
Four Formal Models of
IEEE 1394 Link Layer

Hubert Garavel
INRIA − Univ. Grenoble Alpes

France

Bas Luttik
Eindhoven Univ. of Technology

The Netherlands

1. The FireWire bus

2

The FireWire idea
High-speed serial bus
Connect all computers and
multimedia devices with the
same thin cable
Full-duplex transfers
From 100 to 3200 Mbits/s
Direct memory access
Plug-and-play, hot swapping
Power supply up to 30V-55W

3

 1997 Bas Luttik

FireWire: a 30-year history
1986: development initiated by Apple
Many contributors: Hitachi, LG, Panasonic, Philips,
Samsung, Sony, Texas Instruments, Toshiba, etc.
1995: IEEE 1394 standard (revised in 2008)
2000s: supported by BSD, macOS, Linux, Windows

4

But competition with USB-C and Thunderbolt
2016: last Apple product with FireWire

2. The IEEE 1394 protocol

5

IEEE 1394 standard
A beautiful piece of engineering:

 1995 version: 384 pages
 2008 version: 906 pages
 Many aspects: physical connectors, electric signals…

Focus on the Link layer communication protocol
 40 pages of semi-formal descriptions
 state machines / C++ code segments / English text
 with this order of priority
 these descriptions are rather precise, but not totally

6

IEEE 1394 Link-layer state machine

7

14 "principal" states
named L0, L1, …, L13

IEEE 1394 ambiguities
The interconnection of
state machines is not
specified
Actions are possible both
on transitions and states
State machines are
incomplete and refer to
informal English text

8

⇒ There is room left for formal methods

IEEE 1394 protocol stack

9

+ node controller (timeouts, reset) for all layers

Transaction layer
The TRANS layer provides the APPLI layer with
three types of transactions:

 READ: read data from another node
 WRITE: write data to another node
 LOCK: transfer to another node data to be processed,
 then transfer it back

Transactions can be:
 concatenated: response follows request immediately
 split: response can be delayed

10

Link layer (1/2)
Two types of data transfers:

 isochronous mode (for multimedia):
 fast transfers of large amounts of data (audio/video)
 sent/received at constant rate (guaranteed bandwith)
 no acknowledgements
 asynchronous mode (for computers):
 messages of arbitrary length
 sent at a lower priority

 acknowledgements from receiving nodes
Either peer-to-peer or broadcast

11

Link layer (2/2)

Each subaction gathers one or two packets:

12

Physical layer

The PHY layer converts link messages to signals
It sends/receives signals on the cable
It handles the loss or corruption of signals
It also implements the arbitration protocol:

 every second, 8000 arbitration slices (125 ms each)
 isochronous transfers have priority
 asynchronous transfers use the rest of the time slice
 only one LINK can emit at a time
 a LINK can emit at most once in each fairness interval

13

IEEE 1394 protocol events

14

3. The µCRL model

15

The µCRL model (1/2)
Model written by Bas Luttik (1997)

 feedback from H. Garavel, J. F. Groote, M. Sighireanu

Features:
 809 non-blank lines (in the 1997 version of µCRL)
 data types (term rewrite systems) are verbose
 the MAIN process gathers n LINK entities and the BUS
 the BUS represents n PHYSICAL entities and the cable

16

The µCRL model (2/2)
Abstractions:

 isochronous transfers are not modelled (too simple)
 the model is untimed (no quantitative time)
 the BUS is nondeterministic (signals lost or corrupted)
 CRC checksums are not computed nor checked
 but error values to model lost / corrupted signals
 (i.e., Boolean abstractions)

Verification:
 Bas Luttik specified (in English) 5 involved safety and
liveness properties of the Link layer

 17

4. The LOTOS model

18

The LOTOS model (1/4)
Model written by Mihaela Sighireanu (1997)

 based on the µCRL model of Bas Luttik
 same model written in two different languages:

 E-LOTOS (under standardization at the time)
 − model published in an STTT journal paper (1998)
 − one of the very few models written in E-LOTOS
 − no tool support

 LOTOS (standardized, supported by the CADP tools)
 − model used for verification by model checking
 − never published until MARS 2024

19

The LOTOS model (2/4)
Features:

 data types are much more concise than µCRL ones
 (predefined libraries for Bool and Nat, conditional
 rewrite rules, decreasing priority between rules)
 the LINK and BUS processes of Bas Luttik are reused

