
An Overview of CADP 2001

Hubert Garavel
VASY team

INRIA Rhône-Alpes
655, avenue de l’Europe

38330 Montbonnot Saint Martin

2

CADP
• CAESAR/ALDEBARAN Development Package
• A toolbox for protocol and distributed systems

engineering
• Main features:

– modelling using process algebras (LOTOS)
– equivalence checking (bisimulations)
– model checking (modal mu-calculus)
– exhaustive, partial, on the fly, compositional verification
– C code generation, rapid prototyping
– step by step simulation, random execution
– test generation

3

Origins of CADP

• Work initiated in 1986

• Joint work between

– the VASY team of INRIA

– the Verimag laboratory

with contributions of
– the PAMPA team of IRISA

– the FMT group at the University of Twente

4

Main applications of CADP
• Industrial case-studies

– hardware, software, telecom, embeded systems…
– formal specification of critical systems and protocols
– simulation, rapid prototyping, verification, testing

• Research
– analysis of new systems/protocols
– experimentation of new verification/testing algorithms
– implementation of new modelling languages

• Education
– concurrency, process algebras, bisimulations, model

checking
– robust tools for lab exercises and student projects

5

Outline

• LOTOS and the Labelled Transition Systems
model (LTSs)

• Tools for LOTOS

• Tools for explicit LTSs

• Tools for implicit LTSs

• Tools for compositional verification

• CADP architecture

• Conclusion

6

LOTOS and the Labelled
Transition Systems (LTS) model

7

LOTOS
Language Of Temporal Ordering Specification [ISO-8807:1989]

• A Formal Description Technique for the
specification of protocols and distributed
systems

• Two orthogonal sub-languages:
Data: abstract data types (ActOne)
– sorts and operations
– algebraic equations
Processes: process algebras (~CCS, CSP, Circal)
– parallel processes (interleaving semantics)
– message-passing communication

8

LOTOS types: An example
type FLOOR is BOOLEAN

sorts
FLR

opns
LOWER (*! constructor *),
MIDDLE (*! constructor *),
UPPER (*! constructor *),
ERROR (*! constructor *) :-> FLR
INCR, DECR : FLR -> FLR
== , _<_ , _>_ : FLR, FLR -> BOOL

eqns
forall X, Y:FLR
ofsort FLR

INCR (LOWER) = MIDDLE;
INCR (MIDDLE) = UPPER;
(* else *) INCR (X) = ERROR;

ofsort FLR
DECR (MIDDLE) = LOWER;
DECR (UPPER) = MIDDLE;
(* else *) DECR (X) = ERROR;

ofsort BOOL
X == X = true;
(* else *) X == Y = false;

ofsort BOOL
LOWER < MIDDLE = true;
LOWER < UPPER = true;
MIDDLE < UPPER = true;
(* else *) X < Y = false;

ofsort BOOL
X > Y = Y < X;

endtype

9

LOTOS processes: An example

ELEVATOR [CALL, GO, UP, DOWN] (LOWER, LOWER)
|[CALL, GO]|

(
CLIENT [CALL, GO] (LOWER, UPPER)
|||
CLIENT [CALL, GO] (UPPER, MIDDLE)
)

ELEVATOR

CLIENT2CLIENT1

CALLGO

DOWNUP

10

LOTOS processes (cont'd)
process ELEVATOR [CALL, GO, UP, DOWN] (CURRENT, TARGET: FLR) : noexit :=

[TARGET > CURRENT] ->
UP !INCR (CURRENT);

ELEVATOR [CALL, GO, UP, DOWN] (INCR (CURRENT), TARGET)
[]
[TARGET < CURRENT] ->

DOWN !DECR (CURRENT);
ELEVATOR [CALL, GO, UP, DOWN] (DECR (CURRENT), TARGET)

[]
[TARGET == CURRENT] ->

(
CALL ?NEW_TARGET:FLR;

ELEVATOR [CALL, GO, UP, DOWN] (CURRENT, NEW_TARGET)
[]
GO ?NEW_TARGET:FLR;

ELEVATOR [CALL, GO, UP, DOWN] (CURRENT, NEW_TARGET)
)

endproc

11

Labelled Transition Systems (LTSs)

• LTS: the standard semantic model for action-
based languages (including LOTOS)

