
Hubert Garavel
Alexander Graf-Brill

Applied Concurrency Theory
Lecture 4 : bisimulations,

CCS, and pi-calculus

Bisimulations
2

Lecture 4

Do we need equivalences at all?

 Process algebraists use equivalences because this is
the only way for them to verify programs
 With operational semantics:

we translate (well, not to large) programs into graphs
we can do visual checking
we can do model checking
also, equivalences are more expensive than model checking
-- roughly: O (n log n) vs O (n)
do we still need equivalences?

 Yes. Equivalences are useful
to minimize LTSs (e.g. before visual or model checking)
to avoid writing complex temporal logic formulas
to check if certain traces are accepted by an LTS
to fight state explosion (compositional minimization)

3

Lecture 4

 Automata equivalence checks whether two
automata accept the same language

same language = same set of accepted words (or traces)
this is perfect for regular expressions and compiler scanners

 This is not suitable for studying concurrency
comparing languages is not enough
two LTS may have the same language but behave differently

4

Lecture 4

Why not using automata equivalence?

≠ a
a a

b b c c

both LTSs recognize the
same traces {a.b, a.c} but
putting them in parallel
with a.b generates a
deadlock in the 2nd case

‘coffee-vending machine’ example

 In the literature, there are nearly 50 different
equivalences for LTSs
 In practice, only two or three are needed:

strong bisimulation: preserves all properties on LTSs
(well, not the number of states nor the branching factor)
weak bisimulation: try to eliminate or collapse sequences of
τ-transitions which are not observable anyway. Branching
bisimulation is a suitable weak bisimulation.
some divergence-preserving bisimulation

 Also useful:
equivalences taking time and/or probabilities into account

5

Lecture 4

Do we need so many equivalences?

A critical look at CCS
6

Lecture 4

Syntax of CCS
7

Lecture 4

 A very small number of rules

8

Lecture 4

Dynamic semantics of CCS

 Minimality
appealing in academia, but does not scale up to real problems
the LOTOS ISO committee added the required extensions

 Sequential composition
CCS action-prefix proved to be a bad language design decision
see Lecture 3 for a discussion (LOTOS vs LOTOS NT)

 Parallel composition
CCS parallel composition is worse than the one of CSP/LOTOS
only supports binary rendez-vous (co-names are a mistake)
even the binary communication is badly designed

9

Lecture 4

A cold look at CCS

No list of gates on which to synchronize or not
[Par1] and [Par2]: each parallel process can always evolve
alone and ignore the rendez-vous!
[Com]: the rendezvous is immediately renamed into τ
impossible to observe in the LTS ⇒ verification impossible

10

Lecture 4

CCS parallel composition

τ . 0 | .0 = a restriction on a is required
to force the rendezvous

 Limitation of binary synchronization:
how to specify (P || Q) ; R ? (LOTOS NT semantics)

 This is a 3-party rendez-vous: P and Q wait each
other to terminate and R waits to start

CCS requires 2 additional rendezvous δ1 and δ2 :

 ((P . δ1 | Q . ‘δ1 . δ2) \ δ1 | ‘δ2 . R) \ δ2

 this creates two τ-transitions in the LTS (too bad)

11

Lecture 4

CCS parallel composition: limitations

The pi-calculus
12

Lecture 4

Motivation (1/3)

 In ‘classical’ process calculi (CCS, CSP, LOTOS…):
one often describes a finite set of concurrent actors
these actors can be (recursively) nested
the communication topology (i.e., gates) is fixed
well-adapted to hardware design, data transmission protocols

 In fact,‘classical’ process calculi can do more:
dynamic creation/destruction of actors and channels
Example: A ; hide G in (B |[G]| C) ; D
unbounded dynamic creation of actors
Example: process P (N) := if N=0 then Q else (P(N-1) ||| Q)

13

Lecture 4

(mixing LOTOS and LOTOS NT syntaxes)

 ‘Mobile process calculi’ : a more radical approach
dynamically evolving networks
actors can be created/deleted dynamically
channels (communication links) also
actors can discover each other, and then communicate
often, they are put in relation by a third-party (‘trader’)

 Real-life examples:

plug-and-play devices on a network
mobile phones and base stations
object-oriented software

14

Lecture 4

Motivation (2/3)

 The printer discovery example (J. Parrow):

 One approach to mobility: sending channels

impossible in ‘classical’ process calculi, where offers sent or
received on gates only contain data values (but not gates)
sending processes is similar to sending channels

15

Lecture 4

Motivation (3/3)

 Proposed by R. Milner, J. Parrow, D. Walker in the
early 90s (see References)
 Defined as an extension of CCS
 Two main changes:

channels can be sent on channels
the restriction operator of CCS is technically modified

 A very influential model in academia:
many variants
some tools, such as the Mobility Workbench
http://www.it.uu.se/research/group/mobility/mwb
some applications – basis for defining BPEL
see http://move.to/mobility

16

Lecture 4

The pi-calculus

http://www.it.uu.se/research/group/mobility/mwb
http://move.to/mobility

17

Lecture 4

Syntax

added later

also written ‘a<x>

(noted a !x in LOTOS)

(noted a ?x in LOTOS)

initially noted
P \ a as in CCS

 A single ‘type’ of data, merging values and channels
 Variables are defined (‘bound’) only at 3 places:

x (y). P : variable y contains the data received on x
 y is visible only in P
(νy) P : a new channel is created and assigned to variable y
 y is visible only in P, but P may send y to other agents
 (this is called ‘scope extrusion’ – tricky rules)
A (x1, …, xn) = P : parameters x1, …, xn are visible in P

 bn(P) := bound variables defined in P : x (y) or (νy)
 fn(P) := all other variables used in P (free variables)

