
A Formal TLS Handshake
Model in LNT

00

u tugraz.at, inria.fr

Josip Bozic, Franz Wotawa

Graz University of Technology

Institute of Software Technology

8010 Graz, Austria

{jbozic,wotawa}@ist.tugraz.at

Lina Marsso, Radu Mateescu

Univ. Grenoble Alpes, Inria,

CNRS, Grenoble INP, LIG

38000 Grenoble, France

{lina.marsso,radu.mateescu}@inria.fr

MARS/VPT, April 20𝑡ℎ, 2018

Outline

1. Introduction

2. Formal model

3. Validation

4. Conclusion

A Formal TLS Handshake Model in LNT

1

Introduction

• Security services in e-government, online banking,
online shops, social media, …

• New vulnerabilities are detected on a regular basis.

• Many faults have their roots in the software
development cycle or intrinsic leaks in the system
specification.

• Testing of network services represents one of the
biggest challenges in cyber security.

• Conformance testing checks whether a system behaves
according to its specification.

• Formal specification of a system behavior.

A Formal TLS Handshake Model in LNT

2

Contributions

• Formalization of the Handshake protocol of the
Transport Layer Security (TLS) in the LNT language.

• Conformance testing of TLS implementations.

• Connection to framework for automated testing of TLS
implementations [1].

A Formal TLS Handshake Model in LNT

3

Transport Layer Security (TLS)

• Security/cryptographic protocols assure reliable and
secure communication between peers.

• Predecessor of TLS: the Secure Sockets Layer (SSL).

• Currently used version: TLS 1.2 [3];
Working draft: TLS 1.3.

• Reasons for vulnerability: Complexity of the protocol
and its high number of interactions.

A Formal TLS Handshake Model in LNT

4

Known TLS Vulnerabilities

• BEAST (CVE-2011-3389)

• CRIME (CVE-2012-4929)

• BREACH (CVE-2013-3587)

• Heartbleed (CVE-2014-0160)

• POODLE (CVE-2014-3566)

• DROWN (CVE-2016-0800):
33% of all HTTPS sites were affected [4].

Vulnerabilities of implementations (not the protocol).

A Formal TLS Handshake Model in LNT

5

TLS Handshake Protocol

A Formal TLS Handshake Model in LNT

6

• One of the most complex and
vulnerable parts of TLS.

• Consists of TLS messages.

• Every of these messages
encompasses a specific set of
parameters and values.

Our task: Implement the
interaction and execute it for
testing purposes.

Formal Model of TLS 1.3 Handshake

• LNT

– Formal specification language for concurrent systems.

– Process calculus with imperative syntax.

– Imperative language.

• Starting point
– Description of state machines [draft-tls-1.3].

– TLS 1.3 handshake informal requirements
(not self-contained: refers to further documents).

A Formal TLS Handshake Model in LNT

7

Model Overview

A Formal TLS Handshake Model in LNT

8

data types

client

server

communication

43 types
3 constants
5 functions

5 processes +
1 main process

(105 lines)

7 processes +
1 main process

(101 lines)

1 process
(25 lines)

Data Type Example: ClientHello (1/2)

A Formal TLS Handshake Model in LNT

9

Protocol Version : TLS10, TLS11, TLS12, DTLS10, DTLS12
Client Random : 28-byteRand
Session ID : NULL, 32-byteID
Supported Cipher Suites : TLS_FALLBACK_SCSV,
TLS_NULL_WITH_NULL_NULL, TLS_RSA_WITH_NULL_SHA256,
TLS_RSA_WITH_AES_128_CBC_SHA256,
TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA
Supported Compression Methods : NULL, DEFLATE, LZS
Extensions : extension_type, extension_data

type ClientHello is

ClientHello (legacy_version: ProtocolVersion,

random: Random32, legacy_session_id: SessionId,

cipher_suite: Ciphers,

legacy_compression_methods: CompressionMethods,

extensions: Extensions)

end type

Data Type Example: ClientHello (2/2)

