
A Large Term Rewrite System
Modelling a Pioneering

Cryptographic Algorithm

Hubert Garavel Lina Marsso
Inria Grenoble – LIG

Université Grenoble Alpes

http://convecs.inria.fr

http://convecs.inria.fr/

Outline

1. Introduction to Term Rewrite Systems (TRS)
2. The Message Authenticator Algorithm (MAA)
3. Earlier Models of the MAA
4. Formal Modelling of the MAA as a TRS
5. Validation of the MAA Model
6. Conclusion

2

1. Introduction to Term
Rewrite Systems (TRS)

3

Term Rewrite Systems (TRS)
A fundamental means to express computation
Basic concepts:

 sorts: abstract data domains
 operations: take N arguments and return one result
 terms: algebraic expressions (operations, free variables)
 rewrite rules: left-hand term → right-hand term
 not (and (A, B)) → or (not (A), not (B))

Used in specification/programming languages
 algebraic: abstract data types
 functional: constructor types and pattern matching

 4

Where can one find TRS models?
Paradox:

 abundant literature on the theory of TRS
 but difficult to find TRS models of realistic problems

Available TRS models:
 Rewrite Engines Contests (2006, 2008, 2010)
 the largest models have at most 300 lines
 Specification of languages / compilers using TRS
 models can be large (10,000+ lines) but they are
 not "pure" TRS (they use strategies, sub-sorts, etc.)

This talk: a large TRS modelling a cryptographic algorithm

5

The REC Language
REC: a textual notation for TRS models
Introduced during the 2nd REC contest (2008)

 human-readable, tool-independent format
 supports strong typing (many-sorted specifications)
 supports conditional rewrite rules (Boolean guards)

We use a slightly enhanced version of REC
 added distinction: constructors vs non-constructors
 a few restrictions: left-linear rules, no equations
between constructors, etc.
 automatically translated into 13 different languages

6

Example 1: Booleans in REC

7

abstract data domain

primitive operations
(constructors)

defined operations
(non-constructors)

rewrite rules that
define non-constructors

free variables

Example 2: Naturals in REC (1/2)

8

Example 2: Naturals in REC (2/2)

9

2. The Message Authenticator
Algorithm (MAA)

10

Cryptography basics
Message Digest

 function: (long) message → (short) numeric value
 ensures integrity (the message has not been modified)
 example: MD5

Message Authentication Code (MAC)
 function: (long) message, (short) key → (short) value
 the key is secret, shared by the sender and the receiver
 ensures both authentication and integrity
 examples: hash-based (HMAC) , universal (UMAC),
block ciphers (CMAC, OMAC, PMAC), etc.

11

Message Authenticator Algorithm (MAA)

First widely-used MAC function
Designed by Donald Davies
and David Clayden (NPL, 1983)

 to protect banking transactions
 intended to be implemented in software (32-bit PCs)

Adopted by financial institutions
 standardized by ISO in 1987 [ISO 8730 and 8731-2]
 attacks published in the mid 90s
 withdrawn from ISO standards in 2002

12

Overview of the MAA
Inputs:

 A 64-bit key (split into two blocks J, K)
 A message, seen as a sequence of blocks
 (message should be less than 1,000,000 blocks)

Outputs:
 A 32-bit MAC value (much too short nowadays!)

Basic operations:
 logical: AND, OR, XOR, CYC (bit rotation)
 arithmetic: ADD, MUL (mod 232), MUL1 (mod 232-1),
MUL2 (mod 232-2), MUL2A (faster variant of MUL2)

13

MAA
data flow

14

Prelude: converts key (J, K) into
6 blocks X0, Y0, V0, W, S, T

Main Loop: iterates on each
message block, modifying 3
variables X, Y, V

Coda: two final iterations on
the two blocks S and T

"Mode of operation"
Message is split into a list of 256-block segments

15

segment 1 segment 2 segment 3 last

segment 2

segment 3

last

final MAC result

MAA

MAA

MAA

MAA

3. Earlier Models of the MAA

16

Why choosing the MAA?
More challenging than conventional examples:

 protocols deal with simple data types
 compilers deal with abstract syntax trees (explored
using standard traversals)
 cryptographic functions exhibit "strange" behavior by
performing "irregular" calculations

Large example, still of manageable complexity
Definition of MAA is stable and available
MAA played a role in the history of formal methods

17

Informal specifications
[Davies-Clayden-88] NPL technical report

 complete definition of the MAA
 gives two implementations in C and BASIC
 these implementation do not support "mode of
operation" (only work for messages <= 256 blocks)

