

Safety of Future Systems *Science meets Industry*

9 - 13 April 2018, Leiden, the Netherlands

Concurrency Theory meets IoT

Hubert Garavel

Inria Grenoble – LIG

Université Grenoble Alpes

http://convecs.inria.fr

Security issues in the Internet of Things

The Internet of Things (IoT)

- 2017: 8.4 billion connected objects2020: estimated to 20-50 billion
- Many types of devices:
 - networks
 - smart grids
 - transportation
 - smart homes
 - smart cities
 - ▶ etc.

IoT: a nightmare for security

- Same threats as for computers and smartphones but IoT devices have less computing resources:
 - no firewalls
 - no anti-malwares
- Low-cost IoT devices are not well protected:
 - primarily designed to send data, not to be secure
 - not properly maintened (no security updates)

87% of the active IoT devices are vulnerable

The "shodan.io" map

shodan.io: free and commercial web site
IP addresses of "open" IoT devices

Just a few horror stories

- **USA**, 2008:
 - Researchers take remote control of pacemakers
- Finland, winter 2016: Attackers disable heating in two buildings (DDoS)
- IoT also threats the traditional Internet:
 - The Mirai botnet hijacked 500,000 DVR and IP cameras, crashed Dyn (DNS), causing major web sites (Twitter, Netflix, Spotify, etc.) to become unavailable
 - Over the last 3 years, 20% of companies have been attacked from the IoT

Securing the Internet of Things

Two complementary approaches

- "Endpoint" security
 - secure each IoT device
- "Gateway" security
 - secure the network

	2016	2017	2018	2019	2020	2021
Endpoint Security	240	302	373	459	541	631
Gateway Security	102	138	186	251	327	415
Professional Services	570	734	946	1,221	1,589	2,071
Total	912	1,174	1,506	1,931	2,457	3,118

Worldwide IoT Security Spending Forecast (Millions of Dollars)

Source: Gartner (March 2018)

• In this talk: \Rightarrow Endpoint security

The concept of "secure element"

An IoT device:

- may have to encrypt its communications
- should accept security patches (software updates)
- but only from a trusted source
- \Rightarrow authentication and integrity issues

Secure element:

- a tamper-proof processor (or microcontroller)
- that can perform cryptography
- that can store secret data (e.g., cryptographic keys)

Examples: credit cards, SIM cards, NFC devices, etc.

Attacks against secure elements (1/2)

- Attacker's goal: steal cryptographic keys
 - then upload a corrupted firmware
- Brute-force attacks
 - try all possible keys until finding the right one
 - countermeasures: long keys, maximal number of trials
- "Active" attacks
 - flip memory bits using a laser to alter execution
 - countermeasures: circuit shield, redundancy

Attacks against secure elements (2/2)

- "Passive" attacks (side-channel analyses)
 - infer the secret key by measuring:
 - power consumption
 - electromagnetic radiations
 - response time
 - such "template" attacks are efficient
 - machine learning makes them automated and effortless
 - countermeasures:
 - circuit shield
 - randomness: noise, desynchronized traces (random jitter)
 - useless calculations (⇒ increased power consumption)

Industrial case study:

Tiempo secure elements

The TESIC family of secure slements

- Several chips: TESIC-SC 300, TESIC-SC 500, TESIC-SE
- 16-bit microcontrollers with 32-bit numeric ops
- 256-bit crypto co-processors (AES, DES, ECC, CRC)
- Secure storage / secret file system
- Dual interface: contact and contactless (NFC)
- Markets:
 - banking
 - transportation (open-loop transit fare)
 - e-government (passports, identity documents)
 - Internet of Things (targeted by TESIC-SE)

Tiempo's key technology (1/2)

- Asynchronous logic
 - no central clock
 - handshake communications (~ rendezvous)
- Higher speed
 - each part of the circuit computes as fast as possible
 - no need to wait for the central clock ticks
 - fast switching between active and sleep modes

Tiempo's key technology (2/2)

Lower consumption

- a central clock needs energy (> 30% of total power)
- calculations are done only if needed (no idling)
- battery life expectancy: over 10 years

Better security

- a central clock is easy to observe
- asynchronous logic makes attacks harder
- Third-party certification
 - EMVCo Product Approval
 - EAL 5+ (Common Criteria, ANSSI)

Formal methods for the TESIC

Why?