A Formal TLS Handshake Model in LNT

10

var e: Extensions in

e := {Extension (supported_version, SupportedVersion ({TLS12})) }

end var

type SupportedVersions is

list of ProtocolVersion

end type
type Extension is

Extension (

type: ExtensionType,

data: ExtensionData)

end type

type Extensions is

list of Extension

with “member”, “remove”

end type

type ExtensionType is

signature_algorithms,

supported_versions,

…

end type

type ExtensionData is

Cookie (c: Cookie),

SupportedVersions (

sv: supportedVersion),

…

end type

Client, Server and their Interactions

• Interactions described by sequence diagrams.

• Incomplete state machines for client and server

– Human readable.

– Compact.

+ Added management of Alerts

– Handling handshake errors.

– Requirements not respected.

A Formal TLS Handshake Model in LNT

11

(incomplete) Client-side State Machine

A Formal TLS Handshake Model in LNT

12

-- Start
loop L in
-- client key exchange [K_send = early data]
ClientHello [clientHello_c] (is_helloRequest, !?CH_p, HRR_P,

?alert);
if alert != undefined then
-- abort the handshake with an alert
alert_c (alert)

else -- WAIT_ServerHello
select
helloRetryRequest_c (?HRR_P);
is_helloRequest := true

[] serverHello_c (?any ServerHello);
break L

[] -- protocol messages sent in the wrong order
select

encryptedExtensions_c (?any EncryptedExtensions)
[] certificateRequest_c (?any CertificateRequest)
…
end select;
alert := unexpected_message;
-- abort the handshake with an "unexpected_message" alert
alert_c (alert)

end select
end if

end loop;

TLS Interruptions
Informal requirements

• “The TLS 1.3 handshake refuses renegotiation
without a hello retry request message.”

• “The client hello message can only arrive at the
beginning of the handshake, or right after a hello
retry request message.”

A Formal TLS Handshake Model in LNT

13

disrupt
… content

by
- - TLS 1.3 refuses renegotiation without a Hello Retry Request

clientHello_c (?CH_p);
alert := unexpected_message;

end disrupt

Conformance Testing

• Model-based testing approach to compare the formal
model of the TLS handshake with implementations.

• Extract test cases from the formal model.

• Run test cases on an implementation (SUT – System
Under Test) and check whether the SUT conforms to
the model.

• We used TESTOR [5], a recent tool for on-the-fly
conformance test case generation guided by test
purposes, developed on top of the CADP toolbox [6].

• The SUT in this validation process is an implementation
of TLS 1.2.

A Formal TLS Handshake Model in LNT

14

Conformance Testing Overview

A Formal TLS Handshake Model in LNT

15

Test Purposes

• A test purpose aims to select a functionality to be
tested by guiding the selection of test cases.

• Three test purposes corresponding to three
requirements from the draft TLS 1.3 handshake
specification:
TP1. The protocol messages must be sent in the standard order
(without the HelloRetryRequest message).

TP2. The handshake must be aborted with an “unexpected
message” alert, if there is a client renegotiation attempt.

TP3. The protocol messages are sent in the right order with an
unexpected CertificateRequest (with a
HelloRetryRequest message).

A Formal TLS Handshake Model in LNT

16

Test Cases

A Formal TLS Handshake Model in LNT

17

TC1. Standard TLS
handshake

TC2. TLS handshake
aborted by an Alert

TC3. TLS handshake with
renegotiation

A test case (TC) is a sequence of interactions with the SUT.
TCi corresponds to one generated TC for a test purpose i.

Test Execution

• Follow track of executed attack.

• Three possible verdicts:

– Pass: Test purpose is reached.

– Fail: The SUT is not conform to M.

– Inconclusive: No indicative error encountered but
the test purpose is not reached.

A Formal TLS Handshake Model in LNT

18

Test Execution Framework

• Emulate the interaction between client and server in a
controlled and iterative way.