[ISO standard 8731-2]
 core part very similar to [Davies-Clayden-88]

These definitions in natural language are
ambiguous at several places

 e.g. byte ordering, mode of operation
 18

Formal specifications (1/2)
NPL chose MAA to assess formal methods

 they developed 3 formal specifications of the MAA

1) VDM [G. I. Parkin and G. O’Neill, 1990]
 included as Annex B of ISO standard 8731-2:1992
 3 implementations derived manually from VDM:
 C, Miranda, Modula-2

2) Z [M. K. F. Lai, 1991]
 Knuth's "literate programming" approach
 Z code fragments inserted in natural-language ISO text

19

Formal specifications (2/2)
3) LOTOS abstract data types [H. Munster, 1991]

 fully formal, but non executable
 "wishful thinking" equations: "given x, the result is y
such that x = f (y)" ⇒ requires to invert function f

 4) LOTOS abstract data types [H. Garavel, Ph.
Turlier, 1992]

 derived from [Munster-91]
 rewritten to remove "wishful thinking" equations
 a few types and functions implemented directly in C
 implementation automatically derived (CAESAR.ADT)

 20

Goals of our work
Provide a model of the MAA in REC language
with (at least) five qualities:

Formal (no natural language)
Exhaustive (the full MAA is described)
Self-contained (no external C code)
Validated (correctness properties)
Executable (implementations generated
 automatically in 13 languages)

21

4. Formal Modelling of the
MAA as a TRS

22

Starting point
Informal description of the MAA

 [Davies-Clayden-88] NPL research report
 quasi identical as [ISO standard 8731-2]
 together with its C implementation
 although incomplete (no "mode of operation")

Formal description of the MAA

 [Garavel-Turlier-92] specification in LOTOS and C
 derived from the LOTOS specification of [Munster-91]

23

Outcome
Formal model of the MAA as a TRS in REC language
A large model:

 46 pages of text (Annex B of our paper)
 1575 lines (5 times larger than the largest benchmarks
of the Rewrite Engines Competition)
 13 sorts
 18 constructors
 644 non-constructors
 684 rewrite rules
 (only 6 conditional rules that can be easily eliminated)

24

Good properties
Our model is exhaustive

 it describes the full MAA (including "mode of operation")

Our model is minimal
 each sort, constructor, and non-constructor defined
is actually used (no "dead code")

Our model is self-contained
 each detail of the MAA is expressed using TRS only
 no import of externally-defined types or functions
 no machine-specific assumptions (e.g., 32-bit vs 64-bit
words, big-endian ordering)

25

Test vectors

Cryptographic functions
come with test vectors

Our model is self-checking
it contains 203 assertions test vectors

 taken from [Davies-Clayden-88], i.e., [ISO 8731-2]
 taken from [ISO 8730:1990, Annex E.3.3]
 added by us, so as to detect:
• errors arising from byte permutations (endianness issues)
• incorrect segmentation of messages longer than 256 blocks

26

Executability issues
In principle, TRS encoded in the REC format are
executable (by translation to other languages)
In practice, Peano-style naturals (i.e., in unary
notation with zero and succ) exhaust memory

 the MAA manipulates many blocks (32-bit naturals)
 blocks cannot be represented in unary notation
 we represent blocks in binary form (words of 4 octets)
 logical operations (AND, OR, XOR, CYC) are easy
 arithmetical operations (ADD, CAR, MUL) are involved
⇒ 8-bit, 16-bit, and 32-bit adders and multipliers

27

Readability
Our model is readable (despite its size)

 regular naming conventions for all identifiers
 constructors chosen appropriately
 definitions of non-constructors kept simple

Modular structure:
 in the MARS repository: the MAA model is a
monolithic REC file
 in Annex B of our paper: the MAA model is split into
21 sections

 28

Guided tour of the MAA model (1/3)
21 sections in Annex B of our paper
BASIC SORTS

 1. Bool sort
 2. Nat sort (only used for "small" numbers ≤ 4100)

MACHINE WORDS
 3. Bit sort
 4. Octet sort (8 bits)
 5. OctetSum sort (9 bits: an Octet and a carry bit)
 6. Half sort (16 bits)

29

Guided tour of the MAA model (2/3)

 7. HalfSum sort (17 bits: a Half and a carry bit)
 8. Block sort (32 bits)
 9. BlockSum sort (33 bits: a Block and a carry bit)
 10. Pair sort (64 bits)

