Applied Concurrency Theory Lecture 5 : probabilistic models

Hubert Garavel
Alexander Graf-Brill

CONVECS

Nondeterministic choice probabilistic choice

Example 1: a lossy transmission channel

process P = SEND; (tau; RECEIVE; P [] tau; LOSS; P)

Nondeterminism is not optimal here...

- All branches have the same probability (or, more precisely, have an unspecified probability)
- yet, in practice, we know that losses are not frequent
-Because this probability is unspecified, no numerical estimation can be done by tools
- Solution: switch to a probabilistic model, with explicitly specified probabilities

Lossy channel (probabilistic version)

process $\mathrm{P}=$ SEND; (0.9; RECEIVE; P [] 0.1; LOSS; P)

Randomized algorithms

- In the lossy channel example, probabilities will enable to compute useful data (e.g., the average percentage of messages lost on a long period).
- More generally, there are useful algorithms relying on random behaviour
See Wikipedia: Randomized algorithm
Other examples (taken from the PRISM tool library):
- Randomised consensus
- Self-stabilising algorithms
- Bluetooth device discovery
- Crowds anonymity protocol
- Contract signing protocols

Discrete-time Markov chains

The simplest model

■ DTMC (Discrete-time Markov chains) [Andrei Markov, 1906]

- A finite (or infinite) automaton
- infinite DTMC are mathematically well-defined
- but software tools mostly deal with finite-state DTMCS
- Each transition T is labelled with its probability to be fired
- probability 0: firing T is impossible
- probability 1 : firing T is mandatory

■ Constraint:

- for each state S, the sum of probabilities attached to the transitions leaving S must be equal to 1
- if sum less than 1, one sometimes assumes that one remains in S for the remaining probability

Example 2: the coin and the dice (1/2)

- Problem raised by D. E. Knuth and A. C. Yao:
[KY76] The complexity of nonuniform random number generation. In J. F. Traub, editor, Algorithms and Complexity: New Directions and Recent Results, Academic Press, New York, 1976
- How to simulate a dice with 6 faces by using only a coin?
- assuming that all coin tossing experiments are independent
- and that the coin is fair, i.e., heads and tails have the same probability (50\%50\%)

Example 2: the coin and the dice (2/2)

initial state : 0
heads = follow upper arrow
tails = follow lower arrow
one remains forever in red states

How to prove that each red state is eventually reached with probability $1 / 6$?

Matrix representation of a DTMC

 (11)- If the DTMC is finite with N states, then it can be represented by an $\mathrm{N} \times \mathrm{N}$ transition matrix (or one-step matrix, or Markov matrix)

■ Element (i, j) of the matrix is the probability attached to the transition from state i to state j ($\mathrm{i}:$ raw, j : column)

- The sum of the elements on each line of the matrix must always be egal to 1
- If it is not the case, one might have forgotten the 'looping' transition that permits to remain in the same state (e.g., as with the red states of Example 2)

How does a DTMC work?

- Standard automaton:
- An automaton evolves (its state changes) at discrete instants
- At each instant, the automaton is in one and only one state
- DTMC:
- A DTMC evolves (its state changes) at discrete instants
- At each instant, the DTMC can be in one or several states, but with smaller probabilities than 1

■ Physical metaphor:

- automaton: the current state is a particle that cannot be divided
- DTMC: the current state is a wave that splits and flows into several states

Example

Instant 1 : DTMC is in state A at 100%
Instant 2 : DTMC is in state B at 100%
Instant 3 : DTMC is in state C at 10% and/ or D at 90%
Instant 4 : DTMC is in state A at 100% etc.

Probability vectors

If the DTMC has N states, a probability vector at a given time instant is a vector V with N elements:
(

$$
\text { where } p_{1}+p_{2}+\ldots+p_{n}=1
$$

where p_{i} is the probability to be in the i-th state at this time instant.

A probability vector generalizes the notion of current state; for an ordinary automaton, one p_{i} would be 1 and all others would be 0 .

