A Large Term Rewrite System
Modelling a Pioneering
Cryptographic Algorithm

Hubert Garavel Lina Marsso

Inria Grenoble - LIG
Université Grenoble Alpes

http://convecs.inria.fr

http://convecs.inria.fr/

Outline

m 1. Introduction to Term Rewrite Systems (TRS)
m 2. The Message Authenticator Algorithm (MAA)
m 3. Earlier Models of the MAA

m 4. Formal Modelling of the MAA as a TRS

m 5. Validation of the MAA Model

m 6. Conclusion

rd
: informatics #Fmathematics

1. Introduction to Term
Rewrite Systems (TRS)

r 4
informatics #Fmathematics '
é sz——— LI G

Term Rewrite Systems (TRS)

m A fundamental means to express computation

m Basic concepts:
» sorts: abstract data domains
» operations: take N arguments and return one result
» terms: algebraic expressions (operations, free variables)
» rewrite rules: left-hand term — right-hand term
not (and (A, B)) = or (not (A), not (B))
m Used in specification/programming languages
» algebraic: abstract data types
» functional: constructor types and pattern matching

r d

: informatics #Fmathematics '

Where can one find TRS models?

m Paradox:
» abundant literature on the theory of TRS
» but difficult to find TRS models of realistic problems

m Available TRS models:

» Rewrite Engines Contests (2006, 2008, 2010)
the largest models have at most 300 lines

» Specification of languages / compilers using TRS
models can be large (10,000+ lines) but they are
not "pure" TRS (they use strategies, sub-sorts, etc.)

m This talk: a large TRS modelling a cryptographic algorithm

r d

informatics #Fmathematics '
&L’Z&a_——
: 5

The REC Language

m REC: a textual notation for TRS models

m Introduced during the 2" REC contest (2008)
» human-readable, tool-independent format
» supports strong typing (many-sorted specifications)
» supports conditional rewrite rules (Boolean guards)

m We use a slightly enhanced version of REC
» added distinction: constructors vs non-constructors

» a few restrictions: left-linear rules, no equations
between constructors, etc.

» automatically translated into 13 different languages

r d

informatics #Fmathematics '
&L‘?m-——
6

Example 1: Booleans in REC

SORTS

Bool i abstract data domain
CONS

false : > Bool <€ —==== === primitive operations

true : -> Bool (constructors)
OPNS

andBool : Bool Bool -> Bool € - —— defined operations

orBool : Bool Bool -> Bool (non-constructors)
VARS

L : Bogl < === == = e e e e e = == free variables
RULES

andBool (false, L) -> false < - — - rewrite rules that

andBool (true, L) -> L define non-constructors

orBool (false, L) -> L
orBool (true, L) -> true

2 informatics #Fmathematics '
&LZ&&L—— L1 G 7

Example 2: Naturals in REC (1/2)

SORTS
Nat

CONS
zero : —> Nat
succ : Nat -> Nat

OPNS
addNat : Nat Nat —-> Nat
multNat : Nat Nat -> Nat
eqNat : Nat Nat -> Bool
1tNat : Nat Nat -> Bool

VARS
N N’ : Nat

r d

informatics gFmathematics '
4 Zua——— LI G

Example 2: Naturals in REC (2/2)

RULES

addNat (N, zero) -> N
addNat (N, succ (N’)) -> addNat (succ (N), N’)

multNat (N, zero) -> zero
multNat (N, succ (N’)) -> addNat (N, multNat (N, N’))

egNat
eqNat
eqNat
eqNat

1tNat
1tNat
1tNat
1tNat

(zero, zero) -> true

(zero, succ (N’)) -> false

(succ (N), zero) -> false

(succ (N), succ (N’)) -> eqNat (N, N’)

(zero, zero) -> false

(zero, succ (N’)) -> true

(succ (N’), zero) -> false

(succ (N), succ (N’)) -> 1tNat (N, N’)

r 4
informatics gFmathematics '
4 Zua——— LI G

2. The Message Authenticator
Algorithm (MAA)

r 4
informatics #Fmathematics '
é sz——— LI G

Cryptography basics

m Message Digest
» function: (long) message — (short) numeric value
» ensures integrity (the message has not been modified)
» example: MD5

m Message Authentication Code (MAC)