- asychronous circuits are harder to design
- no commercial verification tools
- formal methods are required to go above EAL 5+

The SECURIOT-2 French national project:

- security for the Internet of Things
- supported by four French innovation clusters
- leader: Tiempo
- budget: 5.4 M€

Block diagram of the TESIC chip

TESIC Memory Protection Unit (MPU)

A crucial block for security A good representative of Access config data to be read MPU_CFR Adcess config data to write asynchronous design Periph_1 [@], rw, bw Complex enough to @, rw, access Decoder Periph_N @, rw, bw deserve formal analysis Periph_1 data to write Demux Data in Microcontroller Periph_N data to write Periph_1 data to read MUX Data_out Periph_N data to read MPU

Complexity of the TESIC MPU

4400 lines of SystemVerilog

- SystemVerilog: a standard HDL [IEEE 1800-2012]
- with language extensions for asynchronous circuits

8950 lines of LNT

- LNT: a modern language for replacing LOTOS [ISO 8807:1989]
- derived from E-LOTOS [ISO 15437:2001]
- imperative / functional programming style

MPU: high degree of internal concurrency

- 146 "main" concurrent processes (themselves concurrent)
- 250 internal channels
- 660 tokens in the underlying Petri net

From SystemVerilog to LNT

SystemVerilog and LNT have been independently designed, but have common features

 Translation done manually, but easy to automate

-- main SV module module address decoder (ch_bit.in add_in, ch_data_t.in d_in, ch_data_t.out d_out0, ch data t.out d out1 always begin bit address; data_t data; fork add in.BeginRead(address); d_in.BeginRead(data); join case (address) 1'b0: d_out0.Write(data); 1'b1: d_out1.Write(data); end case fork add_in.EndRead(); d_in.EndRead(); join end end module

-- main LNT process process main add_in : ch_bit, d_in, d out0, d_out1 : ch_data_t] is loop var address : bit, data : data_t in par add in(?address) || d_in(?data) end par; case address in $0 \rightarrow d_out0(data); d_out0$ | 1 -> d_out1(data); d_out1 end case; par add in || d_in end par end var end loop end process

Fighting MPU state-space explosion

- Direct (brute-force) state-space generation fails
- But refined strategies succeed
 - abstraction based on data independence [Wolper-86]
 - compositional minimisation [Fernandez-88]

projection and interfaces [Krimm-Mounier-97]

Acces type	Number of inter- mediate LTSs	Largest intermediate LTS		Final LTS			Time
		States	Transitions	States	Transitions	File size	
Co-processor	20	6.6 M	53 M	5.5 M	42 M	92 MB	13 min
MPU_CFR	20	27 M	355 M	27 M	355 M	692 MB	4h33
NVM	20	117 M	862 M	21 M	144 M	296 MB	3h34

Model checking MPU properties

- 184 properties specified in MCL [Mateescu-97]
- Functional properties:
 - absence of deadlocks
 - absence of livelocks
 - mutual exclusion of reads and writes
 - stimulus-response properties
- Security properties:
 - access-control policies
- Verified by the Evaluator4 model checker of CADP

Beyond the TESIC MPU

The MPU verification is not a one-shot attempt

More designs are being verified by Tiempo:

- Asynchronous Serial Link -- see model at [MCC'2018]
- DES crypto-processor -- see also [Serwe MARS'2015]

▶ etc.

Integration of CADP in Tiempo's design flow

Tiempo's design flow with verification

Conclusion

Conclusion

Security of IoT: a major challenge ahead

- The SECURIOT-2 project addresses this problem:
 - Secure elements based on asynchronous logic
 - Formal methods are an enabling technology
- Growing industrial acceptance of formal methods

More info:

A. Bouzafour, M. Renaudin, H. Garavel, R. Mateescu, W. Serwe. **Model-checking Synthesizable SystemVerilog Descriptions of Asynchronous Circuits**. Proc. IEEE ASYNC'18, Vienna, May 2018

