendezvous

Ql
QD

m Limitation of binary synchronization:
how to specify (P || Q) ; R? (LOTOS NT semantics)

m This Is a 3-party rendez-vous: P and Q walit each
other to terminate and R waits to start

m CCS requires 2 additional rendezvous 6, and o, :
(P.0;]Q.%;.0,)\5;,] 6,.R)\0,
this creates two t-transitions in the LTS (too bad)

The pi-calculus

m In “classical’ process calculi (CCS, CSP, LOTOS...):

» one often describes a finite set of concurrent actors

» these actors can be (recursively) nested

» the communication topology (i.e., gates) is fixed

» Wwell-adapted to hardware design, data transmission protocols

m In fact,‘classical’ process calculi can do more:

» dynamic creation/destruction of actors and channels
Example: A; hideGin(B |[G]] C) ;D

» unbounded dynamic creation of actors
Example: process P (N) := if N=0 then Q else (P(N-1) |]] Q)

(mixing LOTOS and LOTOS NT syntaxes)

m ‘Mobile process calculi’ : a more radical approach
» dynamically evolving networks
» actors can be created/deleted dynamically
» channels (communication links) also
» actors can discover each other, and then communicate
» Often, they are put in relation by a third-party (‘trader’)

m Real-life examples:
» plug-and-play devices on a network
» mobile phones and base stations
» Object-oriented software

m The printer discovery example (J. Parrow):

Before interaction: After interaction:
/// / . ™y
/ Client (. Client
Server [| Server _
n e -
| T | T
® ®
-~/ / ~_ (i J
‘\.\—.r.—- .

Printer Printer

~ “-._,_,—,_

/ _,, e R
P o

m One approach to mobility: sending channels

» Impossible in “classical’ process calculi, where offers sent or
received on gates only contain data values (but not gates)

» sending processes is similar to sending channels

m Proposed by R. Milner, J. Parrow, D. Walker in the
early 90s (see References)

m Defined as an extension of CCS

m Two main changes:

» channels can be sent on channels

» the restriction operator of CCS is technically modified
m A very influential model in academia:

» Many variants

» some tools, such as the Mobility Workbench

» some applications - basis for defining BPEL
» See

http://www.it.uu.se/research/group/mobility/mwb
http://move.to/mobility

a.
P+ P
PP

Output (noted a !x in LOTOS)
Input (noted a ?x in LOTOS)
Silent

also written ‘a<x>
Nil
Prefix

Sum

Parallel

if * =y then P
if © # y then P

Match

. dded lat
Mismatch added fater

initially noted <« (vax) P

P\aasin CCS

Definitions

Lecture 4

Restriction
[dentifier

(where i # j = x; # ;)

m Asingle ‘type’ of data, merging values and channels

m Variables are defined (“bound’) only at 3 places:

» X (). P : variable y contains the data received on X
y is visible only in P
» (vy) P : a new channel is created and assigned to variable y

y is visible only in P, but P may send y to other agents
(this is called “scope extrusion’ - tricky rules)

» A (X, ..., X,) = P : parameters Xy, ..., X,are visible in P
m bn(P) := bound variables defined in P : x (y) or (vy)
m fn(P) := all other variables used Iin P (free variables)

Dynamic semantics

Tau r.P = P ouvr zy.P Y p IN z(y).P = P{z/y}
P2 f{ pap 1 f P
P+ P — P{ P1|Pg — P{IPQ
P, p! T P, 2 P R =) f{ P, Pl

PPy — P{|P] Pr|Py — (vy)(P{|FP3)
fa ! TY l
P :} P if z € n(a) OPEN P_% r if #y,z & fn((vy)P’)
(vx)P — (va)P’ (vy)P =) P'{z/y}

SUM

if bn(a) N fn(P2) =10

if y € fn(P2)

fa ’ o !
MATcCH L P; MISMATCH L }: if = #y
lx =x|P — P’ lx # y|P — P’

. Plyi/z1, s Yr(a)/Tr(ay} — P’ def

ID

Ay, s ur(a)) — P/ AL) = F

Lecture 4

Main = (v req,a,b, c)(Client(req,a,b, c) | Dispatcher(req) |
Server(a) | Server(b) | Server(c))

Client(req, a,b, c) = (vax)(request a.Teq(a, x).ClientAux(req,a,a,b,c,x)) +
(vx)(request b.7eq (b, z). ClientAux(req.b,a,b,c, x)) +
(vx)(request c.meq(c, z). ClientAuz (req, c,a, b, ¢, x))

ClientAux(req, k,a,b,c,z) = z(info).(T purchase.purchase k.0 +
T refuse.refuse k. Client(req, a, b, c))

Dispatcher(req) = req(k, x).k x. Dispatcher(req)
Server(k) = k(x).T info.z(decision).Server (k)

