
Hubert Garavel
Alexander Graf-Brill

Applied Concurrency Theory
Lecture 6 : real-time models

Real-time problems
2

Lecture 6

 In classical or probabilistic models, there is a notion
of chronology between events, but no precise timing

Examples:

one does not specify how long time will be spent in a state
before firing a transition
one does not specify how long time it takes to fire a
transition: is it instantaneous? does it take time?

 Real-time models address this issue
they carry more information than classical (untimed) models

3

Lecture 6

Real-time models

Hard real-time systems must always react timely

‘a correct output produced too late is a wrong output’

No deviation from deadlines allowed

Safety-critical systems often have hard real-time
parts

4

Lecture 6

Hard real-time

 Soft real-time systems must usually react timely

 There is some tolerance wrt deadlines
the system can be late from time to time

 Being late should remain exceptional:
otherwise the mission of the system is compromised
for instance, human users stop using it

 This leads to probabilistic analyses:
availability
reliability

5

Lecture 6

Soft real-time

Continuous-time Markov chains
6

Lecture 6

Examples of quantitative properties

What is the probability of shutdown occurring
within 4 hours?
What is the long-run probability that 4 or more
sensors are operational?
What is the worst-case error probability over all
possible initial configurations?
What is the expected size of the message queue
after 30 minutes?
What is the worst-case expected time taken for the
protocol to terminate?

 (source: University of Birmingham)

7

Lecture 6

Soft-real time example

The ‘ping’ command: answers takes some time

$ ping vasy.inria.fr

nearly 0.5 second nearly 20 seconds

No answer from vasy.inria.fr vasy.inria.fr is alive

8

Lecture 6

 In an automaton, transitions are discrete: at each time
instant (e.g., clock ‘tick’), the current state changes to
another state

In a DTMC, transitions are discrete too: at each time
instant, the current probability distribution evolves
from one set of states to another set of states

 In a CTMC, transitions are continuous: as time elapses,
the probability distributions evolves progressively (no
discrete clock ticks, but continuous passing of time)

9

Lecture 6

Continuous-Time Markov chains (CTMC)

10

Lecture 6

Exponential distributions (time-homogeneous CTMCs)

 λ is a constant that expresses the mean rate of the
exponential law (in terms of physical units, λ is a
frequency, i.e., the inverse of a duration)

p (t) : probability to be still in the same state(s) at time t

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

p(t) = e-λt

t

p (t)
as time passes, p(t)
decreases and the
transition to the next
state(s) becomes
increasingly more
certain

Influence of λ

 The higher the value of λ, the faster the transition

 The mean waiting time in the current state is 1 / λ

t

1 - p (t)

11

Lecture 6

probability of having
moved to the next state(s)

http://en.wikipedia.org/wiki/Image:Exponential_distribution_cdf.png

 Reason #1 (mathematical)
If a stochastic process { X(t), t ≥ 0 } of state space S

has the ‘memoryless’ Markov property (i.e., is a CTMC)

 (∀t1, …, tn, tn+1 | 0 ≤ t1 ≤ … ≤ tn ≤ tn+1) (∀s1, …, sn, sn+1 ∈ S)
P { X(tn+1) = sn+1 | X(t1) = s1, …, X(tn) = sn } =
 P { X(tn+1) = sn+1 | X(tn) = sn }

and is time-homogeneous
(∀t, t’ | 0 ≤ t ≤ t’) (∀s, s’ ∈ S)
P { X(t’) = s’ | X(t) = s } = P { X(t’ - t) = s’ | X(0) = s }

then it must follow an exponential distribution

12

Lecture 6

Why using exponential distributions? (1/4)

Reason #2 (mathematical)

 Other ‘useful’ distributions can be expressed (exactly or

arbitrarily closely) as a composition of exponential laws

 Example: Erlang distributions are sequences of exponential law

Reason #3 (pragmatic)

 Exponential laws are convenient mathematical approximations

enabling to do numerical computations efficiently and
providing ‘reasonable’ results

13

Lecture 6

Why using exponential distributions? (2/4)

λ λ λ

 Reason #4 (intuitive):