» function: (long) message, (short) key — (short) value
» the key is secret, shared by the sender and the receiver
» ensures both authentication and integrity

» examples: hash-based (HMAC), universal (UMAC),
block ciphers (CMAC, OMAC, PMAC), etc.

r d

Message Authenticator Algorithm (MAA)

il 12

m First widely-used MAC function

m Designed by Donald Davies
and David Clayden (NPL, 1983)
» to protect banking transactions
» intended to be implemented in software (32-bit PCs)

m Adopted by financial institutions
» standardized by ISO in 1987 [ISO 8730 and 8731-2]
» attacks published in the mid 90s
» withdrawn from ISO standards in 2002

r d

informatics gFmathematics '
6Z26a——— LI G 12

Overview of the MAA

m Inputs:
» A 64-bit key (split into two blocks J, K)

» A message, seen as a sequence of blocks
(message should be less than 1,000,000 blocks)

m Outputs:
» A 32-bit MAC value (much too short nowadays!)

m Basic operations:
» logical: AND, OR, XOR, CYC (bit rotation)

» arithmetic: ADD, MUL (mod 232), MUL1 (mod 23%-1),
MUL2 (mod 232-2), MUL2A (faster variant of MUL2)

r d

informatics #Fmathematics '
&L‘?m-——
13

MAA
data flow

Prelude: converts key (J, K) into
6 blocks X0, YO, VO, W, S, T

Main Loop: iterates on each
message block, modifying 3
variables X, Y, V

Coda: two final iterations on
the two blocks Sand T

K

Keys l l
RELUDE Prelude contains BYT/PAT, MULLl, MULZ
Storage for
future use X, 4] 3 T
P EF AT rdi s rid i\ i\ Firid | iridii i\ firii | ifiri\iifiriisi
Initialization X=X, = =
X Y
1) Message
MAIN LOCE MATN LOO]
‘ A’T‘
T T M,
Contains: | | | |
MUL1
MULZA l 1 l | |
W | |
MAIN LOCE]
¢ M
» "
AL EF AT dr i s i\ dFriri s\ irifii i\ FArir | ifiri\iifiriisd
X ¥ Vv
W
COoDA MAIN LOCE —
t_—
1T 1 °
W
MATN LOO ——
x 1 vl l)
XOR Discard V
Z
” |

14

"Mode of operation”
m Message is split into a list of 256-block segments

segment1l sreeeeee > segment 2 -eeeeee- >| segment 3 | sreeeee- > last

\ I !
'—-—>. segment 2
MAA

v

segment 3

final MAC result
informatics #Fmathematics '
h’l&a——— LI G 15

3. Earlier Models of the MAA

rd
informatics #Fmathematics
&L’Z&d——— G

16

Why choosing the MAA?

m More challenging than conventional examples:
» protocols deal with simple data types

» compilers deal with abstract syntax trees (explored
using standard traversals)

» cryptographic functions exhibit "strange" behavior by
performing "irregular” calculations

m Large example, still of manageable complexity
m Definition of MAA is stable and available
m MAA played a role in the history of formal methods

r d

informatics #Fmathematics '
&L’?&a_——
_ 17

Informal specifications

m [Davies-Clayden-88] NPL technical report
» complete definition of the MAA
» gives two implementations in C and BASIC

» these implementation do not support "mode of
operation” (only work for messages <= 256 blocks)

m [ISO standard 8731-2]
» core part very similar to [Davies-Clayden-88]
m These definitions in natural language are
ambiguous at several places
» e.g. byte ordering, mode of operation

r d

informatics #Fmathematics '
&L’Z&a_——
. 18

Formal specifications (1/2)

m NPL chose MAA to assess formal methods
» they developed 3 formal specifications of the MAA

ml) VDM [G.I. Parkin and G. O'Neill, 1990]
» included as Annex B of ISO standard 8731-2:1992

