Nested-Units Petri Nets

Hubert Garavel
Inria Grenoble – LIG
and Saarland University

http://convecs.inria.fr
Outline

- Introduction
- The NUPN model
- The unit-safeness property
- Some expressiveness results
- The place-fusion abstraction
- Optimized encoding of markings
- Software support for NUPNs
- Conclusion
Three controversial equations in concurrency theory
Controversial equation #1

(for all a, b, c : actions) \(a.(b + c) = a.b + a.c \)?

- If the answer is **yes**
 - linear-time semantics

- If the answer is **no**
 - branching-time semantics

from: **R. van Glabbeek** and **F. Vaandrager.**
Petri Net Models for Algebraic Theories of Concurrency (PARLE, 1987)
Controversial equation #2

(forall a, b : actions) \(a || b = a.b + b.a\)

- If the answer is yes
 - interleaving semantics
- If the answer is no
 - true concurrency
 - Petri nets can distinguish
 - (Mazurkiewicz traces and Winskel event structures can too)

A 3rd controversial equation...

\[(\forall a, b, c) \ (a \cdot b) ||_b (b \cdot c) = (a \cdot b \cdot c) ||_b b \ ?\]

see also: G. Boudol, I. Castellani, M. Hennessy, A. Kiehn

A theory of processes with localities (Form. Asp. Comp. 1994)

- Interleaving semantics:
 - they are the same (i.e., a \cdot b \cdot c)

- Petri nets:
 - they are also the same
 - no way to indicate that a and c are not on the same side
 - Petri nets preserve \textit{concurrency}, not \textit{locality}
How to model locality and hierarchy?

- Places that belong to the same sequential process are enclosed into "units."
- Units can be recursively nested at an arbitrary depth.

\[(a.b) \parallel_b (b.c) \neq (a.b.c) \parallel_b b\]
The NUPN model
\((NUPN = \text{Nested-Unit Petri Nets}) \)
NUPN definition

- Extension of elementary nets (all arc weights = 1)
- NUPN = 8-tuple \((P, T, F, M_0, U, u_0, \subseteq, \text{unit})\)
 - Elements 1-4 of this tuple are standard

Definition 1. A (marked) Nested-Unit Petri Net (acronym: NUPN) is a 8-tuple \((P, T, F, M_0, U, u_0, \subseteq, \text{unit})\) where:

1. \(P\) is a finite, non-empty set; the elements of \(P\) are called places.
2. \(T\) is a finite set such that \(P \cap T = \emptyset\); the elements of \(T\) are called transitions.
3. \(F\) is a subset of \((P \times T) \cup (T \times P)\); the elements of \(F\) are called arcs.
4. \(M_0\) is a subset of \(P\); \(M_0\) is called the initial marking.
NUPN definition

- NUPN = 8-tuple \((P, T, F, M_0, U, u_0, \sqsubseteq, \text{unit})\)

 - Elements 5-8 of these tuples are novel:
 - (5,6,7): tree of units + (8): mapping: place → unit

5. \(U\) is a finite, non-empty set such that \(U \cap T = U \cap P = \emptyset\); the elements of \(U\) are called units.
6. \(u_0\) is an element of \(U\); \(u_0\) is called the root unit.
7. \(\sqsubseteq\) is a binary relation over \(U\) such that \((U, \sqsubseteq)\) is a tree with a single root \(u_0\), where \((\forall u_1, u_2 \in U)\) \(u_1 \sqsubseteq u_2 \overset{\text{def}}{=} u_2 \sqsubseteq u_1\); thus, \(\sqsubseteq\) is reflexive, antisymmetric, transitive, and \(u_0\) is the greatest element of \(U\) for this relation; intuitively, \(u_1 \sqsubseteq u_2\) expresses that unit \(u_1\) is transitively nested in or equal to unit \(u_2\).
8. \text{unit} is a function \(P \rightarrow U\) such that \((\forall u \in U \setminus \{u_0\})\) \((\exists p \in P)\) \(\text{unit}(p) = u\); intuitively, \(\text{unit}(p) = u\) expresses that unit \(u\) directly contains place \(p\).
Analogy with known data structures

- **File systems**
 - unit \(\rightarrow\) directory
 - place \(\rightarrow\) file
 Directories can be recursively nested at arbitrary depth
 Each directory may (or not) contain files

- **XML documents**
 - unit \(\rightarrow\) element
 - place \(\rightarrow\) attribute
 (contrary to XML, the order of elements is not significant)
Units are not boxes...