 An exponential distribution with parameter λ
models the time elapsed between successive events
that:

are independent (this condition is essential)

occur randomly with a constant mean rate λ

 Examples:
The duration between two successive clients entering a shop
The number of times a dice must be thrown to obtain a
sequence of 10 consecutive ‘6’

14

Lecture 6

Why using exponential distributions? (3/4)

They describe the external behavior of systems whose
internal structure is not entirely known

 natural phenomena
physics
chemistry
biology

information theory (hidden Markov models)
data compression [Shannon] - entropy encoding
correction of transmission errors [Viterbi]

 computer science
pattern recognition
machine learning
Google’s Pagerank algorithm

15

Lecture 6

Why using exponential distributions? (4/4)

Graphical representation of CTMCs

CTMCs can be represented as (finite- or infinite-state)
transition systems, in which the transitions are labelled
with λ, µ, etc. (parameters of exponential laws)

λ’

λ’’

λ

16

Lecture 6

µ’’

µ’

 As for DTMCs, the current state of a CTMC can be
represented by a probability vector V(t)

i-th element of V(t) : probability of being in state i at time t
contrary to DTMCs, t is continuous here, not discrete

 As for DTMCs, a CTMC with N states is represented
by an NxN matrix Q (‘generator matrix’)

i ≠ j ⇒ Q [i, j] = rate λ > 0 of the transition from state i to
 state j, or zero if there is no such transition
Q [i, i] = - ∑j≠i Q [i, j] // therefore Q [i, i] ≤ 0

 Steady-state (i.e., long-run) probability vector V∞
obtained by solving the equation tV∞ . Q = 0

17

Lecture 6

Matrix representation (1/2)

Interactive Markov chains
18

Lecture 6

 CTMCs are limited in the same way as DTMCs
mathematicians apply CTMCs to physical, chemical, etc. issues
they don’t see the need for parallel composition

 We (computer scientists) want more:
we want to build systems with components
these components often run in parallel
we need action labels to synchronize components
we want message passing communication, not only shared
variables
we want nondeterminism and tau-transitions

19

Lecture 6

Beyond CTMCs

 Many approaches proposed, but unsatisfactory
 What is a good solution?

2 kinds of transitions: normal + rates, or mixed (normal, rate)
a parallel composition operator that matches the intuition
a parallel operator that is conservative
bisimulation relations to compare and minimize models
bisimulation relations that subsume lumpability:
 λ;B [] µ;B = (λ+µ);B
bisimulation relations ‘compatible’ with the parallel
composition (compositionality, congruence)

20

Lecture 6

What would be a good extension of CTMCs?

 H. Hermanns PhD thesis (see References below)

 The IMC model
an LTS with additional rate transitions ‘rate λ’
nondeterminism and taus are allowed
choice between ordinary and rate transitions is ok

 Parallel composition
same as in LOTOS
only constraint: no synchronization allowed on rate transitions
rates interleave: rate λ||rate µ = rate λ;rate µ [] rate µ;rate λ

 Stochastic (strong or branching) bisimulation
τ;B1 [] rate λ;B2 = τ;B1 (τ-transitions have priority)
 λ;B [] µ;B = (λ+µ);B (lumpability)

21

Lecture 6

IMC (Interactive Markov Chains)

 A very simple and elegant model
nice parallel composition
nice bisimulation relations
enables compositional state space generation

 Upward-compatible with standard process calculi

a superset of process calculi
a superset of the LTS model
existing tools do not have to be deeply modified

22

Lecture 6

Advantages of IMCs

 CADP : the reference implementation
LOTOS state space generators unchanged
dedicated minimization tool (BCG_MIN with –rate option)
dedicated relabelling tools (BCG_LABELS)
parallel composition (EXP.OPEN with ‘-rate’ option)

 IMCA – IMC Analyzer (Univ. RWTH Aachen)
a new recent toolset

 PRISM

supports a parallel extension of CTMCs, but not IMCs
each transition seems to combine an action label and a rate

23

Lecture 6

Available tools for IMCs

Application of IMCs:
The Hubble space telescope

24

Lecture 6

Example from H. Hermanns publications
25

Lecture 6

26

Lecture 6

A simple Markov model for Hubble

 The Huble telescope has 6 gyroscopes
 As time passes, the gyros may fail
 The average lifetime of gyros is 10 years (= 120 months)