» 3 implementations derived manually from VDM:
C, Miranda, Modula-2

m2) Z [M. K. F.Llai, 1991]

» Knuth's "literate programming" approach
» Z code fragments inserted in natural-language ISO text

r d

informatics #Fmathematics '
&L‘?m-——
19

Formal specifications (2/2)

m 3) LOTOS abstract data types [H. Munster, 1991]

» fully formal, but non executable

» "wishful thinking" equations: "given x, the result is y
such that x = f (y)" = requires to invert function f

m 4) LOTOS abstract data types [H. Garavel, Ph.
Turlier, 1992]
» derived from [Munster-91]
» rewritten to remove "wishful thinking" equations
» a few types and functions implemented directly in C
» implementation automatically derived (CAESAR.ADT)

r d

eiia¥ - 20

Goals of our work

Provide a model of the MAA in REC language
with (at least) five qualities:

m Formal (no natural language)

m Exhaustive (the full MAA is described)

m Self-contained (no external C code)

m Validated (correctness properties)

m Executable (implementations generated

automatically in 13 languages)

4
informatics g#mathematics '
&L? : G 21

4. Formal Modelling of the
MAA as a TRS

r 4
informatics #Fmathematics '
é sz——— LI G

Starting point

m Informal description of the MAA

» [Davies-Clayden-88] NPL research report
qguasi identical as [ISO standard 8731-2]

» together with its Cimplementation
although incomplete (no "mode of operation")

m Formal description of the MAA
» [Garavel-Turlier-92] specification in LOTOS and C
» derived from the LOTOS specification of [Munster-91]

r d

informatics #Fmathematics '
&L’Z&a-—— :
L 1 G 23

Outcome

m Formal model of the MAA as a TRS in REC language

m A large model:
» 46 pages of text (Annex B of our paper)

» 1575 lines (5 times larger than the largest benchmarks
of the Rewrite Engines Competition)

» 13 sorts
»= 18 constructors
»= 644 non-constructors

» 684 rewrite rules
(only 6 conditional rules that can be easily eliminated)

r d

informatics #Fmathematics '
&L’Z&a_——
- 24

Good properties

m Our model is exhaustive
» it describes the full MAA (including "mode of operation")

m Our model is minimal

» each sort, constructor, and non-constructor defined
is actually used (no "dead code")

m Our model is self-contained
» each detail of the MAA is expressed using TRS only
» no import of externally-defined types or functions

» no machine-specific assumptions (e.g., 32-bit vs 64-bit
words, big-endian ordering)

r d

informatics #Fmathematics '
&L’?&a_——
_ 25

Test vectors

J 00FF OOFF 0OFF OOFF 5555 5555 5555 5555
K 0000 0000 0000 0000 5A3 DB67 5A35 DB67

P FF FF 00 00

X 4AB4 5A01 4A64 5A01 34AC F8s6 MAC F836

° e Y, 50DE C930 50DE €930 7397 C9AE 7397 C9AE

. r t O ra I C l | I | Ct I O ' | S A 5CCA 3239 SCCA 3239 7201 FaDC 7201 FaDC
w FECC AAGE FECC AASE 2829 0408 2829 0408

M, 5555 5555 AAAA AAAA 0000 0000 FFFF FFFF

. X | esB2 o046 GAEB ACF8 2FD7 6FFB 8DC8 BBDE

come with test vectors AN AT

™, AAAA AAAA 5555 5555 FFFF FFFF 0000 0000

X 4F29 8EOT 270E EDAF ATOF Cl8 CBC8 65BA

> Y BESF 0917 B814 2629 D10 D8D3 0297 AF6F

s ED E9C7 S1ED E9CT SE2E 7B36 9E2E 7836

X a9 25FC 2980 7CD8 BICC 1CCS aCFa ATD2

Y DB91 0280 BAS2 DB12 29C1 485F 160 E9BS

T 2486 6FBS 2486 6FBS 1364 7149 1364 7149

. . X 2778 4825 28EA DBB3 288F C786 D048 2465

O d I | f h k Y D636 250D 81ID1 0CA3 9115 AS58 7050 ECSE

. u r O e I S S e C e C I g z | Fup e ASIB D410 BS9A 62DE A018 C838

It contains 203 assertions test vectors
» taken from [Davies-Clayden-88], i.e., [ISO 8731-2]
» taken from [ISO 8730:1990, Annex E.3.3]
» added by us, so as to detect:

e errors arising from byte permutations (endianness issues)
* incorrect segmentation of messages longer than 256 blocks

informatics #Fmathematics '
&L’Z&a-—— :
L 1 G 26

Executability issues

m In principle, TRS encoded in the REC format are
executable (by translation to other languages)

m In practice, Peano-style naturals (i.e., in unary
notation with zero and succ) exhaust memory
» the MAA manipulates many blocks (32-bit naturals)
» blocks cannot be represented in unary notation
» we represent blocks in binary form (words of 4 octets)
» logical operations (AND, OR, XOR, CYC) are easy

» arithmetical operations (ADD, CAR, MUL) are involved
= 8-bit, 16-bit, and 32-bit adders and multipliers

r d

informatics #Fmathematics '
&L‘?m-——
27

Readability

m Our model is readable (despite its size)
» regular naming conventions for all identifiers
» constructors chosen appropriately
» definitions of non-constructors kept simple

m Modular structure:

» in the MARS repository: the MAA model is a
monolithic REC file

» in Annex B of our paper: the MAA model is split into
21 sections

eiia¥ - 28

Guided tour of the MAA model (1/3)

m 21 sections in Annex B of our paper

m BASIC SORTS

» 1. Bool sort
» 2. Nat sort (only used for "small" numbers <4100)

m MACHINE WORDS
» 3. Bit sort
» 4. Octet sort (8 bits)

» 5. OctetSum sort (9 bits: an Octet and a carry bit)
» 6. Half sort (16 bits)

4
informatics ##mathematics '
6Z26a-—— LI G 29

Guided tour of the MAA model (2/3)

» 7. HalfSum sort (17 bits: a Half and a carry bit)

» 8. Block sort (32 bits)

» 9. BlockSum sort (33 bits: a Block and a carry bit)
» 10. Pair sort (64 bits)

m INPUT/OUTPUT DATA
» 11. Key sort (64 bits)
» 12. Message sort (non-empty list of Blocks)

» 13. SegmentedMessage sort (non-empty list of
Messages, each containing at most 256 blocks)

r d

informatics ##mathematics '
6Z26a-—— LI G 30

Guided tour of the MAA model (3/3)

m CRYPTOGRAPHIC FUNCTIONS
» 14. functions CYC, FIX1, FIX2, adjust, PAT, BYT, ADDC
» 15. functions MUL1, MUL2, MUL2A
» 16. functions Hi, J1 i,J2 i, K1 i, K2 i

» 1/. Pre

mTEST VEC
» 18. Tab
» 19. Tab
» 20. Tab

ude, MainLoop, Coda, Segmentation
'ORS

es 1, 2, and 3 of [Davies-Clayden-88]

e 4 of [Davies-Clayden-88] and other tests
e 5 of [Davies-Clayden-88]

» 21. Tab

e 6 of [Davies-Clayden-88] and other tests

r d

informatics ##mathematics '
6Z2&a——— LI G 31

5. Validation of the
MAA Model

r 4
informatics #Fmathematics
6 Z’Z[a——— LI G

32

Properties

m None of the prior formal MAA specifications
(in VDM, Z, and LOTQOS) was proven correct

m Our REC specification brings stronger guarantees:
» confluence
» termination

» confluence and termination = all rewrite strategies
produce the same result

» functional correctness of the 203 test vectors

r d

informatics #Fmathematics '
&L’Z&a-—— :
L1 33

Confluence and Termination

m Our TRS is deterministic, thus confluent
» all constructors are free

» all the rewrite rules that define a non-constructor have
disjoint patterns and mutually exclusive premises