• M = (S, A, T, s0), where:
– S: set of states
– A: set of labels (information attached to transitions)
– T ∈ S × A × S: transition relation
– s0 ∈ S: initial state

OPEN SEND
RETRY

RECV
ACKCLOSE

12

LTSs and verification

• LTSs provide a standard basis for many
automated verification algorithms

• Examples:
– Reachable state analysis (LTS exploration)
– Equivalence checking (bisimulations)
– Model checking (modal mu-calculus)

13

Computer representations of LTSs

• "Explicit" LTS (or LTS "in extenso"): LTS defined by
the exhaustive list of its states and transitions
– state successors and state predecessors are available:

the LTS can be explored both forward and backward
– this enables both global and local (on the fly) verification
– CADP provides the BCG tools for explicit (finite) LTSs

• "Implicit" LTS (or LTS "in comprehension"): LTS
defined by its initial state and successor function
– state predecessors are not known: only forward

exploration (local verification) is allowed
– CADP provides the Open/Caesar tools for implicit LTSs

14

CADP tools for LOTOS

15

CAESAR.ADT and CAESAR

LOTOS program

data behaviour

CAESAR.ADT CAESAR

hand written C code
types+functions

generated C code
types+functions

generated C code
processes

LTS execution

16

CAESAR.ADT
• Translation LOTOS ADTs → C

– each LOTOS sort → one C type
– each LOTOS operation → one C function

• Assumptions wrt standard LOTOS
– difference between constructors and non-constructors
– free constructors
– equations seen as rewrite rules with pattern-matching

and priorities

• Specialized C code generation
– Oriented towards model checking
– Optimize memory first, then speed

17

CAESAR.ADT (cont'd)

• Compiling data strutures
– dynamic data structures (lists, trees, …) allowed
– optimized memory implementation:

minimal number of bits
permutation of "record" fields
common subterm sharing

• Compiling functions
– pattern matching compiling algorithm
– ad hoc optimisations

18

CAESAR

explicit LTSs
(BCG)

implicit LTSs
(OPEN/CAESAR)

LOTOS
program

"symbolic"
Petri nets

control and
data flow
optimizations

CAESAR.ADT

C code for
types+functions

C code for
processes

CAESAR

"true" execution
(EXEC/CAESAR)

19

CADP tools for explicit LTSs

20

Motivations

• How to store large LTSs in computer files?

• Existing text-based formats are not

satisfactory:
– disk space consuming (hundreds of Mbytes,

Gbytes)
– slow (read/write operations are costly)
– sometimes ambiguous

21

The BCG format of CADP
BCG (Binary-Coded Graphs):
• a compact file format for storing LTSs
• a set of APIs
• a set of software libraries
• a set of tools (binary programs and scripts)

implementation : 30,000 lines of C code
BCG is shipped as a component of CADP
All the CADP tools use BCG consistently

22

The BCG libraries and APIs

• bcg_write: API to create a BCG file

• bcg_read: API to read a BCG file

• bcg_transition: API to store a transition

relation in memory:
– successor function, or
– predecessor function, or
– successor and predecessor functions

23

The basic BCG tools
• bcg_info: extract info from a BCG file
• bcg_io: convert BCG ↔ other formats
• bcg_labels: hide and/or rename labels
• bcg_draw, bcg_edit: visualize LTSs

24

Equivalence checking tools

• CADP supports 3 such tools:
– ALDEBARAN (Verimag)
– FC2TOOLS (INRIA/Meije) – interfaced with CADP
– BCG_MIN (INRIA/VASY) – the most recent

• Various equivalences supported: strong, observational,
branching, safety…

LTS

minimization

lts

comparison

LTS 1 LTS 2

true | false+diagnostic

25

BCG_MIN: Minimization of LTSs

• This tool handles several types of LTSs:
– standard LTSs

strong bisimulation [~Kanellakis-Smolka]
branching bisimulation [Groote-Vaandrager]
better performances than Aldebaran and Fc2min
better display of equivalence classes

– probabilistic LTSs "prob p" transitions
– stochastic LTSs "rate λ" transitions
– mixed models "label ; prob p" or