 λ = 12 months / 120 = 0.1
 Hubble falls into sleep if only two gyros are left
 Turning on sleep mode requires to halt all equipments, which

takes about 3.6 days (= 0.12 month)
 µ = 12 months / 0.12 = 100

 When in sleep mode, a shuttle mission must be sent
to repair/reset Hubble, which takes about 2 months
 ν =12 months / 2 = 6

 Without operational gyro, Hubble crashes

Compositional modelling of Hubble

process HUBBLE [LAMBDA, MU, NU] : noexit :=
 hide FAIL in
 (
 (
 GYRO [LAMBDA, FAIL] ||| GYRO [LAMBDA, FAIL] ||| GYRO [LAMBDA, FAIL] |||
 GYRO [LAMBDA, FAIL] ||| GYRO [LAMBDA, FAIL] ||| GYRO [LAMBDA, FAIL]
)
 |[FAIL]|
 CONTROLLER [FAIL, MU, NU] (6, false)
 >> (* system reset *)
 HUBBLE [LAMBDA, MU, NU]
)
endproc

GYRO GYRO GYRO GYRO GYRO GYRO

CONTROLLER

FAIL FAIL FAIL FAIL FAIL FAIL

system reset

LAMBDA

MU

NU

27

Lecture 6

The GYRO process

process GYRO [LAMBDA, FAIL] : exit :=
 (LAMBDA; FAIL; stop) [> exit
endproc

LAMBDA

 exit (~system reset)

FAIL

 exit

 exit

28

Lecture 6

The CONTROLLER process

process CONTROLLER [FAIL, MU, NU] (C : Nat, SLEEP : Bool) : exit :=
 FAIL; (* Ah, a gyro failed. Let's count down. *)
 CONTROLLER [FAIL, MU, NU] (C - 1, SLEEP)
 []
 [(C < 3) and not (SLEEP)] ->
 MU; (* Hubble starts tumbling. Time to turn on the sleep mode. *)
 CONTROLLER [FAIL, MU, NU] (C, true)
 []
 [SLEEP] ->
 NU; (* Sleep mode is on. Waiting for the space mission to reset Hubble. *)
 exit
 []
 [C = 0] ->
 i; (* No gyros left. Crash! *)
 stop
endproc

29

Lecture 6

Analysis trajectory for the Hubble (1/2)

LOTOS specification
with Markov gates
LAMBDA, MU, NU

CAESAR and CAESAR.ADT

BCG graph (LTS) with
LAMBDA, MU, NU

BCG_LABELS
(generalized renaming)

BCG graph (IMC)
with rates and
"i" transitions

rename
"LAMBDA" -> "fail; rate 0.1"
"MU"->"suspend; rate 100"
"NU"->"repair; rate 6"

…

=

=

=
50 lines

877 states
3341 trans.

877 states
3341 trans.

30

Lecture 6

Analysis trajectory for the Hubble (2/2)
…

numerical
data

(probabilities)
Excel, gnuplot

BCG_TRANSIENT
(transient analysis)

BCG_MIN (stochastic
strong minimization)

BCG graph (IMC) with
rate and "i" transitions

BCG_MIN (stochastic
branching minimization)

BCG graph (CTMC
with labels)

=

=

38 states
67 trans.

9 states
12 trans.

31

Lecture 6

luckily, minimization,
removed all "i" transitions
(this is not always the
case), so we get a CTMC
(only rate-transitions), not
an IMC, and we can do
numerical CTMC analysis

Minimized IMCs for the Hubble

after stochastic strong minimization
(38 states, 67 transitions)

after stochastic branching minimization
(9 states, 12 transitions)

32

Lecture 6

Visual verification of the final CTMC

5 6 4 2 3 1 crash

0.6 0.5 0.4 0.3 0.2 0.1

sleep sleep

0.2
0.1

100 100
6

6

33

Lecture 6

34

Lecture 6

Analysis of the Hubble using BCG_TRANSIENT

6.04E-27 2.43E-26 6.03E-27 1.00E+06

0.00031212 0.00125902 0.00031195 1.00E+05

0.0578058 0.233175 0.0577739 1.00E+04

0.097546 0.393478 0.0974923 1.00E+03

0.102786 0.414615 0.102729 100

0.105725 0.414947 0.105761 10

0.00373419 0.543138 0.00248872 1

4.34E-06 0.59403 5.45E-07 0.1

1.24E-09 0.5994 1.52E-11 0.01

"suspend" "fail" "repair" time

Timed automata
35

Lecture 6

 A theoretical model for specifying hard real time
 R. Alur and D. Dill.