Evolution of probabilities as time passes

If V is the probability vector describing the DTMC at a given time instant, the probability vector V^{\prime} at the next time instant after a transition is given by the following equation

$$
V^{\prime}={ }^{\dagger} \mathrm{V} . \mathrm{M} \quad \text { (and not } \mathrm{V}^{\prime}=\mathrm{M} . \mathrm{V} \text { !) }
$$

where M is the transition matrix of the DTMC
${ }^{t} V=\left(p_{1} p_{2} \ldots p_{N}\right) \quad{ }^{t} V$: transposed vector

Steady-state probabilities (1/3)

- As time passes, the probability vector V evolves ('transient probabilities')

■ Can one predict what will happen on the long run? (i.e., the limit of V when times tends to infinity)

- Stationary (or steady-state) behaviour:
- there is an initial transient phase,
- on the long run, an equilibrium is reached
- probabilities are distributed among states and do not change (or converge to a limit) as time is passing

Steady-state probabilities (2/3)

■ If such an equilibrium exists, the steady-state probability vector V should satisfy the following equation:

$$
\mathrm{t} V . \mathrm{M}=\mathrm{V} \quad(\mathrm{~V} \text { is a left eigenvector of } \mathrm{M})
$$

- Remarks:
- M is not 'free' because the sum of each of its lines must be 1 (the last column is 1 minus the sum of other columns) \Rightarrow this gives one less equation
- but the sum of all elements of V must be 1 too \Rightarrow this gives one more equation
- So N variables and N equations

Steady-state probabilities (3/3)

Equilibrium equation ${ }^{\mathrm{t}} \mathrm{V} . \mathrm{M}=\mathrm{V}$

- Does a solution always exist? No
- If it exists, is it unique? No

- Sufficient conditions exist for a unique solution
- e.g., when matrix M is aperiodic and irreducible
- the coin/ dice DTMC does not meet these conditions, but admits a unique solution
- In certain cases, the solution does not depend on the initial probability vector ('self-stabilizing')
- e.g., when matrix M is aperiodic and irreducible
- the coin/ dice DTMC solution depends on the initial state!

Mathematical definition of DTMCs

- Mathematical DTMCs vs Computer-Science DTMCs;
- mathematical definition of DTMCs allows infinite state spaces
- mathematical studies ignore parallel composition of DTMCs
\square Basis: a sequence of random variables $X_{0}, X_{1}, X_{2}, \ldots X_{n} \ldots$ that give the current state of the DTMC at instant n
- Notations:
- $\operatorname{prob}\left(X_{n}=s\right)$: probability that the DTMC is in state s at instant n (i.e., an element of a probability vector)
- $\operatorname{prob}\left(X_{n}=s \mid X_{i}\right) i \triangleleft n$: conditional probability knowing X_{i} that the DTMC is in state s at instant n
- prob $\left(X_{n}=s \mid X_{i}, X_{j}\right)$ i $\varangle n$ and $j<n$: conditional probability knowing X_{i} and X_{j} etc.

Markov property

- A DTMC satisfies the 'Markov property'
$\operatorname{prob}\left(X_{n+1}=s \mid X_{0}, X_{1}, X_{2}, \ldots X_{n}\right)=\operatorname{prob}\left(X_{n+1}=s \mid X_{n}\right)$
- This property expresses that the future (i.e., the next state at instant $n+1$) only depends on the present (i.e., the current state at instant n) and not on the past (i.e., between instants 0 and $n-1$)
- Said differently, the present contains all the information needed to predict the future and one does not need to record the entire history from instant 0 to continue evolving
- Automata also have this property: their current state encodes all the history needed to take future decisions

Markov decision processes

Limitations of DTMCs

■ A state-based model

- All the 'useful' information is in the states
- No visible information on the transitions (only probabilities)
- This does not fit with the usual models of concurrency
- How to compose DTMCs in parallel?
- This is mandatory to model concurrent components
- Parallel composition of DTMCs is severely restricted: no message-passing communication, only shared variables
- How to model 'true' nondeterminism?
- 'True' nondeterminism cannot be modelled using DTMCs
- Concurrency introduces nondeterminism (due to interleaving)
- => parallel composition of DTMCs is not a DTMC

Beyond DTMCs

- Main goal
- Introduce transitions labelled with action names as in the LTS (Labelled Transition Systems) model used for CCS, CSP, LOTOS, pi-calculus, etc.
- Keep the possibility of having probabilities on transitions
- Have a meaningful definition of parallel composition
- Different solutions:
- IPC (Interactive Probabilistic Chains)
= LTS with normal transitions and probabilistic transitions
- MDP (Markov Decision Processes)
=IPC + alternation of normal and probabilistic transitions

Markov Decision Processes (1/2)

(24)

- As with IPCs, MDP have 2 kinds of transitions:
- normal transitions: 'A', 'GET !2 !false', τ, etc.
- probabilistic transitions: $0.001, \quad 0.25$
- Additional constraints:
- the sum of probabilistic transitions leaving a state must be 1 (aleady exists in DTMCs and IPCs)
- no choice between a normal and a probabilistic transition
- alternation (stronger constraint): on every execution path, normal and probabilistic transitions strictly alternate

Markov Decision Processes (2/ 2)

Consequences of alternation:

- Graphically: 2 kinds of vertices
- 'states': before normal transitions
- 'nails': before probabilistic transitions
- Mathematically: 2 definitions
- transitions = state $-($ label $) \rightarrow \mu$
- $\mu=$ probability distribution over states

Nondeterminism in MDP

- Nondeterminism is allowed in MDP
- Two causes:
- local nondeterminism: choice between two identical transitions leading to different nails
- global nondeterminism: coming from parallel composition and interleaving semantics

■ Main consequence:

- no unique probability vector as with DTMCs
- one may only compute a [min, max] interval of probabilities
after an A-transition, $\operatorname{prob}(X=s)=0$ or 1

The PRISM tool

(2)

The PRISM tool

- Developed in Oxford (formerly: Birmingham)
- Web site: http:// www. prismmodelchecker. org

The PRISM modelling language

Motivation

PRISM offers a modelling language to describe:

- Sequential modules (~ processes):
- DTMC (Discrete-Time Markov Chains)
- MDP (Markov Decision Processes)
- and also CTMC and PTA (see Lecture 6)
- Parallel composition of modules

Sequential modules from the outside (1/2)

 (31)■ Mixed interfaces, which combine:

- action labels (as in process calculi)
- shared variables (as in thread-based programs)
- Action labels
- permit synchronization between concurrent modules
- no exchange of values (as ! and ? in CSP and LOTOS)
- State variables
- local: writable by one module, readable by other modules
- global: readable and writable by all modules
- no notion of 'purely local' variable (\neq process calculi)

Sequential modules from the outside (2/2)

- Drawback: no syntactic way of declaring interfaces
- no lists of gate and variable parameters as in LOTOS
- one must read and analyze the body of each module!
- Exemple of PRISM module specification: const int $\mathrm{N}=10$; / / constant global X:bool; // global variable module M

Y:[0..N]; // local variable of module M
endmodule

Sequential modules from the inside (1/5)

- In most languages (e.g., LOTOS and LOTOS NT), the current state consists of two components:
- a control part: the current program location (i.e., program counter in an assembly language)
- a data part: the current values of variables

■ In PRISM there is no control part: the current state of a module is entirely encoded in its variables

- PRISM follows the idea of 'guarded commands' language
- there is one single program location (=single state machine)
- to encode an automaton with N states, one must declare a local variable of type [1..N] or [0..N-1]

Sequential modules from the inside (2/5)

- The body of a PRISM module combines 2 operators:
- nondeterministic choice
- probabilistic choice
- It is not a process calculus in the sense that these two operators must appear in a precise order and cannot be freely combined
- first level, nondeterministic choice
- second level, probabilistic choice

Sequential modules from the inside (3/5)

 (35)■ Nondeterministic choice:

$$
\begin{aligned}
& {\left[\text { action_label }_{1}\right. \text {] boolean_guard }} \\
& \text { [action_label } \text { branch }_{1} \text {] }
\end{aligned}
$$

[action_label ${ }_{n}$] boolean_guard ${ }_{n}->$ branch $_{n}$;

- (branches are defined below)
- action_labels can be ommitted (e.g., in a DTMC) - taus ?
- guards contain local (and from other modules) and global variables
- as in LOTOS, boolean_guard may overlap ($=>$ nondeterminism)
- Caution! in a DTMC, Prism remplaces nondeterminism with an equiprobable probabilistic choice (with a warning?)

Sequential modules from the inside (4/5)

■ Probabilistic choice (i.e. branches)
branch ::= prob $_{1}$: update ${ }_{1}$

+ prob $_{2}$: update ${ }_{2}$
+ ...
+ prob $_{n}$: update ${ }_{n}$
- the prob ${ }^{\text {i }}$ may use numbers or constants (defined by const)
- their sum must be 1
- the update ${ }_{i}$ are assignments to variables, written using a strange syntax:
($x^{\prime}=0$) // parentheses and quote are mandatory
$\left(x^{\prime}=1\right) \&\left(y^{\prime}=y+1\right) / / \&$ rather than ;

Sequential modules from the inside (5/5)

■ PRISM syntax corresponds exactly to MDPs

- in green: states (origin of nondeterministic choices)
- in red: nails (origin of probabilistic choices)