- A NUPN units encapsulates **places only**
 This is different from "boxes" (or "subnets") that encapsulate places, transitions, and arcs

- Another key difference is parallel composition:
 - 2 boxes in parallel → 1 box
 - 2 units in parallel → 3 units
Execution rules ("token game")

- The usual firing rules of Petri nets are unchanged.
- Units are totally orthogonal to transitions.
- Yet, units allow markings to be structured:

\[
\text{places}(u) \overset{\text{def}}{=} \{ p \in P \mid \text{unit}(p) = u \} \quad \tilde{U} \overset{\text{def}}{=} \{ u \in U \mid \text{places}(u) \neq \emptyset \}
\]

Proposition 1. Let \((P, T, F, M_0, U, u_0, \sqsubseteq, \text{unit})\) be a NUPN. The family of sets \(\text{places}(u)\), where \(u \in \tilde{U}\), is a partition of \(P\).

\[
M \triangleright u \overset{\text{def}}{=} M \cap \text{places}(u)
\]

Proposition 2. Let \((P, T, F, M_0, U, u_0, \sqsubseteq, \text{unit})\) be a NUPN. Any marking \(M\) can be expressed as \(M = (M \triangleright u_1) \uplus \ldots \uplus (M \triangleright u_n)\), where \(u_1, \ldots, u_n\) are the units of \(\tilde{U}\), and where \(\uplus\) denotes the disjoint set union.
The unit-safeness property
Unit-safeness property

Disjonction of two units

\[
\text{disjoint}(u_1, u_2) \overset{\text{def}}{=} (u_1 \not\subseteq u_2) \land (u_2 \not\subseteq u_1)
\]

characterizes pairs of units neither equal nor nested one in the other.

Unit safeness of a marking

Definition 5. Let \((P, T, F, M_0, U, u_0, \sqsubseteq, \text{unit})\) be a NUPN. A marking \(M \subseteq P\) is said to be unit safe iff it satisfies the predicate defined as follows: \(\text{unit-safe}(M) \overset{\text{def}}{=} (\forall p_1, p_2 \in M) \ (p_1 \neq p_2) \Rightarrow \text{disjoint}(\text{unit}(p_1), \text{unit}(p_2))\); that is, all places of a unit-safe marking are contained in disjoint units.

Unit safeness of a NUPN

Definition 6. Let \(N = (P, T, F, M_0, U, u_0, \sqsubseteq, \text{unit})\) be a NUPN. \(N\) is said to be unit safe iff it is safe and all its reachable markings are unit safe.

Note: Using P/T nets rather than elementary nets, the safeness condition (i.e., contact freeness) would not be needed to ensure that strict-firing and weak-firing rules coincide.
Unit safeness \Rightarrow local mutual exclusion

Proposition 3. Let $(P, T, F, M_0, U, u_0, \subseteq, \text{unit})$ be a NUPN. For each marking M and unit u, unit-safe $(M) \Rightarrow \text{card}(M \triangleright u) \leq 1$; that is, a unit-safe marking cannot contain two different local places of the same unit.

- In each unit, local places are mutually exclusive
- In terms of linear algebra:

$$\sum_{p \in \text{places}} (u) x_p \leq 1$$

- So, unit safeness implies safeness (in fact, from the definition)
- These are not S-invariants, but inequalities
 - because a given unit may lose its token
Unit safeness \Rightarrow hierarchical mutual exclusion

Proposition 4. Let $(P, T, F, M_0, U, u_0, \sqsubseteq, \text{unit})$ be a NUPN. For each marking M and units (u, u'), one has: unit-safe $(M) \land (M \triangleright u \neq \emptyset) \land (u' \sqsubseteq u \lor u \sqsubseteq u') \Rightarrow (M \triangleright u' = \emptyset)$; that is, if a unit-safe marking contains a local place of some unit u, it contains no local place of any ancestor or descendant unit u' of u.

- Parent and children units are mutually exclusive
 - If a parent has a token, children have no token
 - If a child has a token, parents have no token
Linear-algebraic characterization

- Unit-safeness \iff system of linear inequalities

Proposition 6. Let $(P, T, F, M_0, U, u_0, \subseteq, \text{unit})$ be a safe NUPN. N is unit safe iff any reachable marking M satisfies the following system of inequalities:

$$(\forall u \in \widehat{U}) \ (\forall u' \in \widehat{U} \mid u \subseteq u') \ \sum_{p \in \text{places}(u) \cup \text{places}(u')} x_p \leq 1 \quad (I_{u,u'})$$

where each variable x_p is equal to 1 if place p belongs to M, or 0 otherwise.

- Again, these are inequalities, not S-invariants
Some expressiveness results
How restrictive is unit safeness?