A theory of timed automata.
Theoretical Computer Science, 126:183-235, 1994.

 Implemented in many tools:
KRONOS (Grenoble) and UPPAAL (Uppsala and Aalborg)
PRISM, MODEST, etc.
popular model

 There exist alternative models
timed Petri nets
timed process calculi (Timed CCS, Timed CSP, ET-LOTOS, etc.)

36

Lecture 6

Timed automata

 Clocks: special variables to measure time
different from a central clock (e.g., POSIX time(2) function)
clocks are declared explicitly by the specifier
there may be several clocks
beware (too many clocks => undecidability!)

 Clocks increase linearly with rate 1 as time elapses
 One can only ‘reset’ clocks

but not assign them a non-zero value

37

Lecture 6

Principles of timed automata

clock c

c

time reset c

 ‘when’ guards attached to transitions
 a transition cannot fire when its guard is false

 when (c >= 10) means:

 this transition may only be fired after 10 time units

 ‘invariant’ conditions attached to states
 one can remain in the state while the invariant is true
 when the invariant becomes false, one must leave urgently

 invariant (c <= 10) means:
 must quit this state before 10 time units

38

Lecture 6

Guards and invariants

The MODEST toolset
39

Lecture 6

many thanks to Holger Hermanns and Arnd Hartmanns

 MODEST: A Unified Language for Quantitative Models

 Combines:

process algebra constructs (LTS, nondeterminism)
probabilities (Markov Decision Processes)
time (Timed Automata)

 Formal semantics defined by SOS (Structural
Operational Semantics) rules
 Suitable compositionality properties

40

Lecture 6

MODEST: the language

41

Lecture 6

Modest is more concise than Prism

{= backoff = DiscreteUniform (0, pow (2, bc + 4) - 1) =}

MODEST code (1 line)

equivalent PRISM program

 A suite of tools developed at Saarland University
 Web site: http://www.modestchecker.net
 Currently, 5 tools:

mcpta: model checker for STA (uses Prism as a backend)
mctau: model checker for TA (uses Uppaal as a backend)
modes: discrete-event simulator for STA
mosta: visualisation using Graphviz
mime: graphical user-interface
(Windows only)

42

Lecture 6

MODEST: the toolset

http://www.modestchecker.net/

The MODEST language
43

Lecture 6

 Basic data types
bool
int
int (min..max) // bounded integers (min and max are constants)
real // + 3 special types: clock, reward, var

(Single-dimension) arrays
int [10]

 Named records (a.k.a. ‘structs’)

datatype Point = {real X, real Y, real Z}

 Option types
int option // presumably : int ∪ {⊥}

44

Lecture 6

Data types in MODEST

 Inaction

 Actions (visible or ‘tau’)

no data inputs/outputs (?/!)

Sequential composition

45

Lecture 6

Actions and sequential composition

action snd_data;

snd_data

snd_data ; rcv_ack

snd_data

snd_data

rcv_ack

stop
or
{==} // null en LOTOS NT

 Nondeterministic choice

Loops and breaks

46

Lecture 6

Choices and loops

snd_data

rcv_ack timeout

snd_data ;
alt {
:: rcv_ack
:: timeout
}

snd_data timeout

rcv_ack

τ

do {
:: snd_data ;
 alt {
 :: rcv_ack ; break
 :: timeout
 }
}

 Exception throwing

 There is a related ‘try … catch’ operator

47

Lecture 6

Exceptions

snd_data

rcv_ack timeout

τ err

⊥

do {
:: snd_data;
 alt {
 :: rcv_ack; break
 :: timeout; throw (err)
 }
}

48

Lecture 6

Variables, assignments, and guards

int n = 2;

do {
:: snd_data {= n = n - 1 =} ;
 alt {
 :: rcv_ack ; break
 :: timeout ; alt {
 :: when (n > 0) tau
 :: when (n == 0) throw (err)
 }
 }
}

