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 In classical or probabilistic models, there is a notion 
of chronology between events, but no precise timing 
 
Examples: 

one does not specify how long time will be spent in a state 
before firing a transition 
one does not specify how long time it takes to fire a 
transition: is it instantaneous?  does it take time? 
 

 Real-time models address this issue 
they carry more information than classical (untimed) models 
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Real-time models 



 
Hard real-time systems must always react timely 

‘a correct output produced too late is a wrong output’ 

 
No deviation from deadlines allowed 

 
Safety-critical systems often have hard real-time 
parts 
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Hard real-time 



 Soft real-time systems must usually react timely 
 

 There is some tolerance wrt deadlines 
the system can be late from time to time 
 

 Being late should remain exceptional: 
otherwise the mission of the system is compromised 
for instance, human users stop using it 

 

 This leads to probabilistic analyses: 
availability 
reliability 
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Soft real-time 



Continuous-time Markov chains 
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Examples of quantitative properties 

What is the probability of shutdown occurring 
within 4 hours? 
What is the long-run probability that 4 or more 
sensors are operational? 
What is the worst-case error probability over all 
possible initial configurations? 
What is the expected size of the message queue 
after 30 minutes? 
What is the worst-case expected time taken for the 
protocol to terminate? 

                                                                            (source: University of Birmingham) 
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Soft-real time example 

The ‘ping’ command: answers takes some time 
 

$ ping vasy.inria.fr 

nearly 0.5 second nearly 20 seconds 

No answer from vasy.inria.fr vasy.inria.fr is alive 

8 

Lecture 6 



 In an automaton, transitions are discrete: at each time 
instant (e.g., clock ‘tick’), the current state changes to 
another state 

 
In a DTMC, transitions are discrete too: at each time 
instant, the current probability distribution evolves 
from one set of states to another set of states 
 
 In a CTMC, transitions are continuous: as time elapses, 
the probability distributions evolves progressively (no 
discrete clock ticks, but continuous passing of time) 
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Continuous-Time Markov chains (CTMC) 
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Exponential distributions (time-homogeneous CTMCs)  

   λ is a constant that expresses the mean rate of the 
exponential law (in terms of physical units, λ is a 
frequency, i.e., the inverse of a duration) 

p (t) : probability to be still in the same state(s) at time t 
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p(t) = e-λt    

t 

p (t) 
as time passes, p(t)  
decreases and the  
transition to the next 
state(s)  becomes 
increasingly more 
certain 



Influence of λ 

  The higher the value of λ, the faster the transition 
 
  The mean waiting time in the current state is 1 / λ 

 
 
 

t 

1 - p (t) 
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probability of having  
moved to the next state(s) 

http://en.wikipedia.org/wiki/Image:Exponential_distribution_cdf.png


 Reason #1 (mathematical) 
If a stochastic process { X(t), t ≥ 0 } of state space S 

 
has the ‘memoryless’ Markov property (i.e., is a CTMC) 

    (∀t1, …, tn, tn+1 | 0 ≤ t1 ≤ … ≤ tn ≤ tn+1 ) (∀s1, …, sn, sn+1 ∈ S) 
P { X(tn+1) = sn+1 | X(t1) = s1, …, X(tn) = sn } =  
                                                P { X(tn+1) = sn+1 | X(tn) = sn } 
 
and is time-homogeneous 
(∀t, t’ | 0 ≤ t ≤ t’) (∀s, s’ ∈ S)  
P { X(t’) = s’ | X(t) = s } = P { X(t’ - t) = s’ | X(0) = s } 
 

then it must follow an exponential distribution 
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Why using exponential distributions? (1/4) 



Reason #2 (mathematical) 
 
    Other ‘useful’ distributions can be expressed (exactly or 

arbitrarily closely) as a composition of exponential laws 
 
    Example: Erlang distributions are sequences of exponential law 
 
 

 
Reason #3 (pragmatic) 

 
   Exponential laws are convenient mathematical approximations 

enabling to do numerical computations efficiently and 
providing ‘reasonable’ results 
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Why using exponential distributions? (2/4) 

λ λ λ 



 Reason #4 (intuitive): 
 

   An exponential distribution with parameter λ 
models the time elapsed between successive events 
that: 

are independent         (this condition is essential) 

occur randomly with a constant mean rate λ 

   Examples: 
The duration between two successive clients entering a shop 
The number of times a dice must be thrown to obtain a 
sequence of 10 consecutive ‘6’ 
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Why using exponential distributions? (3/4) 