18

Lecture 4

Static semantics

19

Lecture 4

Dynamic semantics

Taken from Mateescu-Salaün IFM 2010 paper
(see references)

20

Lecture 4

Example

The PIC2LNT tool
21

Lecture 4

 A recent translator developed at INRIA Grenoble

 Input language: PIC

pi-calculus
with a machine-readable syntax (from Mobility Workbench)
extended with data values (= ‘applied pi-calculus’)

 Output: LOTOS NT program

 A script named ‘pic2bcg’ automates the translation
PIC → LOTOS NT → LOTOS → Petri nets → LTS

22

Lecture 4

PIC2LNT (1/2)

 The PIC language
defined in the PIC2LNT manual page (see References)
the data types and value expressions are those of LOTOS NT

 The translation approach:
most pi-calculus tools do symbolic proofs on the terms
pic2lnt works by state space exploration
(= explicit-state enumeration = reachability analysis)
limitation: only works for finite-state models
⇒ bounding channels, data types, ‘!’ operator
BUT enables to study non-trivial mobile programs

23

Lecture 4

PIC2LNT (2/2)

 Caution: ‘t’ means τ (contrary to ‘i’ in LOTOS/NT)
 The restriction operator ν must be written ‘new’
 Emissions have to be noted ’x
 Emitted parameters must be bracked with < and >
 even when there is only a single parameter
 Received parameters must be bracked with (and)
 even when there is only a single parameter
 There are no channel declarations: beware of typos

exploit: at any place, you can easily insert a ’debug event

24

Lecture 4

A few notes

 In the LTS obtained, the labels carry extra offers
for instance: !FALSE or !TRUE
this is an artefact of the translation to LOTOS NT
(perhaps the pic2bcg script could remove them)

 The translation implements the creation of new
channels by giving unique numbers

example: (new y) ’x<y> may generate a transition: X !Y(41)
don’t worry if the counter is not increasing one by one

Restriction hides the synchronizations 
one cannot observe them in the LTS (only τ-transitions can be seen)
add extra events if needed

25

Lecture 4

More notes

Today’s challenge
26

Lecture 4

 Find the paper about PIC2LNT published at IFM 2010
(see References below)
 Copy-and-paste in a file named ‘disp.pic’ the pi-
calculus example given page 11
 Convert it to machine-readable notations:

replace each ν symbol by the new keyword
replace emissions with ’x
restore the < and > symbols around emissions of multiple channels;
add them for emissions of single channels
same with (and) for receptions
finally, replace the 0 with nil (0 is not documented in the manual
page, yet seems to be accepted)

27

Lecture 4

Your first pi-calculus program (1/2)

 Perform the translation PIC → LOTOS NT → LOTOS →
Petri nets → LTS by typing:

$ pic2bcg disp.pic
if it does not compile properly, fix the mistakes

 Visualize the file ‘disp.bcg’ obtained
$ bcg_edit disp.bcg

 Compare it to the picture given page 11
 Minimize it using strong bisimulation to remove
‘duplicated’ parts of the LTS

$ bcg_min disp.bcg
$ bcg_edit disp.bcg

 Send your file ‘disp.pic’ and the PostScript file to
Alexander (possibly with comments if you observe a
difference with the picture of the paper)

28

Lecture 4

Your first pi-calculus program (2/2)

References
29

Lecture 4

 J. Parrow. An introduction to the pi-calculus.
Chapter of the Handbook of Process Algebra, 2001.
http://user.it.uu.se/~joachim/intro.ps
Especially sections 1, 2.1, (2.1), 2.3, 4, and 6.

 U. Nestmann. Welcome to the Jungle: A subjective
guide to mobile process calculi, 200x.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi
=10.1.1.89.6712

30

Lecture 4

Pi-calculus bibliography

http://user.it.uu.se/~joachim/intro.ps
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.89.6712
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.89.6712

R. Milner, J. Parrow, D. Walker. A calculus of mobile
processes (parts I and II). Information and
Computation, vol. 100, num. 1, 1992.

 R. Milner. Elements of interaction: Turing award
lecture. http://dl.acm.org/citation.cfm?id=151240

 On-line resources: http://move.to/mobility

31

Lecture 4

Pi-calculus bibliography

http://dl.acm.org/citation.cfm?id=151240
http://move.to/mobility

PIC2LNT translator, by R. Mateescu and G. Salaün, 2010-12.
In your VM, directory $HOME/Desktop/PIC2LNT

 Reference documentation:
 The PIC2LNT manual page
 in your VM, directory $HOME/Desktop/PIC2LNT/man/pdf

If you want details on the translation:
R. Mateescu and G. Salaün. Translating Pi-Calculus into
LOTOS NT. IFM 2010
in your VM, directory $HOME/Desktop/PIC2LNT/doc/pdf

 (caution: their version of LOTOS NT is highly simplified)

32

Lecture 4

Tools for the pi-calculus

	Applied Concurrency Theory�Lecture 4 : bisimulations,�CCS, and pi-calculus
	Bisimulations
	Do we need equivalences at all?
	Why not using automata equivalence?
	Do we need so many equivalences?
	A critical look at CCS
	Syntax of CCS
	Dynamic semantics of CCS
	A cold look at CCS
	CCS parallel composition
	CCS parallel composition: limitations
	The pi-calculus
	Motivation (1/3)
	Motivation (2/3)
	Motivation (3/3)
	The pi-calculus
	Syntax
	Static semantics
	Dynamic semantics
	Example
	The PIC2LNT tool
	PIC2LNT (1/2)
	PIC2LNT (2/2)
	A few notes
	More notes
	Today’s challenge
	Your first pi-calculus program (1/2)
	Your first pi-calculus program (2/2)
	References
	Pi-calculus bibliography
	Pi-calculus bibliography
	Tools for the pi-calculus

