Applied Concurrency Theory
Lecture 6 : real-time models
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Real-time problems




m In classical or probabilistic models, there Is a notion
of chronology between events, but no precise timing

m Examples:

» one does not specify how long time will be spent in a state
before firing a transition

» one does not specify how long time it takes to fire a
transition: is it instantaneous? does it take time?

m Real-time models address this issue
» they carry more information than classical (untimed) models



m Hard real-time systems must always react timely
» ‘a correct output produced too late is a wrong output’

m No deviation from deadlines allowed

m Safety-critical systems often have hard real-time
parts



m Soft real-time systems must usually react timely

m There is some tolerance wrt deadlines
» the system can be late from time to time

m Being late should remain exceptional:
» otherwise the mission of the system is compromised
» for instance, human users stop using it

m This leads to probabilistic analyses:
» availability
» reliability



Continuous-time Markov chains




mWhat is t
within 4
mWhat is t

ne probability of shutdown occurring
nours?

ne long-run probability that 4 or more

sensors are operational?

m What is the worst-case error probability over all
possible initial configurations?

m What is the expected size of the message queue
after 30 minutes?

m What is the worst-case expected time taken for the
protocol to terminate?

(source: University of Birmingham)



The “ping’ command: answers takes some time

$ ping vasy.inria.fr

nearly 20 seconds / nearly 0.5 second

No answer from vasy.inria.fr vasy.inria.fr is alive



m In an automaton, transitions are discrete: at each time
Instant (e.g., clock “tick’), the current state changes to
another state

mIn a DTMC, transitions are discrete too: at each time
Instant, the current probability distribution evolves
from one set of states to another set of states

m In a CTMC, transitions are continuous: as time elapses,
the probability distributions evolves progressively (no
discrete clock ticks, but continuous passing of time)



p (t) : probability to be still in the same state(s) at time t
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as time passes, p(t)
decreases and the
transition to the next
state(s) becomes
increasingly more
certain
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A is a constant that expresses the mean rate of the
exponential law (in terms of physical units, Ais a
frequency, I1.e., the inverse of a duration)



The higher the value of A, the faster the transition

The mean waiting time in the current stateis1 / A

1-p(V)

/

probability of having
moved to the next state(s)
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http://en.wikipedia.org/wiki/Image:Exponential_distribution_cdf.png

m Reason #1 (mathematical)
If a stochastic process { X(t), t > 0 } of state space S

» has the ‘memoryless’ Markov property (i.e., is a CTMC)
(Vt, ., t, ., 10t <. <t, <t ) (VSy, -y Sy Speg € 9)
P{X(thi) = Sner | X(T) =51, oy X(E) =5, =

P { X(tn+1) = Sn+1 I X(tn) = Sn }

» and Is time-homogeneous
(Vt, ] 0<t<t) (Vs,s €9)
P{X(t)=s" | X(t) =s}=P{X(t’-t)=s"| X(0) =s}

then 1t must follow an exponential distribution



m Reason #2 (mathematical)

Other ‘useful’ distributions can be expressed (exactly or
arbitrarily closely) as a composition of exponential laws

Example: Erlang distributions are sequences of exponential law
A A A

O O——O———O)

m Reason #3 (pragmatic)

Exponential laws are convenient mathematical approximations
enabling to do numerical computations efficiently and
providing ‘reasonable’ results



m Reason #4 (intuitive):

An exponential distribution with parameter A
models the time elapsed between successive events

that:

» are independent (this condition is essential)
» occur randomly with a constant mean rate A
Examples:

» The duration between two successive clients entering a shop

» The number of times a dice must be thrown to obtain a
sequence of 10 consecutive ‘6’



They describe the external behavior of systems whose
Internal structure is not entirely known

m natural phenomena
» physics
» chemistry
» biology

m information theory (hidden Markov models)
» data compression [Shannon] - entropy encoding
» correction of transmission errors [Viterbi]

m computer science
» pattern recognition
» machine learning
» Google’s Pagerank algorithm



CTMCs can be represented as (finite- or infinite-state)
transition systems, in which the transitions are labelled
with A, u, etc. (parameters of exponential laws)

s

A» ﬂﬂ,



m As for DTMCs, the current state of a CTMC can be
represented by a probability vector V(t)
» I-th element of V(t) : probability of being in state i at time t
» contrary to DTMCs, t is continuous here, not discrete

m As for DTMCs, a CTMC with N states Is represented
by an NxN matrix Q (‘generator matrix’)