They describe the external behavior of systems whose 
internal structure is not entirely known 

 natural phenomena 
physics 
chemistry 
biology 

information theory (hidden Markov models) 
data compression [Shannon] - entropy encoding 
correction of transmission errors [Viterbi] 

 computer science 
pattern recognition 
machine learning 
Google’s Pagerank algorithm 

15 

Lecture 6 

Why using exponential distributions? (4/4) 



Graphical representation of CTMCs 

CTMCs can be represented as (finite- or infinite-state)  
transition systems, in which the transitions are labelled  
with λ, µ, etc.  (parameters of exponential laws) 

λ’ 

λ’’ 

λ 
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µ’’ 

µ’ 



 As for DTMCs, the current state of a CTMC can be 
represented by a probability vector V(t) 

i-th element of V(t) : probability of being in state i at time t 
contrary to DTMCs, t is continuous here, not discrete 

 As for DTMCs, a CTMC with N states is represented 
by an NxN matrix Q (‘generator matrix’) 

i ≠ j ⇒ Q [i, j] = rate λ > 0 of the transition from state i to 
                         state j,  or zero if there is no such transition 
Q [i, i] = - ∑j≠i Q [i, j]      // therefore Q [i, i] ≤ 0 

 Steady-state (i.e., long-run) probability vector V∞  
obtained by solving the equation tV∞ . Q = 0    
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Matrix representation (1/2) 



Interactive Markov chains 
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 CTMCs are limited in the same way as DTMCs 
mathematicians apply CTMCs to physical, chemical, etc. issues 
they don’t see the need for parallel composition 

 

 We (computer scientists) want more: 
we want to build systems with components 
these components often run in parallel 
we need action labels to synchronize components  
we want message passing communication, not only shared 
variables 
we want nondeterminism and tau-transitions 
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Beyond CTMCs 



 Many approaches proposed, but unsatisfactory 
 What is a good solution? 

2 kinds of transitions: normal + rates, or mixed (normal, rate) 
a parallel composition operator that matches the intuition 
a parallel operator that is conservative 
bisimulation relations to compare and minimize models 
bisimulation relations that subsume lumpability:  
    λ;B [] µ;B = (λ+µ);B 
bisimulation relations ‘compatible’ with the parallel 
composition (compositionality, congruence) 
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What would be a good extension of CTMCs? 



 H. Hermanns PhD thesis    (see References below) 

 The IMC model 
an LTS with additional rate transitions ‘rate λ’ 
nondeterminism and taus are allowed 
choice between ordinary and rate transitions is ok 

 Parallel composition 
same as in LOTOS 
only constraint: no synchronization allowed on rate transitions 
rates interleave: rate λ||rate µ = rate λ;rate µ [] rate µ;rate λ 

 Stochastic (strong or branching) bisimulation 
τ;B1 [] rate λ;B2 = τ;B1  (τ-transitions have priority) 
 λ;B [] µ;B = (λ+µ);B       (lumpability) 
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IMC (Interactive Markov Chains) 



 A very simple and elegant model 
nice parallel composition 
nice bisimulation relations 
enables compositional state space generation 

 
 Upward-compatible with standard process calculi 

a superset of process calculi 
a superset of the LTS model 
existing tools do not have to be deeply modified 
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Advantages of IMCs 



 CADP : the reference implementation 
LOTOS state space generators unchanged 
dedicated minimization tool (BCG_MIN with –rate option) 
dedicated relabelling tools (BCG_LABELS) 
parallel composition (EXP.OPEN with ‘-rate’ option) 
 

 IMCA – IMC Analyzer (Univ. RWTH Aachen) 
a new recent toolset 

 
 PRISM 

supports a parallel extension of CTMCs, but not IMCs 
each transition seems to combine an action label and a rate 
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Available tools for IMCs 



Application of IMCs:  
The  Hubble space telescope 
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Example from H. Hermanns publications 
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A simple Markov model for Hubble 

 The Huble telescope has 6 gyroscopes 
 As time passes, the gyros may fail 
 The average lifetime of gyros is 10 years (= 120 months) 

          λ = 12 months / 120 = 0.1 
 Hubble falls into sleep if only two gyros are left 
 Turning on sleep mode requires to halt all equipments, which 

takes about 3.6 days (= 0.12 month) 
          µ = 12 months / 0.12 = 100 

 When in sleep mode, a shuttle mission must be sent 
to repair/reset Hubble, which takes about 2 months 
         ν =12 months / 2 = 6 