"label ; rate λ" transitions

• Joint work with Holger Hermanns

26

Model checking tools: XTL

XTL:
– a query language for LTSs (encoded in BCG)
– a compiler for this language

XTL compiler

LTS XTL

results

27

XTL: Principles and applications

• Main features of XTL
– functional language with model checking features
– special types: states, state sets, transitions,

transition sets, labels…
– access to the typed objects of the BCG file

• Applications of XTL
– libraries: HML, CTL, ACTL, mu-calculus
– rapid prototyping of temporal logics
– temporal logics extended with value passing

28

XTL: An example
The 〈A〉F modality of HML (Hennessy-Milner logic) can
be expressed in XTL

〈A〉F denotes the set of states S that
– lead to states satisfying F

– following transitions satisfying A

def Diamond (A:labelset, F:stateset):stateset =
{ S:state where

exists T:edge among out (S) in
(label (T) among A) and (target (T) among F)

end_exists }
end_def

29

CADP tools for implicit LTSs

30

Motivations

• Most model checkers are dedicated to one
particular input language (Spin, SMV, …)

• They can't be reused easily for other languages

• Idea: introduce modularity by separating

– language-dependent aspects:
compiling language into LTS model

– language-independent algorithms:
algorithms for LTS exploration

31

OPEN/CAESAR

Open/Caesar API

LOTOS LTS
communicating

LTSs … UML/RT

implicit LTS

SDL

CAESAR BCG.OPEN EXP.OPEN IF.OPEN UMLAUT…

LTS generation
interactive simulation
random execution
on the fly verification
partial verification
test generation

Open/Caesar
librairies

32

OPEN/CAESAR libraries
A set of predefined data structures

– EDGE : list of transitions (e.g., successor lists)
– HASH : catalog of hash functions
– STACK_1 : stacks of states and/or labels
– DIAGNOSTIC_1 : set of execution paths
– TABLE_1 : state tables
– BITMAP : Holzmann’s "bit state" tables

Specific primitives for on the fly verification
– possibility to attach additional information to states
– stack or table overflow => backtracking
– etc.

33

OPEN/CAESAR applications
– EXECUTOR : random walk
– SIMULATOR : interactive simulation (textual)
– XSIMULATOR : interactive simulation (graphical)
– GENERATOR : exhaustive LTS generation
– REDUCTOR : LTS generation with safety reduction
– PROJECTOR : LTS generation with constraints
– TERMINATOR : Holzmann's bit-space algorithm
– EXHIBITOR : search paths defined by reg. expr.
– EVALUATOR : evaluation of mu-calculus formulas
– TGV : test sequence generation

34

#include "caesar_graph.h"
#include "caesar_edge.h"
#include "caesar_table_1.h"

TYPE_TABLE_1 t; TYPE_STATE s1, s2; TYPE_EDGE e1_en, e;
TYPE_LABEL l; TYPE_INDEX_TABLE_1 n1, n2 TYPE_POINTER dummy;

INIT_GRAPH ();
INIT_EDGE (FALSE, TRUE, TRUE, 0, 0);
CREATE_TABLE_1 (&t, 0, 0, 0, 0, TRUE, NULL, NULL, NULL, NULL);
if (t == NULL) ERROR ("not enough memory for table");

START_STATE ((TYPE_STATE) PUT_BASE_TABLE_1 (t));
PUT_TABLE_1 (t);
while (!EXPLORED_TABLE_1 (t)) {

s1 = (TYPE_STATE) GET_BASE_TABLE_1 (t);
n1 = GET_INDEX_TABLE_1 (t);
GET_TABLE_1 (t);

CREATE_EDGE_LIST (s1, &e1_en, 1);
if (TRUNCATION_EDGE_LIST () != 0) ERROR ("not enough memory for edge lists");

ITERATE_LN_EDGE_LIST (e1_en, e, l, s2) {
COPY_STATE ((TYPE_STATE) PUT_BASE_TABLE_1 (t), s2);
(void) SEARCH_AND_PUT_TABLE_1 (t, &n2, &dummy);
print_edge (n1, STRING_LABEL (l), n2);

}
DELETE_EDGE_LIST (&e1_en);

}

An example: GENERATOR

35

Three recent OPEN/CAESAR tools

Three different application areas:

• Simulation:
=> OCIS (Open/Caesar Interactive Simulator)

• Model checking:
=> EVALUATOR 3.0

• Test generation:
=> TGV

36

OCIS (Open/Caesar Interactive Simulator)