» 1 ] = QIi, j] = rate A > 0 of the transition from state i to
state j, or zero if there is no such transition

»Q[i,i1=-2%.Qli,j1 7/ therefore Q[i, i]<0
m Steady-state (i.e., long-run) probability vector V_
obtained by solving the equation tV_ . Q =0



Interactive Markov chains




m CTMCs are limited In the same way as DTMCs
» mathematicians apply CTMCs to physical, chemical, etc. issues
» they don’t see the need for parallel composition

m We (computer scientists) want more:
» we want to build systems with components
» these components often run in parallel
» We need action labels to synchronize components

» We want message passing communication, not only shared
variables

» We want nondeterminism and tau-transitions



m Many approaches proposed, but unsatisfactory

m What is a good solution?
» 2 kKinds of transitions: normal + rates, or mixed (normal, rate)
» a parallel composition operator that matches the intuition
» a parallel operator that is conservative
» bisimulation relations to compare and minimize models
» bisimulation relations that subsume lumpability:
7B [ w;B = (A+p);B
» bisimulation relations ‘compatible’ with the parallel
composition (compositionality, congruence)



m H. Hermanns PhD thesis (see References below)
m The IMC model

» an LTS with additional rate transitions ‘rate A\’
» hondeterminism and taus are allowed
» choice between ordinary and rate transitions is ok

m Parallel composition
» same as in LOTOS
» only constraint: no synchronization allowed on rate transitions
» rates interleave: rate A| |rate u = rate A;rate u [] rate u;rate A

m Stochastic (strong or branching) bisimulation
» T;B1 [] rate A;B2 = 1;B1 (z-transitions have priority)
» A;B[]u;B=(+n);B (lumpability)



m Avery simple and elegant model
» nice parallel composition
» nice bisimulation relations
» enables compositional state space generation

m Upward-compatible with standard process calculi
» a superset of process calculi
» a superset of the LTS model
» existing tools do not have to be deeply modified



m CADP : the reference implementation
» LOTOS state space generators unchanged
» dedicated minimization tool (BCG_MIN with -rate option)
» dedicated relabelling tools (BCG_LABELS)
» parallel composition (EXP.OPEN with “-rate’ option)

m IMCA - IMC Analyzer (Univ. RWTH Aachen)

» a hew recent toolset

m PRISM

» supports a parallel extension of CTMCs, but not IMCs
» each transition seems to combine an action label and a rate



Application of IMCs:

The Hubble space telescope







The Huble telescope has 6 gyroscopes
As time passes, the gyros may falil

The average lifetime of gyros is 10 years (= 120 months)
12 months / 120

Hubble falls into sleep if only two gyros are left

Turning on sleep mode requires to halt all equipments, which
takes about 3.6 days (= 0.12 month)
12 months /7 0.12

When in sleep mode, a shuttle mission must be sent
to repair/reset Hubble, which takes about 2 months
12 months / 2

Without operational gyro, Hubble crashes



Compositional madelling of Hubble

—> |GYRO GYRO GYRO GYRO GYRO GYRO LAMBDA
i CONTROLLER | v
—> NU

system reset I
process HUBBLE [LAMBDA, MU, NU] : noexit :=
hide in

(

(
GYRO [LAMBDA, FAILT ||| GYRO [LAMBDA,

GYRO [LAMBDA, FAIL] | 1] GYRO [LAMBDA,

)

I[FAIL]I
CONTROLLER [FAIL, MU, NU] (6, false)

>> (* system reset *)
HUBBLE [LAMBDA, MU, NU]

)

endproc

1 111 GYRO [LAMBDA, 1111
1 111 GYRO [LAMBDA, ]




The GYRO process




The CONTROLLER process
()




LOTOS specification _
with Markov gates - :
LAMBDA, MU, NU 50 lines

‘ CAESAR and CAESAR.ADT ‘

Y

BCG graph (LTS) with — 877 states
LAMBDA, MU, NU B 3341 trans.
rename Y
"LAMBDA" -> "fail; rate 0.1" BCG_LABELS
"MU"->"suspend; rate 100" (generalized renaming)
"NU"->"repair; rate 6" P
BCG graph (IMC) 877 states
with rates and = 3341 trans.