> module M
> $\mathrm{~s}:[0 . .2] ;$
> [] $\mathrm{s}=0->\left(\mathrm{s}^{\prime}=2\right) ;$
> [] $\mathrm{s}=0->0.5:\left(\mathrm{s}^{\prime}=0\right)+0.5:\left(\mathrm{s}^{\prime}=2\right) ;$
> [] $\mathrm{s}=1->0.7:\left(\mathrm{s}^{\prime}=0\right)+0.1:\left(\mathrm{s}^{\prime}=1\right)+0.2:\left(s^{\prime}=2\right) ;$
> [] $\mathrm{s}=1->0.95:\left(\mathrm{s}^{\prime}=1\right)+0.05:\left(\mathrm{s}^{\prime}=2\right) ;$
> [] $\mathrm{s}=2->0.4:\left(\mathrm{s}^{\prime}=0\right)+0.6:\left(\mathrm{s}^{\prime}=2\right) ;$
> [] $\mathrm{s}=2->0.3:\left(s^{\prime}=0\right)+0.3:\left(\mathrm{s}^{\prime}=1\right)+0.4:\left(s^{\prime}=2\right) ;$
> endmodule

Parallel composition of modules

- Explicit parallel composition
- using the three LOTOS parallel composition operators
- || only synchronizes on common gates:
in LOTOS, $\mathrm{P}|\mid \mathrm{Q}$ synchronizes on gates $(\mathrm{P}) \cup$ gates (Q) in PRISM, P || Q synchronizes on gates $(\mathrm{P}) \cap$ gates (Q)
- another difference with LOTOS : shared variables!
- global state = local states of each module + global variables
- Implicit parallel composition
- just declaring modules together composes them with ||
- Hiding and renaming
- M / $\{a, b, \ldots\}$ similar to (hide $a, b \ldots$ in M) in LOTOS
- $M\{a<b, c<-d, \ldots\}$ similar to process calls in LOTOS

The PRISM property specification language

Motivation

- The property language is used to ask questions about the state space
- In 'traditional' model checkers, these questions have a Boolean result:
- can message $M(X, Y)$ be received with $X>Y$?
- is each SEND (X) message eventually followed by a $\operatorname{RECV}(X)$?
- In probabilistic model checkers (such as PRISM), the questions may have a Boolean or numerical result
- often questions about probabilities
- (but also costs, rewards, elapsed time)

Properties in PRISM

- The property language of PRISM is rich (=complex)
- It merges several temporal logics:
- standard temporal logics: LTL
- probabilistic temporal logics: CSL, PCTL, PCTL*
- Depending on the form of the formulas to evaluate, different algorithms ('engines') are used by PRISM (e.g., 'hybrid', 'MTBDD', 'sparse')
- Various restrictions regarding the type of PRISM models, the nature of formulas, and the search engine used.

Examples of Boolean properties

- $P>=1[F X=0]$
- With probability 1 , eventually variable X becomes null
- $P<0.1[F<=1000 X=0]$
- With probability less than 0.1, variable X becomes null during the first 1000 time units
- $\mathrm{S}>=0.75[\mathrm{X}=0$]
- With (steady-state) probability greater than 75% variable X is null on the long-run

Example of numerical properties

- $P=$? [$F X=0$]
- Give the probability that variable X becomes null eventually
- $P=?[F<=1000 X=0]$
- Give the probability that variable X becomes null during the first 1000 time units
- $S=$? $[X=0]$
- Give (steady-state) probability that variable X is null on the long-run
(see the PRISM manual for many more examples)

Today's challenge

Getting started with PRISM

- Type in a file 'dice. pm' the PRISM specification of the coin/ dice example (Example 2 above)
- do not forget the loops on the red states
- pre-check its correctness by launching the command \$ prism dice.pm
- Write a file 'dice. pctl' containing PCTL formulas to check that the steady-state probability of each 'red' state is $1 / 6$. Check it using PRISM.
- Generate the transition matrix in Matlab format and send it with 'dice. pm' and 'dice.pctl' to Alexander

References

PRISM Ianguage and tool

- PRISM Web site
- http:// www. prismmodelchecker.org/
- PRISM user manual (models and properties) (skip directly to Section "The PRISM Language")
- PDF:
http:// www. prismmodelchecker.org/ doc/ manual. pdf
- HTML:
http:// www. prismmodelchecker. org/ manual/ Main/ AllOnOnePage
- Brief semantics of the basic PRISM constructs
- http:// www. prismmodelchecker. org/ doc/ semantics. pdf

Markov chains

- Wikipedia: Markov chain
- Wikipedia: Markov decision process
- Real applications of Markov decision processes
- http:/ / www. it. uu. se/ edu/ course/ homepage/ aism/ st11/ MDPA pplications1.pdf
- http:/ / www. it. uu. se/ edu/ course/ homepage/ aism/ st11/ MDPA pplications2.pdf
- http:/ / www. it. uu. se/ edu/ course/ homepage/ aism/ st11/ MDPA pplications3.pdf