» this was checked by the Opal compiler after automatic
translation of the REC model into the Opal language.

m Our TRS is terminating

» the REC model was automatically translated into the
TRS input format of the AProVE tool

» AProVE produced a proof of quasi-decreasingness
(76 steps, 420 pages)

informatics #Fmathematics '
&L’Z&a_——
34

Functional correctness

m Our REC model was automatically translated into
13 languages: Clean, Haskell, LNT, LOTOS, Maude,
mCRL2, OCaml, Opal, Rascal, Scala, Standard ML,
Stratego/XT, and Tom

m It was then submitted to 16 tools (compilers,
interpreters, and rewrite engines):
»11 tools reported that all the 203 test vectors pass
» (the other tools gave up or timed out)

» moreover, binary adders and multipliers have been
checked separately using 30,000 test vectors

r d

informatics #Fmathematics '
&L?&&L——
35

Two errors detected

m Incorrect test vectors given for function PAT
[Davies-Clayden-88, Table 3] and [ISO 8732-2:1992, Table A.3]

{X0,Y0} 0103 0703 1D3E 7760 PAT{X0,Y0} EE

{VOo,W} 0103 050B 1706 EDEBRB PAT{VO,W} BB

{8,T} 0103 0705 8039 7302 PAT{S,T} E6
should read:

{H4 ,H5} 0000 0003 0000 0060 PAT{H4,H5} EE

{H6 ,HT7} 0003 0000 0006 0000 PAT{H6,H7} BE

{H8 ,H9} 0000 0005 8000 0002 PAT{H8 ,H9} E6

m Error in the handwritten C function provided to
implement the LOTOS function HIGH_MUL
= mixing formal and non-formal code is risky

rd
informatics #Fmathematics '
&L’Z&a-—— :
L1 36

6. Conclusion

4
informatics gFmathematics
63’2‘&——— LI G

37

Contributions

m We revisited the Message Authenticator Algorithm
» an pioneering algorithm in cryptography (80s)
» an early application of formal methods (90s)

m We enriched the MARS model repository
» a formal model of the MAA in the REC language

e one of the largest handwritten TRS available today
e self-contained and minimal

e validated (confluence, termination, test vectors)
» executable: translations into 13 different languages
» reusable components (binary adders and multipliers)

r d

informatics #Fmathematics '
&L‘?m-——
38

Future work

m Caution! our MAA model is a "tour de force"
» TRS do not scale well to large problems

» considerable effort was needed to produce a
structured, readable REC model

» 2-6 times longer than any other (formal or informal)
description of the MAA

m Possible uses of our MAA model
» lab exercises for students (see Annex B.22)
» assessment of tools (e.g., 1+140 speed ratio)
»provers: verify correctness of binary adders/multipliers

r d

informatics #Fmathematics '
&L‘?m-——
39

	A Large Term Rewrite System Modelling a Pioneering Cryptographic Algorithm
	Outline
	1. Introduction to Term Rewrite Systems (TRS)
	Term Rewrite Systems (TRS)
	Where can one find TRS models?
	The REC Language
	Example 1: Booleans in REC
	Example 2: Naturals in REC (1/2)
	Example 2: Naturals in REC (2/2)
	2. The Message Authenticator Algorithm (MAA)
	Cryptography basics
	Message Authenticator Algorithm (MAA)
	Overview of the MAA
	MAA�data flow
	"Mode of operation"
	3. Earlier Models of the MAA
	Why choosing the MAA?
	Informal specifications
	Formal specifications (1/2)
	Formal specifications (2/2)
	Goals of our work
	4. Formal Modelling of the MAA as a TRS�
	Starting point
	Outcome
	Good properties
	Test vectors
	Executability issues
	Readability
	Guided tour of the MAA model (1/3)
	Guided tour of the MAA model (2/3)
	Guided tour of the MAA model (3/3)
	5. Validation of the �MAA Model
	Properties
	Confluence and Termination
	Functional correctness
	Two errors detected
	6. Conclusion
	Contributions
	Future work