transitions




Analysis trajectory for the Hubble (2/2)

%

BCG_MIN (stochastic
strong minimization)

2

2

BCG graph (IMC)
rate and "I" trans

2

N

\2

BCG graph (CT

with labels)

D

v

BCG_TRANSIENT
(transient analysis)

with —
itions

BCG_MIN (stochastic
branching minimization)

&,

38 states
67 trans.

luckily, minimization,
/ removed all "i" transitions
(this is not always the
case), so we get a CTMC
9 states (only rate-transitions), not

12 trans. an IMC, and we can do
numerical CTMC analysis

numerical
data
robabilities

Excel, gnuplot




d IMCs for the Hubble

INimize
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Visual verification of the final CTMC

Lecture 6




time "repair" “fail" "suspend"
0.01 1.52E-11 0.5994 1.24E-09
0.1 5.45E-07 0.59403 4.34E-06
1| 0.00248872 0.543138 | 0.00373419
10 0.105761 0.414947 0.105725
100 0.102729 0.414615 0.102786
1.00E+03 0.0974923 0.393478 0.097546
1.00E+04 0.0577739 0.233175 0.0578058
1.00E+05 [ 0.00031195 | 0.00125902 | 0.00031212
1.00E+06 6.03E-27 2.43E-26 6.04E-27
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Timed automata




m A theoretical model for specifying hard real time

R. Alur and D. Dill.
A theory of timed automata.
Theoretical Computer Science, 126:183-235, 1994.
m Implemented in many tools:
» KRONOS (Grenoble) and UPPAAL (Uppsala and Aalborg)
» PRISM, MODEST, etc.
» popular model

m There exist alternative models
» timed Petri nets
» timed process calculi (Timed CCS, Timed CSP, ET-LOTOS, etc.)



m Clocks: special variables to measure time
» different from a central clock (e.g., POSIX time(2) function)

» clocks are declared explicitly by the specifier

» there may be several clocks

» beware (too many clocks => undecidability!)

m Clocks increase linearly with rate 1 as time elapses

m One can only ‘reset’ clocks

» but not assign them a non-zero value c

C

reset c

—~ time



m ‘when’ guards attached to transitions
a transition cannot fire when its guard is false

when (c >= 10) means:
this transition may only be fired after 10 time units

m ‘Invariant’ conditions attached to states
one can remain in the state while the invariant is true
when the invariant becomes false, one must leave urgently

Invariant (c <= 10) means:
must quit this state before 10 time units



The MODEST toolset

many thanks to Holger Hermanns and Arnd Hartmanns




m MODEST: A Unified Language for Quantitative Models

m Combines:
» process algebra constructs (LTS, nondeterminism)
» probabilities (Markov Decision Processes)
» time (Timed Automata)

m Formal semantics defined by SOS (Structural
Operational Semantics) rules

m Suitable compositionality properties



Modest 1S more concise than Prism
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m A suite of tools developed at Saarland University
m Web site: http://www.modestchecker.net

m Currently, 5 tools:
» mcpta: model checker for STA (uses Prism as a backend)
» mctau: model checker for TA (uses Uppaal as a backend)

» modes: discrete-event simulator for STA
» mosta: visualisation using Graphviz S e

» mime: graphical user-interface
(Windows only)


http://www.modestchecker.net/

The MODEST language




m Basic data types

» bool

» INnt

» Int (min..max) // bounded integers (min and max are constants)
» real // + 3 special types: clock, reward, var

m (Single-dimension) arrays
» int [10]

m Named records (a.k.a. ‘structs’)
» datatype Point = {real X, real Y, real Z}

m Option types
» INt option // presumably : int U {1}



m Inaction

stop

or b

{==} // null en LOTOS NT
m Actions (visible or “tau’)

action snd_data;

snd_data
» NO data inputs/outputs (?/!)

m Sequential composition

snd_data ; rcv_ack

snd_data

snd_data

rcv_ack



m Nondeterministic choice

N
snd data ; N
z snd _data
rcv_ack
timeout timeout >rcv ack
}
- LOOpS an{d breaks timeoutC snd_data
snd_data ; {
alt { rcv_ack
;2 rcev_ack ;
i . timeout "T