 Without operational gyro, Hubble crashes 



Compositional modelling of Hubble 

process HUBBLE [LAMBDA, MU, NU] : noexit := 
      hide FAIL in 
         ( 
               ( 
               GYRO [LAMBDA, FAIL] ||| GYRO [LAMBDA, FAIL] ||| GYRO [LAMBDA, FAIL] ||| 
               GYRO [LAMBDA, FAIL] ||| GYRO [LAMBDA, FAIL] ||| GYRO [LAMBDA, FAIL]  
               ) 
            |[FAIL]| 
            CONTROLLER [FAIL, MU, NU] (6, false) 
            >> (* system reset *) 
            HUBBLE [LAMBDA, MU, NU] 
         ) 
endproc 

GYRO GYRO GYRO GYRO GYRO GYRO 

CONTROLLER 

FAIL FAIL FAIL FAIL FAIL FAIL 

system reset 

LAMBDA 

MU 

NU 
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The GYRO process 

process GYRO [LAMBDA, FAIL] : exit := 
   (LAMBDA; FAIL; stop) [> exit 
endproc 

 
 

 

 

 

LAMBDA 

 exit (~system reset) 

FAIL 

 exit 

 exit 
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The CONTROLLER process 

process CONTROLLER [FAIL, MU, NU] (C : Nat, SLEEP : Bool) : exit := 
      FAIL; (* Ah, a gyro failed. Let's count down. *) 
             CONTROLLER [FAIL, MU, NU] (C - 1, SLEEP) 
      [] 
      [(C < 3) and not (SLEEP)] -> 
            MU; (* Hubble starts tumbling. Time to turn on the sleep mode. *) 
                   CONTROLLER [FAIL, MU, NU] (C, true) 
      [] 
      [SLEEP] -> 
            NU; (* Sleep mode is on. Waiting for the space mission to reset Hubble. *) 
                   exit 
      [] 
      [C = 0] -> 
             i; (* No gyros left. Crash! *) 
                   stop 
endproc 
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Analysis trajectory for the Hubble (1/2) 

LOTOS specification 
with Markov gates 
LAMBDA, MU, NU 

CAESAR and CAESAR.ADT  

BCG graph (LTS) with  
LAMBDA, MU, NU 

BCG_LABELS 
(generalized renaming) 

BCG graph (IMC) 
with rates and 
"i" transitions 

rename 
"LAMBDA" -> "fail; rate 0.1" 
"MU"->"suspend; rate 100" 
"NU"->"repair; rate 6" 

… 

= 

= 

= 
50 lines 

877 states 
3341 trans. 

877 states 
3341 trans. 
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Analysis trajectory for the Hubble (2/2) 
… 

numerical 
data 

(probabilities) 
Excel, gnuplot 

BCG_TRANSIENT 
(transient analysis) 

BCG_MIN (stochastic  
strong minimization) 

BCG graph (IMC) with  
rate and "i" transitions 

BCG_MIN (stochastic 
branching minimization) 

BCG graph (CTMC 
with labels) 

= 

= 

38 states 
67 trans. 

9 states 
12 trans. 
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luckily, minimization, 
removed all "i" transitions 
(this is not always the 
case), so we get a CTMC 
(only rate-transitions), not 
an IMC, and we can do 
numerical CTMC analysis 



Minimized IMCs for the Hubble 

after stochastic strong minimization 
(38 states, 67 transitions) 

after stochastic branching minimization 
(9 states, 12 transitions) 
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Visual verification of the final CTMC 

5 6 4 2 3 1 crash 

0.6 0.5 0.4 0.3 0.2 0.1 

sleep sleep 

0.2 
0.1  

100  100   
6 

6 
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Analysis of the Hubble using BCG_TRANSIENT 

6.04E-27 2.43E-26 6.03E-27 1.00E+06 

0.00031212 0.00125902 0.00031195 1.00E+05 

0.0578058 0.233175 0.0577739 1.00E+04 

0.097546 0.393478 0.0974923 1.00E+03 

0.102786 0.414615 0.102729 100 

0.105725 0.414947 0.105761 10 

0.00373419 0.543138 0.00248872 1 

4.34E-06 0.59403 5.45E-07 0.1 

1.24E-09 0.5994 1.52E-11 0.01 

"suspend" "fail" "repair" time 



Timed automata 
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 A theoretical model for specifying hard real time 
   R. Alur and D. Dill. 

A theory of timed automata. 
Theoretical Computer Science, 126:183-235, 1994. 