Lecture 4

The PIC2LNT tool

m Arecent translator developed at INRIA Grenoble

m Input language: PIC
» pi-calculus
» With a machine-readable syntax (from Mobility Workbench)
» extended with data values (= “applied pi-calculus’)

m Output: LOTOS NT program

m Ascript named “pic2bcg’ automates the translation
PIC > LOTOS NT — LOTOS — Petri nets — LTS

m The PIC language
» defined in the PIC2LNT manual page (see References)
» the data types and value expressions are those of LOTOS NT

m The translation approach:
» most pi-calculus tools do symbolic proofs on the terms

» pic2int works by state space exploration
(= explicit-state enumeration = reachability analysis)

» limitation: only works for finite-state models
» = bounding channels, data types, ‘!’ operator
» BUT enables to study non-trivial mobile programs

m Caution: “t’ means t (contrary to ‘I’ in LOTOS/NT)
m The restriction operator v must be written ‘new’
m Emissions x have to be noted ’X

m Emitted parameters must be bracked with < and >
even when there iIs only a single parameter

m Receilved parameters must be bracked with (and)
even when there iIs only a single parameter

m There are no channel declarations: beware of typos
» exploit: at any place, you can easily insert a ’debug event

m In the LTS obtained, the labels carry extra offers
» for instance: !'FALSE or 'TRUE
» this is an artefact of the translation to LOTOS NT
» (perhaps the pic2bcg script could remove them)

m The translation implements the creation of new
channels by giving unigue numbers
» example: (new y) ’x<y> may generate a transition: X !Y(41)
» don’t worry If the counter is not increasing one by one

m Restriction hides the synchronizations ®
» one cannot observe them in the LTS (only t-transitions can be seen)
» add extra events if needed

Today’s challenge

m Find the paper about PIC2LNT published at IFM 2010
(see References below)

m Copy-and-paste in a file named “disp.pic’ the pi-
calculus example given page 11

m Convert it to machine-readable notations:

» replace each v symbol by the new keyword

» replace emissions x with ’x

» restore the < and > symbols around emissions of multiple channels;
add them for emissions of single channels

» same with (and) for receptions

» finally, replace the 0 with nil (O is not documented in the manual
page, yet seems to be accepted)

m Perform the translation PIC —» LOTOS NT —» LOTOS —»
Petri nets — LTS by typing:
» $ pic2bcg disp.pic
» If it does not compile properly, fix the mistakes
m Visualize the file ‘disp.bcg’ obtained
» $ bcg_edit disp.bcg

m Compare it to the picture given page 11

m Minimize it using strong bisimulation to remove
‘duplicated’ parts of the LTS
» $ bcg_min disp.bcg
» $ bcg_edit disp.bcg

m Send your file “disp.pic’ and the PostScript file to

Alexander (possibly with comments if you observe a
difference with the picture of the paper)

References

m J. Parrow. An introduction to the pi-calculus.
Chapter of the Handbook of Process Algebra, 2001.
http://user.it.uu.se/~joachim/intro.ps
Especially sections 1, 2.1, (2.1), 2.3, 4, and 6.

m U. Nestmann. Welcome to the Jungle: A subjective
guide to mobile process calculi, 200x.
http://citeseerx.ist.psu.edu/viewdoc/summary?dol

=10.1.1.89.6712

http://user.it.uu.se/~joachim/intro.ps
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.89.6712
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.89.6712

mR. Milner, J. Parrow, D. Walker. A calculus of mobile
processes (parts | and II). Information and
Computation, vol. 100, num. 1, 1992.

m R. Milner. Elements of interaction: Turing award
lecture. http://dl.acm.org/citation.cfm?1d=151240

m On-line resources: http://move.to/mobility

http://dl.acm.org/citation.cfm?id=151240
http://move.to/mobility

PIC2LNT translator, by R. Mateescu and G. Salatin, 2010-12.
In your VM, directory $HOME/Desktop/PIC2LNT

» Reference documentation:
The PIC2LNT manual page
in your VM, directory $HOME/Desktop/PIC2LNT/man/pdf

» If you want details on the translation:
R. Mateescu and G. Salaun. Translating Pi-Calculus into
LOTOS NT. IFM 2010
in your VM, directory $HOME/Desktop/PIC2LNT/doc/pdf

(caution: their version of LOTOS NT is highly simplified)

	Applied Concurrency Theory�Lecture 4 : bisimulations,�CCS, and pi-calculus
	Bisimulations
	Do we need equivalences at all?
	Why not using automata equivalence?
	Do we need so many equivalences?
	A critical look at CCS
	Syntax of CCS
	Dynamic semantics of CCS
	A cold look at CCS
	CCS parallel composition
	CCS parallel composition: limitations
	The pi-calculus
	Motivation (1/3)
	Motivation (2/3)
	Motivation (3/3)
	The pi-calculus
	Syntax
	Static semantics
	Dynamic semantics
	Example
	The PIC2LNT tool
	PIC2LNT (1/2)
	PIC2LNT (2/2)
	A few notes
	More notes
	Today’s challenge
	Your first pi-calculus program (1/2)
	Your first pi-calculus program (2/2)
	References
	Pi-calculus bibliography
	Pi-calculus bibliography
	Tools for the pi-calculus