INPUT/OUTPUT DATA
 11. Key sort (64 bits)
 12. Message sort (non-empty list of Blocks)
 13. SegmentedMessage sort (non-empty list of
Messages, each containing at most 256 blocks)

30

Guided tour of the MAA model (3/3)
CRYPTOGRAPHIC FUNCTIONS

 14. functions CYC, FIX1, FIX2, adjust, PAT, BYT, ADDC
 15. functions MUL1, MUL2, MUL2A
 16. functions Hi, J1_i, J2_i, K1_i, K2_i
 17. Prelude, MainLoop, Coda, Segmentation

TEST VECTORS
 18. Tables 1, 2, and 3 of [Davies-Clayden-88]
 19. Table 4 of [Davies-Clayden-88] and other tests
 20. Table 5 of [Davies-Clayden-88]
 21. Table 6 of [Davies-Clayden-88] and other tests

31

5. Validation of the
MAA Model

32

Properties
None of the prior formal MAA specifications
(in VDM, Z, and LOTOS) was proven correct

Our REC specification brings stronger guarantees:

 confluence
 termination
 confluence and termination ⇒ all rewrite strategies
produce the same result
 functional correctness of the 203 test vectors

33

Confluence and Termination
 Our TRS is deterministic, thus confluent

 all constructors are free
 all the rewrite rules that define a non-constructor have
disjoint patterns and mutually exclusive premises
 this was checked by the Opal compiler after automatic
translation of the REC model into the Opal language.

Our TRS is terminating
 the REC model was automatically translated into the
TRS input format of the AProVE tool
 AProVE produced a proof of quasi-decreasingness
(76 steps, 420 pages)

 34

Functional correctness
Our REC model was automatically translated into
13 languages: Clean, Haskell, LNT, LOTOS, Maude,
mCRL2, OCaml, Opal, Rascal, Scala, Standard ML,
Stratego/XT, and Tom
It was then submitted to 16 tools (compilers,
interpreters, and rewrite engines):

11 tools reported that all the 203 test vectors pass
 (the other tools gave up or timed out)
 moreover, binary adders and multipliers have been
checked separately using 30,000 test vectors

35

Two errors detected
Incorrect test vectors given for function PAT
[Davies-Clayden-88, Table 3] and [ISO 8732-2:1992, Table A.3]

36

Error in the handwritten C function provided to
implement the LOTOS function HIGH_MUL
⇒ mixing formal and non-formal code is risky

should read:

6. Conclusion

37

Contributions
We revisited the Message Authenticator Algorithm

 an pioneering algorithm in cryptography (80s)
 an early application of formal methods (90s)

We enriched the MARS model repository
 a formal model of the MAA in the REC language
• one of the largest handwritten TRS available today
• self-contained and minimal
• validated (confluence, termination, test vectors)

 executable: translations into 13 different languages
 reusable components (binary adders and multipliers)

38

Future work
Caution! our MAA model is a "tour de force"

 TRS do not scale well to large problems
 considerable effort was needed to produce a
structured, readable REC model
 2-6 times longer than any other (formal or informal)
description of the MAA

Possible uses of our MAA model
 lab exercises for students (see Annex B.22)
 assessment of tools (e.g., 1÷140 speed ratio)
provers: verify correctness of binary adders/multipliers

39

	A Large Term Rewrite System Modelling a Pioneering Cryptographic Algorithm
	Outline
	1. Introduction to Term Rewrite Systems (TRS)
	Term Rewrite Systems (TRS)
	Where can one find TRS models?
	The REC Language
	Example 1: Booleans in REC
	Example 2: Naturals in REC (1/2)
	Example 2: Naturals in REC (2/2)
	2. The Message Authenticator Algorithm (MAA)
	Cryptography basics
	Message Authenticator Algorithm (MAA)
	Overview of the MAA
	MAA�data flow
	"Mode of operation"
	3. Earlier Models of the MAA
	Why choosing the MAA?
	Informal specifications
	Formal specifications (1/2)
	Formal specifications (2/2)
	Goals of our work
	4. Formal Modelling of the MAA as a TRS�
	Starting point
	Outcome
	Good properties
	Test vectors
	Executability issues
	Readability
	Guided tour of the MAA model (1/3)
	Guided tour of the MAA model (2/3)
	Guided tour of the MAA model (3/3)
	5. Validation of the �MAA Model
	Properties
	Confluence and Termination
	Functional correctness
	Two errors detected
	6. Conclusion
	Contributions
	Future work