State-space explosion:
 the state space of LINK and BUS is large, due to:
− protocol complexity
− fine granularity of signals
− nondeterminism in the BUS

20

The LOTOS model (3/4)
Data abstractions:

 natural numbers in 0…n (where n = number of nodes)
 DATA, HEADER, and ACK types reduced to one value

Extra processes:
 TRANS and APPLI processes to model upper layers

11 different scenarios:
 Node 0 does one broadcast or point-to-point request
 Each node does a broadcast or point-to-point request
 Node 0 does k broadcast or point-to-point requests

All interesting cases are covered (split/concatenated…)

21

The LOTOS model (4/4)
Further code simplifications by H. Garavel:

 in 2005: the auxiliary C code was divided by 13
 (from 2134 to 156 lines)

 in 2023: the LOTOS code was reduced by 30%
 (from 2091 to 1385 lines) without loss of functionality
 and still preserving strong bisimilarity:

 − merged 2 TRANS processes into a parameterized one
 − merged 5 APPLI processes into a parameterized one
− added a NODE process to factorize duplicated code

22

Verification of the LOTOS model
The LOTOS models for the 11 scenarios were
 translated to LTSs (Labelled Transition Systems)
Radu Mateescu formalized the 5 properties in the
ACTL temporal logic [DeNicola & Vaandrager]
These formulas were evaluated on all LTSs using
the XTL tool of CADP
Property 1 was violated in all scenarios

23

Deadlock issue
Expected "normal" termination

24

Unexpected deadlock found after 50 events:

Two possible fixes
The standard is wrong or, at least, ambiguous wrt
 the semantics of state-machine interconnection
Solution A: handle unexpected event in LINK

25

Solution B: modify TRANS to avoid this situation
 2 x 11 scenarios (with original and modified TRANS)

5. The mCRL2 model

26

The mCRL2 model
Model translated from µCRL by J. F. Groote (2005)

Features:
 60% smaller than the original µCRL model
 (327 non-blank lines of mCRL2, vs 809 lines of µCRL)
 the size of data types was divided by 6.4 in mCRL2
 (built-in types Bool and Nat, constructor types with
 automatic definition of equality, recognizer, and
 projection functions)
 new syntax: A <| C |> B now noted C -> A <> B

27

6. The LNT model

28

The LNT model (1/2)
Written in two successive steps (2022-2023):

 systematic translation LOTOS → LNT (student project)
 manual transformations to get readable LNT code:
− inline expansion of many auxiliary processes
− flattening nested if-then-else by adding elsif tests
− replacement of recursion by loops (break, while, for)
− factorization of similar code fragments, etc.

Features:
 LNT slightly more concise than LOTOS (∼ 20%)
 774 non-blank lines of LNT vs 974 lines of LOTOS

29

The LNT model (2/2)
Features:

 80% of LNT code is readable by non-experts
 imperative style (write-many variables, assignments)
 but also functional style (pattern-matching case)
 partial functions, with explicit exceptions and raise

Verification:
 by model checking: the 5 ACTL formulas evaluate
 identically on LNT and LOTOS models
 by equivalence checking: LTSs gerated from LNT and
 LOTOS are bisimilar (and have roughly the same sizes)

30

7. Conclusion

31

The FireWire case study
A realistic problem:

 at the interface between hardware (circuits and
networking) and software (drivers and protocols)
 a true success story of formal methods
 model checking quickly found an unknown issue

Semi-formal models are not enough:
 (state machines + C code + text) may be ambiguous
 even in an IEEE standard proofread by many experts

32

Four formal models of FireWire
Rosetta stone of modelling languages:

 evolution of formal methods over time:
 µCRL → mCRL2, LOTOS → E-LOTOS → LNT
 comparison of languages and specification styles
 common example for benchmarking other languages

Debate: different meanings of "minimality"
 minimal languages (with small syntax/semantics)?
 minimal models (faster to write, easier to read)
 using more complex / sophisticated languages

33

Acknowledgements
Jan Friso Groote

Marck-Edward Kemeh

Radu Mateescu

Laurent Mounier

Oussama Oulkaid

34

Charles Pecheur

Judi Romijn

Mihaela Sighireanu

Bruno Vivien

