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Security issues in 
the Internet of Things 
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The Internet of Things (IoT) 
2017: 8.4 billion connected objects 
2020: estimated to 20-50 billion 
 

Many types of devices: 
 networks 
 smart grids 
 transportation 
 smart homes 
 smart cities 
 etc. 
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IoT: a nightmare for security 
Same threats as for computers and smartphones 
but IoT devices have less computing resources: 

 no firewalls 
 no anti-malwares 

 

Low-cost IoT devices are not well protected: 
 primarily designed to send data, not to be secure 
 not properly maintened (no security updates) 

 

87% of the active IoT devices are vulnerable 
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The "shodan.io" map 

shodan.io:  free and commercial web site 
IP addresses of "open" IoT devices 
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Just a few horror stories 
USA, 2008: 
Researchers take remote control of pacemakers 
 

Finland, winter 2016: 
Attackers disable heating in two buildings (DDoS) 

 

IoT also threats the traditional Internet: 
 The Mirai botnet hijacked 500,000 DVR and IP 
cameras, crashed Dyn (DNS), causing major web sites 
(Twitter, Netflix, Spotify, etc.) to become unavailable 
 Over the last 3 years, 20% of companies have been 
attacked from the IoT 
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Securing the Internet of Things 
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Two complementary approaches 
"Endpoint"  security 

 secure each IoT device 
"Gateway" security 

 secure the network 
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In this talk:   ⇒  Endpoint security  



The concept of "secure element" 
An IoT device: 

 may have to encrypt its communications 
 should accept security patches (software updates) 
 but only from a trusted source 

⇒  authentication and integrity issues 
Secure element: 

 a tamper-proof processor (or microcontroller) 
 that can perform cryptography 
 that can store secret data (e.g., cryptographic keys) 

Examples: credit cards, SIM cards, NFC devices, etc. 
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Attacks against secure elements (1/2) 
Attacker's goal: steal cryptographic keys 

 then upload a corrupted firmware 
 

Brute-force attacks 
 try all possible keys until finding the right one 
 countermeasures: long keys, maximal number of trials 

"Active" attacks 
 flip memory bits using a laser to alter execution 
 countermeasures: circuit shield, redundancy 
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Attacks against secure elements (2/2) 
"Passive" attacks (side-channel analyses) 

 infer the secret key by measuring: 
• power consumption 
• electromagnetic radiations 
• response time 

 such "template" attacks are efficient 
 machine learning makes them automated and effortless 
 countermeasures: 
• circuit shield 
• randomness: noise, desynchronized traces (random jitter) 
• useless calculations (⇒ increased power consumption) 
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Industrial case study:  
 
                  secure elements 
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The TESIC family of secure slements 
Several chips: TESIC-SC 300, TESIC-SC 500, TESIC-SE 

16-bit microcontrollers with 32-bit numeric ops 
256-bit crypto co-processors (AES, DES, ECC, CRC) 
Secure storage / secret file system 
Dual interface: contact and contactless (NFC) 
Markets: 

 banking  
 transportation (open-loop transit fare) 
 e-government (passports, identity documents) 
 Internet of Things (targeted by TESIC-SE) 
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Tiempo's key technology (1/2) 
Asynchronous logic 

 no central clock 
 handshake communications (~ rendezvous) 

Higher speed 
 each part of the circuit 
computes as fast as possible 
 no need to wait for the 
 central clock ticks 
 fast switching between 
 active and sleep modes 
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Tiempo's key technology (2/2) 
Lower consumption 

 a central clock needs energy (> 30% of total power) 
 calculations are done only if needed (no idling) 
 battery life expectancy: over 10 years 

Better security 
 a central clock is easy to observe 
 asynchronous logic makes attacks harder 

Third-party certification 
 EMVCo Product Approval 
 EAL 5+ (Common Criteria, ANSSI) 
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Formal methods for the TESIC 
Why? 

 asychronous circuits are harder to design 
 no commercial verification tools 
 formal methods are required to go above EAL 5+ 

 
The SECURIOT-2 French national project: 

 security for the Internet of Things 
 supported by four French innovation clusters 
 leader: Tiempo 
 budget: 5.4 M€ 
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Block diagram of the TESIC chip 

17 



TESIC Memory Protection Unit (MPU) 
A crucial block for security 
A good representative of 
asynchronous design 
Complex enough to 
deserve formal analysis 
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Complexity of the TESIC MPU 
4400 lines of SystemVerilog  

 SystemVerilog: a standard HDL [IEEE 1800-2012] 
 with language extensions for asynchronous circuits 

8950 lines of LNT 
 LNT: a modern language for replacing LOTOS [ISO 8807:1989] 
 derived from E-LOTOS [ISO 15437:2001] 
 imperative / functional programming style 

MPU: high degree of internal concurrency 
 146 "main" concurrent processes (themselves concurrent) 
 250 internal channels 
 660 tokens in the underlying Petri net 
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From SystemVerilog to LNT 
SystemVerilog and 
LNT have been 
independently 
designed, but have 
common features 
 
Translation done 
manually, but easy 
to automate 
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Fighting MPU state-space explosion 
Direct (brute-force) state-space generation fails 
But refined strategies succeed 

 abstraction based on data independence [Wolper-86] 
 compositional minimisation [Fernandez-88] 
 projection and interfaces [Krimm-Mounier-97] 
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Acces type 

 

Number 
of inter-
mediate 

LTSs 

Largest  
intermediate LTS Final LTS 

Time 

States Transitions States Transitions File size 

Co-processor 20  6.6 M 53 M 5.5 M 42 M 92 MB 13 min 

MPU_CFR 20 27 M 355 M 27 M 355 M 692 MB 4h33 

NVM 20 117 M 862 M 21 M 144 M 296 MB 3h34 



Model checking MPU properties 
184 properties specified in MCL [Mateescu-97] 
Functional properties: 

 absence of deadlocks 
 absence of livelocks 
mutual exclusion of reads and writes 
 stimulus-response properties 

Security properties: 
 access-control policies 

 Verified by the Evaluator4 model checker of CADP  
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Beyond the TESIC MPU 

 The MPU verification is not a one-shot attempt 
 

 More designs are being verified by Tiempo: 
 Asynchronous Serial Link    -- see model at [MCC'2018] 
 DES crypto-processor     -- see also [Serwe MARS'2015] 
 etc. 
 

 Integration of CADP in Tiempo's  design flow 
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Tiempo's design flow with verification 
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Conclusion 
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Conclusion 
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Security of IoT: a major challenge ahead 
The SECURIOT-2 project addresses this problem: 

Secure elements based on asynchronous logic 
Formal methods are an enabling technology 

Growing industrial acceptance of formal methods 
 

More info:  

    A. Bouzafour, M. Renaudin, H. Garavel, R. Mateescu, W. Serwe. 
Model-checking Synthesizable SystemVerilog Descriptions of 
Asynchronous Circuits. Proc. IEEE ASYNC'18, Vienna, May 2018 
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