- Unit safeness is an (optional) property of NUPNs.
- Unit-safe NUPNs are well-adapted to encode:
 - (nested) **co-begin/co-end** programming schemes
 - **process calculi** terms (without recursion through parallel composition)
- Unit-safe NUPNs can also express:
 - all safe elementary nets
 - all nets having a state-machine decomposition

This is shown by translation to unit-safe NUPNs.
Elementary safe net → unit-safe NUPN

Proposition 8. Let \((P, T, F, M_0)\) be any ordinary, safe \(P/T\) net (i.e., a safe elementary net). There exists at least one 4-tuple \((U, u_0, \sqsubseteq, \text{unit})\) such that \((P, T, F, M_0, U, u_0, \sqsubseteq, \text{unit})\) is a unit-safe NUPN.

- NUPNs generalize safe elementary nets
- \(N\) places → \(N+1\) units
 - \(N\) units, one single place in each unit
 - one root unit having no local place
State-machine net \rightarrow unit-safe NUPN

Proposition 9. Let (P, T, F, M_0) be any ordinary P/T net possessing a state-machine decomposition. There exists at least one 4-tuple $(U, u_0, \sqsubseteq, \text{unit})$ such that $(P, T, F, M_0, U, u_0, \sqsubseteq, \text{unit})$ is a unit-safe NUPN.

- NUPNs generalize state machines
- N state machines \rightarrow $N+1$ units
 - N units, one per state machine
 - one root unit having no local place
The place-fusion abstraction
Place-fusion abstraction

■ Idea:
 ▶ merge all places of each unit into a single place
 ▶ perform reachability exploration on this abstracted net

■ Advantages:
 ▶ complexity reduction when units have many places
 ▶ useful to determine concurrent units [Garavel-Serwe-06]

■ Place-fusion abstraction:
 ▶ preserves the NUPN property
 ▶ but does not preserve safeness, nor unit safeness
Optimized encodings for markings
Gains due to safeness / unit safeness

- **For safe nets:** markings can be encoded with one bit per place (rather than one integer per place)
- **For unit-safe nets:** further reductions are possible
 - **local reductions** (in each unit)

 N places in a unit \Rightarrow N+1 local states

 $\lceil \log_2 (N+1) \rceil$ or $\lceil \log_2 (N) + 1 \rceil$ bits

 - **hierarchical reductions** (between parent/children units)
 "vertical" overlapping between:

 — the bits encoding the N places of a unit

 — the bits encoding all sub-units of this unit
Statistical results

- 5 encoding schemes compared on > 3500 NUPNs
- Best encoding: **local + hierarchical** reductions applied recursively on the tree of nested units
- Number of bits reduced by more than 60%

<table>
<thead>
<tr>
<th>scheme</th>
<th>overlapping</th>
<th>number of bits or Boolean variables</th>
<th>average size</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>no</td>
<td>$\sum_{i=1}^{n} N_i$ (i.e., N)</td>
<td>100.00%</td>
</tr>
<tr>
<td>(b)</td>
<td>no</td>
<td>$\sum_{i=1}^{n} \lceil \log_2(N_i + 1) \rceil$</td>
<td>40.52%</td>
</tr>
<tr>
<td>(c)</td>
<td>no</td>
<td>$\sum_{i=1}^{n} \lceil \log_2(N_i) \rceil + 1$</td>
<td>46.44%</td>
</tr>
<tr>
<td>(b)</td>
<td>yes</td>
<td>$\nu(u_0)$ with leaf$(u_j) \Rightarrow \nu(u_j) = \lceil \log_2(N_j + 1) \rceil$</td>
<td>39.35%</td>
</tr>
<tr>
<td>(c)</td>
<td>yes</td>
<td>$\nu(u_0)$ with leaf$(u_j) \Rightarrow \nu(u_j) = \lceil \log_2(N_j) \rceil + 1$</td>
<td>44.94%</td>
</tr>
</tbody>
</table>
H-W-B codes

- A useful metrics to measure NUPN complexity
- Metrics: a triple of integers, noted H-W-B
 - H is the **height** of the tree of nested units
 (the root unit does not count if it has no local place)
 - \(W \) is the **width** of the tree of nested units, i.e., the number of leaf units
 (if the NUPN is unit safe, \(W \) gives an upper bound on the number of tokens present in reachable markings)
 - B is the **number of bits** needed to represent markings using the best recursive encoding
- If \(B = \text{number of places} \), the code is noted --B (H=1, W=B)
Software support for NUPNs
The "nupn" file format

Textual format used by CADP tools

Concise, human-readable, easy to read and parse

!creator caesar
!unit_safe
places #5 0...4
initial place 0
units #3 0...2
root unit 0
U0 #1 0...0 #2 1 2
U1 #2 1...2 #0
U2 #2 3...4 #0
transitions #3 0...2
T0 #1 0 #2 1 3
T1 #1 1 #1 2
T2 #1 3 #1 4