"
/
I 1
.\ )
‘‘‘‘‘ 4



m Exception throwing 'S

snd _data
do {

.2 snd_data; tlmeout/ \rcv ack
alt {

.2 rcv_ack; break
:: timeout; throw (err) errI 1T

¥ O

m There iIs a related ‘try ... catch’ operator



Intn = 2;

do {
::snd _data{= n=n-1 =},
alt {
.2 rcv_ack ; break
:: timeout ; alt {
2 when (n > 0) tau
2 when (n==0) throw (err)
}
}
}

T ,n>0 " !
snd_data, true,
n==n-1}

7 t1meout cv_ack,
. true, @ f ’\true 1)

error,l 1T true, @



m Process definitions
» NO gate parameters
» value parameters are permitted

process Channel()
{

snd ;

alt {

I rcv

. timeout

};

Channel()
}



processP () {a; b}
processQ () {tau ; b}

{
P()
Q0

}

P()

Q (0
b;a

Each process synchronizes
only on its visible gates,
which must be inferred by
looking at the process body



datal

>
Srd—deda evdala
’dpq‘k
par { acknowladyments
-~

. Sender ()

:: relabel {snd, rcv} by{snd data, rcv_data} Channel ()

:: relabel{snd, rcv} by { snd_ack, rcv_ack } Channel ()
.. Receiver ()

}

where:
process Channel() {snd ... rcv }



m There is a “palt’ operator

m It follows the MDP strict alternation philosophy
(first ‘states’, then “nails’)

m It 1s preceded by an action label (if absent: tau)

send palt {
Py
Pt
1-py-Py:
}



m All the primitives of timed automata are there
m Declaration of clocks
clock c ; // the time domain is dense (reals)
m Clock reset
{= c¢c=0 =} //onlyvalue 0 allowed for clocks
m Clock constraint checking
when (c >= 10) // restricted forms of conditions

m Invariants

Invariant (c <= 20) // restricted forms of conditions



m Clock ¢ must be reset at time 2 or later
(c>=2){= c=0 =}

m Clock ¢ must be reset no later than time 2
(c<=2){= c=0 =}

m Clock ¢ must be reset at time 2

(c<=3) (c>=2){= c=0 =}

m Caution: In a choice, a “‘must’ might become a ‘may’



m A given action should take place after TD_MIN and
before TD MAX:

clock c;
{: c=0 :} :
Invariant (c<=TD MAX)
when (c>=TD_ MIN)
... // continue
TD _MIN TD MAX

— constraint of ‘invariant’
— constraint of ‘when’
_, Intersection of both constraints




m A ‘rate A’ transition i1s modelled using a clock

m Three steps:
» select a random value x with a exponential distribution
and reset the clock
» time elapses - wait ...
» when the clock reaches x, resume the execution

m Specification in Modest: (this involves probabilities,
_ so the model is not, strictly
clock c ; speaking, a CTMC, but a STA)
real x ;
{=x=Exp(A),c=0 =};
when (c >=x) ... // continue

» Other distributions are supported: uniform, normal LN




A lossy channel with 1% message loss probability
and correct transmission delay in [TD_MIN, TD_MAX]

process Channel () {
clock c;
snd palt {
:99: {=c=0=};
invariant (c<=TD_MAX)
when (c>=TD_MIN) rcv

0.01

: 1: {==} // do nothing 0.99,

{c = 0} rcv,
) , : /€ =TDyy
Channel () ¢ < TDyax

}



Modest expressiveness

Lecture 6



Last challenge




m Go back to the PRISM Manual v. 4.0.3

m Find the example of Probabilistic Timed Automaton
given in this manual

m Translate this PTA in the Modest language

m Learn about the property specification language of
Modest by visiting the case-studies page of the
Modest web site

m Think of two properties that you would like to
check on this PTA, express them, and check them
using mcpta

m Send your files and results to Alexander



Conclusion




m You should now be more familiar with those strange languages

(CCS, LOTOS, LOTOS NT, pi-calculus, PRISM, MODEST) for
concurrent systems

m None of these languages is perfect:
» CCS, pi-calculus: mathematical notations rather than computer languages
» LOTOS, LOTOS NT: no time - prob. and rates only with tricks
» PRISM: very limited types only - too verbose
» MODEST: limited types - thin documentation

=> this is still ongoing research

m But anyway, they are far better than programming languages (C++,
Java) to study complex concurrent systems:
» precise semantics
» verification tools available

» errors can be detected that could not be found by testing
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