OCISOpen/Caesar API

source
program

compiler

visualization

commands
scénarios

(BCG)

save-
reload

37

OCIS (Open/Caesar Interactive Simulator)

• language-independent

• tree-like scenarios

• save/load scenarios

• source code access

• dynamic recompile

• support for tasks and MSCs

38

Evaluator 3.0
On-the-fly model checking of

regular alternation-free mu-calculus

µ-calculus
formula

Evaluator 3.0

diagnostics
(BCG)true/false

source
program

compiler

Open/Caesar API

39

TGV
On-the-fly generation of test cases
according to hand-written test purposes

test purpose

TGV

test cases

inputs/outputshide/rename

joint work between IRISA and Verimag [and VASY]

source
program

compiler

Open/Caesar API

40

CADP tools for compositional
verification

41

Compositional verification

• A significant mean to fight state explosion

• Principle:
– Generation of separate processes
– Minimization of processes
– Recombination of minimized processes

• CADP provides numerous tools for
compositional verification

42

The SVL language
• SVL: a scripting language supplied with CADP

• Two motivations:
– Provide a textual interface for all the tools of

CADP (+ Fc2Tools)
– Enable an easy writing of compositional

verification scenarios

• Targeted audience:
– Novice users (simple verifications)
– Expert users (sophisticated verifications, namely

compositional)

43

Script SVL: Example 1
% DEFAULT_LOTOS_FILE="bitalt_protocol.lotos"
"bitalt_protocol.exp" =

leaf strong reduction of
hide SDT, RDT, RDTe, RACK, SACK, SACKe in

(
(BODY_TRANSMITTER ||| BODY_RECEIVER)
|[SDT, RDT, RDTe, RACK, SACK, SACKe]|
(MEDIUM1 ||| MEDIUM2)

);
"bitalt_dead.seq" = deadlock of "bitalt_protocol.exp";
"bitalt_live.seq" = livelock of "bitalt_protocol.exp";
branching comparison using fly with aldebaran

"bitalt_protocol.exp" == "bitalt_service.lotos";

44

Script SVL: Example 2
% DEFAULT_LOTOS_FILE="rel_rel.lotos"
"crash_trans.bcg" = strong reduction of CRASH_TRANSMITTER ;
"rel_rel.bcg" = generation of leaf strong reduction of

hide R_T1, R_T2, R_T3, R12, R13, R21, R23, R31, R32 in
((((RECEIVER_NODE_1 -||? "r1_interface.lotos")

|[R12, R21, R13, R31]|
((RECEIVER_NODE_2 -||? "r2_interface.lotos")

|[R23, R32]|
(RECEIVER_NODE_3 -||? "r3_interface.lotos")

) -|[R_T2, R_T3]| "crash_trans.bcg"
) -|[R_T1, R_T2, R_T3]| "crash_trans.bcg"

)
|[R_T1, R_T2, R_T3]|
"crash_trans.bcg");

45

The SVL compiler
xxxxxxxxxxx
xxxxxxxx
xxxxxx
xxx
xx
xxxxxxxxxx
xx
xxxx

SVL script

SVL compiler
(14,000 lines)

xxxxxxxxxxxxxx
xxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxx
xxxxxxxxxxxxxx
xxxxxx
xxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxx
xxxxxxx
xxxxxxx

Bourne shell script

Caesar, Caesar.adt
Aldebaran
Bcg_min, Bcg_labels
Fc2tools
Exp.Open
Projector

46

CADP Architecture

47

A layered software architecture

Code libraries with APIs

Command-line tools

EUCALYPTUS
graphical user interface

SVL
scripting language

48

The EUCALYPTUS graphical user interface

• File types
• Contextual menus
• Dialog boxes
• Multiple tools: CADP, FC2
• Online help

49

Conclusion

50

Conclusion
• CADP: a rich platform for protocol and distributed systems

engineering

• An open, extensible toolbox through well-defined APIs

• Several architectures supported:
– Sun running SunOS or Solaris
– PC running Linux
– PC running Windows

• Large dissemination (figures dated 2001):
– CADP licensed to 256 sites
– licenses granted for 950 machines in 2001
– 53 case-studies done using CADP
– 11 research tools built using CADP

51

More information…

http://www.inrialpes.fr/vasy/cadp