The NUPN was created by the CAESAR tool.
The creator tool warrants that unit-safeness holds.
There are 5 places numbered from 0 to 4.
The initial marking contains only place 0.
There are 3 units numbered from 0 to 2.
The root unit is unit 0.
Unit 0 contains 1 place (0) and 2 sub-units (1, 2).
Unit 1 contains 2 places (1, 2) and no sub-unit.
Unit 2 contains 2 places (3, 4) and no sub-unit.
There are 3 transitions numbered from 0 to 2.
Trans. 0 has 1 input place (0) and 2 output places (1, 3).
Trans. 1 has 1 input place (1) and 1 output place (2).
Trans. 2 has 1 input place (3) and 1 output place (4).
The NUPN extension for PNML

- PNML: ISO standard for Petri nets (2011)
- A NUPN-specific extension of PNML has been defined for the Model Checking Contest

```
<toolspecific tool="nupn" version="1.1">
  <size places="5" transitions="3" arcs="7"/>
  <structure units="3" root="u0" safe="true">
    <unit id="u0">
      <places>p0</places>
      <subunits>u1 u2</subunits>
    </unit>
    <unit id="u1">
      <places>p1 p2</places>
      <subunits/>
    </unit>
    <unit id="u2">
      <places>p3 p4</places>
      <subunits/>
    </unit>
  </structure>
</toolspecific>
```

Where to find NUPN examples?

- MCC (Model Checking Contest)

In total: 147 NUPNs out of 628 P/T nets (23%)
Where to find NUPN examples?

VLPN (Very Large Petri Nets)
(in preparation)

http://cadp.inria.fr/resources/vlpn

350 realistic benchmarks collected from diverse sources: CHP, EXP, Fiacre, LOTOS, LNT, applied pi-calculus, etc.

- Group 1: nets containing redundant units
- Group 2: nets containing disconnected places or transitions
- Group 3: unsafe nets
- Group 4: nets having one single unit
 code: 1-1-B
- Group 5: unstructured nets
 code: - - B
- Group 6: communicating automata
 code: 1-W-B, with W ≥ 2
- Group 7: pseudo-communicating automata
 code: 2-W-B
- Group 8: genuine NUPNs (concurrency + hierarchy)
 code: H-W-B, with W ≥ 3
How to produce NUPNs?

- From "flat" Petri nets:
 - PNML2NUPN (Lom Messan Hillah, Paris)
 - Translation PNML → NUPN (applies Prop. 8)

- From networks of communicating automata:
 - EXP.OPEN (Frédéric Lang, Grenoble)
 - Translation EXP networks → NUPN (applies Prop. 9)

- From process calculi:
 - CAESAR (Hubert Garavel, Grenoble)
 - Translation LOTOS → NUPN (more involved!)
How to analyze NUPNs?

- **CAESAR.BDD** (Hubert Garavel, Grenoble)
 - syntax /static semantics checks on ".nupn" files
 - structural and behavioural properties using BDDs
 - translation NUPN → PNML

- **CAESAR.SDD** (Alexandre Hamez, Toulouse)

- **GreatSPN** (Elvio Amparore, Torino)

- **ITS-TOOLS** (Yann Thierry-Mieg, Paris)

- **LoLA** (Karsten Wolf & Torsten Liebke, Rostock)

- **LTSmin** (Jeroen Meijer & Jaco van de Pol, Twente)

- **PNMC** (Alexandre Hamez, Toulouse)
10 competing tools
4 tools supporting NUPNs
 - they won all golden medals
 - they won 73% of medals

Conclusion
Benefits of NUPNs

- They store more information than other models:
 - LTS: no concurrency – no locality – no hierarchy
 - Petri nets: concurrency – no locality – no hierarchy
 - NUPN: concurrency + locality + hierarchy

- NUPNs are easy to produce from process calculi, high-level nets, communicating automata, etc.

- NUPNs allow significant savings in state-space generation (60% less bits/Boolean variables)

- NUPNs smoothly integrate with existing tools: no major software rewrite needed
Challenging open issues

- Dedicated algorithms exploiting NUPN structure
 - to efficiently decide if a NUPN is unit-safe
 - to compute behavioural properties: deadlocks, etc.
 - to enhance partial-order / stubborn-set reductions

- Conversion of "flat" Petri nets to "optimal" NUPNs
 - "hierarchical" decomposition into state machines
 - goal: less units, more places per unit, maximal nesting

- NUPNs extended to support multiple tokens
 - relax unit-safeness constraint \Rightarrow new flow relations
 - useful to encode process calculi with parallel recursion