 Implemented in many tools: 
KRONOS (Grenoble) and UPPAAL (Uppsala and Aalborg) 
PRISM, MODEST, etc. 
popular model 

 There exist alternative models 
timed Petri nets 
timed process calculi (Timed CCS, Timed CSP, ET-LOTOS, etc.) 
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Timed automata 



 Clocks: special variables to measure time 
different from a central clock (e.g., POSIX time(2) function) 
clocks are declared explicitly by the specifier 
there may be several clocks    
beware (too many clocks => undecidability!) 

 Clocks increase linearly with rate 1 as time elapses 
 One can only ‘reset’ clocks 

but not assign them a non-zero value 
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Principles of timed automata 

clock c 

c 

time reset c 



 ‘when’ guards attached to transitions 
 a transition cannot fire when its guard is false 
 
 when (c >= 10) means:  

                 this transition may only be fired after 10 time units 
 

 ‘invariant’ conditions attached to states 
  one can remain in the state while the invariant is true 
  when the invariant becomes false, one must leave urgently 

 
  invariant (c <= 10) means:  
                        must quit this state before 10 time units 
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Guards and invariants 



The MODEST toolset 
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many thanks to Holger Hermanns and Arnd Hartmanns 



 MODEST: A Unified Language for Quantitative Models 

 
 Combines: 

process algebra constructs (LTS, nondeterminism) 
probabilities (Markov Decision Processes) 
time (Timed Automata) 

 
 Formal semantics defined by SOS (Structural 
Operational Semantics) rules 
 Suitable compositionality properties 
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MODEST: the language 
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Modest is more concise than Prism 

{=  backoff = DiscreteUniform (0, pow (2, bc + 4) - 1)  =} 

MODEST code (1 line) 

equivalent PRISM program 



 A suite of tools developed at Saarland University 
 Web site: http://www.modestchecker.net  
 Currently, 5 tools: 

mcpta: model checker for STA (uses Prism as a backend) 
mctau: model checker for TA (uses Uppaal as a backend) 
modes: discrete-event simulator for STA 
mosta: visualisation using Graphviz 
mime: graphical user-interface  
(Windows only) 
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MODEST: the toolset 

http://www.modestchecker.net/


The MODEST language 
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 Basic data types 
bool 
int 
int (min..max)   // bounded integers (min and max are constants) 
real                   // + 3 special types: clock, reward, var 
 

(Single-dimension) arrays 
int [10] 

 
 Named records (a.k.a. ‘structs’) 

datatype Point = {real X, real Y, real Z} 
 

 Option types 
int option         // presumably : int ∪ {⊥} 
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Data types in MODEST 



 Inaction 
 

 
 Actions (visible or ‘tau’) 
 
 

no data inputs/outputs (?/!) 

Sequential composition 
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Actions and sequential composition 

action snd_data; 
 

snd_data 

snd_data ; rcv_ack 

snd_data 

snd_data 

rcv_ack 

stop 
or 
{==}  // null en LOTOS NT 



 Nondeterministic choice 
 

 
 

 
Loops and breaks 
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Choices and loops 

snd_data 

rcv_ack timeout 

snd_data ; 
alt { 
:: rcv_ack 
:: timeout 
} 

snd_data timeout 

rcv_ack 

τ 

do { 
:: snd_data ; 
   alt { 
   :: rcv_ack ; break 
   :: timeout 
   } 
} 



 Exception throwing 
 
 
 
 
 
 
 There is a related ‘try … catch’ operator 
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Exceptions 

snd_data 

rcv_ack timeout 

τ err 

⊥ 

do { 
:: snd_data; 
   alt { 
   :: rcv_ack; break 
   :: timeout; throw (err) 
   } 
} 
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Variables, assignments, and guards 

int n = 2; 
 

do { 
:: snd_data {=   n = n - 1   =} ; 
   alt { 
   :: rcv_ack ; break 
   :: timeout ; alt { 
      :: when (n > 0) tau 
      :: when (n == 0) throw (err) 
      } 
   } 
} 



 Process definitions 
no gate parameters 
value parameters are permitted 

 