• Establish a connection to a TLS implementation with
the execution framework and automatically test the
SUT by following a formal specification from LNT.

• An adapted TLS-Attacker [7], an implementation for
analyzing TLS libraries.

• Comprehends all TLS functionality according to v1.2
standard.

A Formal TLS Handshake Model in LNT

19

Test Execution Example (1/3)

• The framework creates TLS messages on the fly according to the
table, submits them against a SUT and reads its responses.

• Since no concrete values for the parameters of the messages are
assigned, the tool generates default values automatically.

A Formal TLS Handshake Model in LNT

20

Test Execution Example (2/3)

A Formal TLS Handshake Model in LNT

21

process Client [clientHello_c: CH,
serverHello_c: SH,
certificate_c_c,
certificate_s_c: C,
certificateVerify_s_c: CV,
finished_c_c, finished_s_c: F,
alert_c: A] is ...

process ClientHello_TP [clienth: CH]
(is_hello_retry_request: bool,
in out CH_p: ClientHello,
HRR_p: HelloRetryRequest,
out alert: AlertType) is
...

TESTOR

BCG

DOT

digraph BCG {
size = "7, 10.5";
center = TRUE;
node [shape = circle];
0 [peripheries = 2];
0 -> 11 [label =
"CLIENTHELLO_C !CLIENTHELLO
(TLS12, 28BYTERAND, T_NULL,
{}, T_NULL, {EXTENSION
(SIGNATURE_ALGORITHMS,
SIGNATURESCHEMELIST
({RSA_PKCS1_SHA256,
RSA_PKCS1_SHA384,
RSA_PKCS1_SHA512,
ECDSA_SECP256R1_SHA256})),
EXTENSION
(SUPPORTED_VERSIONS,
SUPPORTEDVERSIONS
({TLS13}))})"];

Test Execution Example (3/3)

A Formal TLS Handshake Model in LNT

22

SUT

Execution
Framework

compare
trace

Results

Action #1: CLIENT_HELLO
Action #2: SERVER_HELLO
Action #3: CERTIFICATE
Action #4: SERVER_HELLO_DONE
Action #5: CERTIFICATE_REQUEST
Action #6: ALERT

ALERT message:
Level: FATAL
Description:

UNEXPECTED_MESSAGE

verdict

Evaluation

• Framework: Automated execution.

• SUT: OpenSSL (TLS 1.2), https://www.openssl.org/.

• Applicability: Test a wide range of TLS implementations by
only slightly manipulating the overall system.

• Test conformance to the formal LNT model of the TLS 1.3
handshake.

A Formal TLS Handshake Model in LNT

23

Evaluation: TC2 (1/2)

A Formal TLS Handshake Model in LNT

24

1: CLIENT_HELLO

2: SERVER_HELLO

3: CERTIFICATE

4: SERVER_HELLO_DONE

5: CLIENT_HELLO

6: ALERT

• The system responded as expected when being confronted with unexpected
input.

• Thus, the behavior of the SUT is in conformance to the given TLS 1.3 Handshake
LNT formal model.

• The test case is successful.

Obtained trace:

Evaluation: TC2 (2/2)

A Formal TLS Handshake Model in LNT

25

CLIENT_HELLO

Handshake Message Length: 99

Protocol Version: TLS12

Client Unix Time: Wed Mar 28 13:45:54 CEST 2018

Client Random:

21 D0 32 81 79 DD 23 7F 00 41 1D A0 2D 25 9C DB

FF 48 0B 3C B7 41 D1 1D EA 22 3E 1A

Session ID:

Supported Cipher Suites: 00 2F

Supported Compression Methods: 00

Extensions:

SERVER_HELLO

Handshake Message Length: 70

Protocol Version: TLS12

Server Unix Time: Sat Mar 26 08:33:45 CET 1988

Server Random:

7B 5B 01 72 5C A5 0A E2 63 A6 1B 24 BF 81 AC ED

98 2F 28 67 A3 EF 78 2D 3A E4 4E E1

Session ID:

A5 BE 4E C1 94 69 1B 15 16 35 17 8B 31 3A E4 B4

07 92 83 11 BA 6E D8 12 2A 02 26 ED AE 55 7C 7F

Selected Cipher Suite: TLS_RSA_WITH_AES_128_CBC_SHA

Selected Compression Method: NULL

Extensions:

CERTIFICATE_REQUEST

Handshake Message Length: 18

Certificate Types Count: 1

Certificate Types: RSA_SIGN,

Signature Hash Algorithms Length: 12

Signature Hash Algorithms: SHA512-RSA,
SHA384-RSA, SHA256-RSA, SHA224-RSA, SHA1-RSA,
MD5-RSA,

Distinguished Names Length: 0

...

ALERT

Level: FATAL

Description: UNEXPECTED_MESSAGE

Evaluation: TC3 (1/2)

A Formal TLS Handshake Model in LNT

26

1: CLIENT_HELLO

2: SERVER_HELLO

3: CERTIFICATE

4: SERVER_HELLO_DONE

5: CERTIFICATE_REQUEST

6: ALERT

routines:ACCEPT_SR_KEY_EXCH:unexpected message

• Output: The SUT does not reply to the request with the expected certificate.
• The server replies with an error and closes the connection.
• The CertificateRequest is not tolerated during this point of the handshake or a

preceding concrete value causes the issue at this point.
• SUT does not behave in conformance to the model.

Obtained trace:

Related Work

o B. Beurdouche, A. Delignat-Lavaud, N. Kobeissi, A.
Pironti, and K. Bhargavan. FLEXTLS A Tool for Testing
TLS Implementations. WOOT’15, 2015.

o D. Kaloper-Meršinjak and H. Mehnert and A.
Madhavapeddy and P. Sewell: Not-Quite-So-Broken TLS:
Lessons in Re-Engineering a Security Protocol
Specification and Implementation. USENIX Security 15,
pp.223—238, 2015.

A Formal TLS Handshake Model in LNT

27

Conclusion

• Formal LNT model of the draft TLS Handshake protocol version
1.3.

• Validation of the model by using conformance testing.

• TLS implementations behave differently when being confronted
with the same inputs [1].

• TLS implementations do not always follow the strict specification
of the protocol.

• Conformance testing can help in order to detect the
discrepancies.

A Formal TLS Handshake Model in LNT

28

Future Work

• Model:

– Handle more extensions.

– Implement optional messages (new session ticket, …).

• Validation:

– Test TLS 1.3 implementations.

– Specify known TLS attacks as test purposes.

A Formal TLS Handshake Model in LNT

29

References
[1] D. E. Simos, J. Bozic, F. Duan, B. Garn, K. Kleine, Y. Lei & F. Wotawa:
Testing TLS Using Combinatorial Methods and Execution Framework.
ICTSS’17 (10533), pp.162—177, 2017.
[2] The Transport Layer Security (TLS) Protocol Version 1.3
draft-ietf-tls-tls13-24, https://tools.ietf.org/html/draft-ietf-tls-tls13-24.
[3] The Transport Layer Security (TLS) Protocol Version 1.2,
https://tools.ietf.org/rfc/rfc5246.
[4] The DROWN Attack, https://drownattack.com/.
[5] L. Marsso, R. Mateescu & W. Serwe: TESTOR: A Modular Tool for On-
the-Fly Conformance Test Case Generation. TACAS’18 (10806), pp.211–
228, 2018.
[6] H. Garavel, F. Lang, R. Mateescu & W. Serwe: CADP 2011: a toolbox
for the construction and analysis of distributed processes. STTT 15(2), pp.
89–107, 2013.
[7] TLS-Attacker, https://github.com/RUB-NDS/TLS-Attacker.

A Formal TLS Handshake Model in LNT

30