 Process definitions
no gate parameters
value parameters are permitted

49

Lecture 6

Process and calls

process Channel()
{
 snd ;
 alt {
 :: rcv
 :: timeout
 } ;
 Channel()
}

50

Lecture 6

Parallel composition

process P () { a ; b }

process Q () { tau ; b }

par {
:: P ()
:: Q ()
}

par {
:: P ()
:: Q ()
:: b ; a
}

b

a tau

tau a

a

b

tau

b
=

tau Each process synchronizes
only on its visible gates,
which must be inferred by
looking at the process body

51

Lecture 6

Gate relabelling

where:
process Channel() { snd ... rcv }

par {
:: Sender ()
:: relabel { snd, rcv } by { snd_data, rcv_data } Channel ()
:: relabel { snd, rcv } by { snd_ack, rcv_ack } Channel ()
:: Receiver ()
}

 There is a ‘palt’ operator
 It follows the MDP strict alternation philosophy
(first ‘states’, then ‘nails’)

 It is preceded by an action label (if absent: tau)

52

Lecture 6

(MDP-like) probabilistic choice

send palt {
 :p1: …
 :p2: …
 :1-p1-p2: …
}

 All the primitives of timed automata are there
 Declaration of clocks

 Clock reset

 Clock constraint checking

Invariants

53

Lecture 6

Timed automata primitives

clock c ; // the time domain is dense (reals)

{= c = 0 =} // only value 0 allowed for clocks

when (c >= 10) // restricted forms of conditions

invariant (c <= 20) // restricted forms of conditions

 Clock c must be reset at time 2 or later

 Clock c must be reset no later than time 2

 Clock c must be reset at time 2

Caution: in a choice, a ‘must’ might become a ‘may’

54

Lecture 6

Examples 1: simple time constraints

when (c >= 2) {= c = 0 =}

invariant (c <= 2) {= c = 0 =}

invariant (c <= 3) when (c >= 2) {= c = 0 =}

 A given action should take place after TD_MIN and
before TD_MAX:

55

Lecture 6

Example 2: time interval constraints

TD_MIN TD_MAX

clock c;

{= c = 0 =} ;
invariant (c <= TD_MAX)
when (c >= TD_MIN)
... // continue

constraint of ‘invariant’
constraint of ‘when’
intersection of both constraints

 A ‘rate λ’ transition is modelled using a clock
 Three steps:

select a random value x with a exponential distribution
 and reset the clock

time elapses - wait …
when the clock reaches x, resume the execution

 Specification in Modest:

other distributions are supported: uniform, normal

56

Lecture 6

Example 3: (CTMC-like) ‘rate’ transitions

clock c ;
real x ;
{= x = Exp (λ) , c = 0 =} ;
when (c >= x) ... // continue

(this involves probabilities,
so the model is not, strictly
speaking, a CTMC, but a STA)

57

Lecture 6

Example 4: probabilistic timed lossy channel

 snd

process Channel () {
 clock c;
 snd palt {

 :99: {= c = 0 =};
 invariant (c <= TD_MAX)
 when (c >= TD_MIN) rcv

 : 1: {==} // do nothing

 } ;
 Channel ()
}

A lossy channel with 1% message loss probability
and correct transmission delay in [TD_MIN, TD_MAX]

58

Lecture 6

Modest expressiveness

LTS DTMCCTMC

PA/MDPTA

PTA

STA

SHA

IMC

MA

nondeter-
minism

discrete
probabilities

arbitrary
distributions

exp. distr.
delays

time/
clocks

continuous
dynamics

Last challenge
59

Lecture 6

 Go back to the PRISM Manual v. 4.0.3
 Find the example of Probabilistic Timed Automaton
given in this manual
 Translate this PTA in the Modest language
 Learn about the property specification language of
Modest by visiting the case-studies page of the
Modest web site
 Think of two properties that you would like to
check on this PTA, express them, and check them
using mcpta
 Send your files and results to Alexander

60

Lecture 6

From PRISM to MODEST

Conclusion
61

Lecture 6

You should now be more familiar with those strange languages
(CCS, LOTOS, LOTOS NT, pi-calculus, PRISM, MODEST) for
concurrent systems

 None of these languages is perfect:

CCS, pi-calculus: mathematical notations rather than computer languages
LOTOS, LOTOS NT: no time – prob. and rates only with tricks
PRISM: very limited types only – too verbose
MODEST: limited types – thin documentation

 => this is still ongoing research

But anyway, they are far better than programming languages (C++,
Java) to study complex concurrent systems:

precise semantics
verification tools available
errors can be detected that could not be found by testing

62

Lecture 6

Final words…

References
63

Lecture 6

 CTMCs
Google: ‘continuous time markov chains’
gives dozens of mathematical tutorials on CTMCs

 IMCs
Holger Hermanns and Joost-Pieter Katoen.
The How and Why of Interactive Markov Chains (2009)
http://www-i2.informatik.rwth-aachen.de/imca/fmco09.pdf
Holger Hermanns.
Interactive Markov Chains (book, 2002)
http://www.springer.com/computer/swe/book/978-3-540-
44261-5

64

Lecture 6

CTMCs and IMCs

http://www-i2.informatik.rwth-aachen.de/imca/fmco09.pdf
http://www.springer.com/computer/swe/book/978-3-540-44261-5
http://www.springer.com/computer/swe/book/978-3-540-44261-5

 MODEST Web site
http://www.modestchecker.net/

 MODEST syntax reference (2012)
http://www.modestchecker.net/Documentation/Modest%20Syntax%20Ref
erence.pdf

Presentation of the MODEST language (Sept. 2012)

Arnd Hartmann. MODEST – A Unified Language for quantitative models
http://www.modestchecker.net/Link.aspx?id=pub:H12

 Overview of the MODEST language (2004)

H. Bohnenkamp, P. d'Argenio, H. Hermanns, J.-P. Katoen.
MoDeST: A compositional modeling formalism for hard and softly timed
systems. http://doc.utwente.nl/48984/1/0000011b.pdf

65

Lecture 6

MODEST language and tool

http://www.modestchecker.net/
http://www.modestchecker.net/Documentation/Modest Syntax Reference.pdf
http://www.modestchecker.net/Documentation/Modest Syntax Reference.pdf
http://www.modestchecker.net/Link.aspx?id=pub:H12
http://doc.utwente.nl/48984/1/0000011b.pdf

	Applied Concurrency Theory�Lecture 6 : real-time models
	Real-time problems
	Real-time models
	Hard real-time
	Soft real-time
	Continuous-time Markov chains
	Examples of quantitative properties
	Soft-real time example
	Continuous-Time Markov chains (CTMC)
	Exponential distributions (time-homogeneous CTMCs)
	Influence of λ
	Why using exponential distributions? (1/4)
	Why using exponential distributions? (2/4)
	Why using exponential distributions? (3/4)
	Why using exponential distributions? (4/4)
	Graphical representation of CTMCs
	Matrix representation (1/2)
	Interactive Markov chains
	Beyond CTMCs
	What would be a good extension of CTMCs?
	IMC (Interactive Markov Chains)
	Advantages of IMCs
	Available tools for IMCs
	Application of IMCs: �The Hubble space telescope
	Example from H. Hermanns publications
	A simple Markov model for Hubble
	Compositional modelling of Hubble
	The GYRO process
	The CONTROLLER process
	Analysis trajectory for the Hubble (1/2)
	Analysis trajectory for the Hubble (2/2)
	Minimized IMCs for the Hubble
	Visual verification of the final CTMC
	Analysis of the Hubble using BCG_TRANSIENT
	Timed automata
	Timed automata
	Principles of timed automata
	Guards and invariants
	The MODEST toolset
	MODEST: the language
	Modest is more concise than Prism
	MODEST: the toolset
	The MODEST language
	Data types in MODEST
	Actions and sequential composition
	Choices and loops
	Exceptions
	Variables, assignments, and guards
	Process and calls
	Parallel composition
	Gate relabelling
	(MDP-like) probabilistic choice
	Timed automata primitives
	Examples 1: simple time constraints
	Example 2: time interval constraints
	Example 3: (CTMC-like) ‘rate’ transitions
	Example 4: probabilistic timed lossy channel
	Modest expressiveness
	Last challenge
	From PRISM to MODEST
	Conclusion
	Final words…
	References
	CTMCs and IMCs
	MODEST language and tool