49 

Lecture 6 

Process and calls 

process Channel() 
{ 
  snd ; 
  alt { 
  :: rcv 
  :: timeout 
  } ; 
  Channel() 
} 
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Parallel composition 

process P () { a ; b } 
 

process Q () { tau ; b } 
 
 

par { 
:: P () 
:: Q () 
} 

par { 
:: P () 
:: Q () 
:: b ; a 
} 

b 

a tau 

tau a 

a 

b 

tau 

b 
=

 

tau Each process synchronizes 
only on its visible gates, 
which must be inferred by 
looking at the process body 
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Gate relabelling 

where: 
process Channel() { snd ... rcv } 

par { 
:: Sender () 
:: relabel  { snd, rcv } by { snd_data, rcv_data } Channel () 
:: relabel { snd, rcv } by { snd_ack, rcv_ack } Channel () 
:: Receiver () 
} 



 There is a ‘palt’ operator 
 It follows the MDP strict alternation philosophy 
(first ‘states’, then ‘nails’) 

 

 It is preceded by an action label (if absent: tau) 
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(MDP-like) probabilistic choice 

send palt { 
  :p1: … 
  :p2: … 
  :1-p1-p2: … 
} 



 All the primitives of timed automata are there 
 Declaration of clocks 

 
 Clock reset 

 
 Clock constraint checking 
 
Invariants 
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Timed automata primitives 

clock c ;            // the time domain is dense (reals) 

{=    c = 0   =}    // only value 0 allowed for clocks 

when (c >= 10)    // restricted forms of conditions 

invariant (c <= 20)    // restricted forms of conditions 



 Clock c must be reset at time 2 or later 
 
 
 Clock c must be reset no later than time 2 
 
 
 Clock c must be reset at time 2 

 

 
Caution: in a choice, a ‘must’ might become a ‘may’ 
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Examples 1: simple time constraints 

when (c >= 2) {=  c = 0  =} 

invariant (c <= 2) {=  c = 0  =} 

invariant (c <= 3) when (c >= 2) {=  c = 0  =} 



 A given action should take place after TD_MIN and 
before TD_MAX: 
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Example 2: time interval constraints 

TD_MIN TD_MAX 

clock c; 
 

{=  c = 0  =} ; 
invariant (c <= TD_MAX) 
when (c >= TD_MIN) 
... // continue 
 

constraint of ‘invariant’ 
constraint of ‘when’ 
intersection of both constraints 



 A ‘rate λ’ transition is modelled using a clock 
 Three steps: 

select a random value x with a exponential distribution 
   and reset the clock 

time elapses - wait … 
when the clock reaches x, resume the execution 

 Specification in Modest: 
 

 
 
other distributions are supported: uniform, normal 
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Example 3: (CTMC-like) ‘rate’ transitions 

clock c ; 
real x ; 
{=  x = Exp (λ) , c = 0  =} ; 
when (c >= x) ...     // continue  

(this involves probabilities, 
so the model is not, strictly 
speaking, a CTMC, but a STA) 
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Example 4: probabilistic timed lossy channel 

 snd 

process Channel () { 
  clock c; 
  snd palt { 
 

  :99: {= c = 0 =}; 
       invariant (c <= TD_MAX) 
       when (c >= TD_MIN) rcv 
 

  : 1: {==} // do nothing 
 

  } ; 
  Channel () 
} 

A lossy channel with 1% message loss probability 
and correct transmission delay in [TD_MIN, TD_MAX] 
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Modest expressiveness 

LTS DTMCCTMC

PA/MDPTA

PTA

STA

SHA

IMC

MA

nondeter-
minism

discrete
probabilities

arbitrary
distributions

exp. distr.
delays

time/
clocks

continuous
dynamics



Last challenge 
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 Go back to the PRISM Manual v. 4.0.3 
 Find the example of Probabilistic Timed Automaton 
given in this manual 
 Translate this PTA in the Modest language 
 Learn about the property specification language of 
Modest by visiting the case-studies page of the 
Modest web site 
 Think of two properties that you would like to 
check on this PTA, express them, and check them 
using mcpta 
 Send your files and results to Alexander 
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From PRISM to MODEST 



Conclusion 
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You should now be more familiar with those strange languages 
(CCS, LOTOS, LOTOS NT, pi-calculus, PRISM, MODEST) for 
concurrent systems 
 
 None of these languages is perfect: 

CCS, pi-calculus: mathematical notations rather than computer languages 
LOTOS, LOTOS NT: no time – prob. and rates only with tricks 
PRISM: very limited types only – too verbose 
MODEST: limited types – thin documentation 

    => this is still ongoing research 
 

But anyway, they are far better than programming languages (C++, 
Java) to study complex concurrent systems: 

precise semantics 
verification tools available 
errors can be detected that could not be found by testing 
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Final words… 
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CTMCs and IMCs 
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MODEST language and tool 
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