
Identifying Duplicates
in Large Collections of Petri Nets

and Nested-Unit Petri Nets

Pierre Bouvier Hubert Garavel
INRIA − Univ. Grenoble Alpes

France

1. Motivation

2

P/T Nets
Standard notion of Petri nets:

 places, transitions, arcs
 markings, tokens, firing rules

We assume that nets are:
 ordinary (no multiple arcs)
 safe (at most one token per
place in any reachable marking)

If not: over-approximations

We do not handle colored nets
3

Nested Unit Petri Nets (NUPNs)
Extension of Petri nets

 units encapsulate places
 units are pairwise disjoint
 units are recursively nested
 (they form a tree of units)

Transition firing rules are
exactly those of Petri nets

Logarithmic gains when
storing reachable markings

4

Collections of Petri nets
Collections of benchmarks are crucial for:

 testing software under development
 software competitions (Model Checking Contest)

Building "good" collections is difficult:

 models originate from many authors
 collections grow as time passes
 properly maintaining them is tedious
 few people do it

5

Duplicates in collections
Duplicates = "similar" models in a collection
Multiple causes:

 models coming from many sources
 several maintainers adding models in a collection
 transformations applied to models

Bad consequences:
 wasted disk space
 redundant calculations
 biases in competitions
 tedious discussions between users, maintainers, etc.

6

Our benchmarks: 4 collections
Collection 1 (Univ. Zielona Gora, Poland)

 244 P/T nets obtained from the HIPPO Web service
Collection 2 (Model Checking Contest, 2022 edition)

 1387 P/T nets accumulated since 2011
 (56% ordinary and safe, 50% non-trivial NUPNs)

Collection 3 (INRIA Grenoble, France)
 16,200 NUPNs from multiple sources

Collection 4 (INRIA Grenoble)
 241,657 NUPNs (extension of Collection 3, with many
permutations, and file deduplication)

7

Benchmarks: statistics

The four collections are diverse
Some models are huge (25 M places, 146 M trans.)
NUPN structures are involved (large trees of units)

 How can we find duplicates in these collections?

8

2. Basic methods

9

File deduplication
Basic idea:

 each net is stored as a file (in PNML format)
 use tools that search for identical files on a disk
 e.g., Fdupes (on Linux), Jdupes (on Linux), etc.

Caveat:
 PNML offers too much lexical/syntactic freedom
 two identical nets may differ by one extra space
 thus, file deduplication will miss many duplicates

10

Pre-canonization
Convert nets from PNML format to NUPN format

 using the PNML2NUPN tool (LIP6 Paris)
 the NUPN format is stricter and more concise

Put NUPN files under "pre-canonical" form:
 using CAESAR.BDD -precanonical-nupn (Grenoble)
 remove blank lines, extra spaces, tabulations, etc.
 renumber from zero all places, transitions, and units
 sorts all lists of places, transitions, and units...

Finally, invoke a file deduplication tool

 11

3. Graph-isomorphism methods

12

Graph isomorphism (1/2)
Chosen graph model:

 vertices are colored
 edges are oriented

Isomorphism between two graphs:
 existence of a bijection between vertices
 that preserves edges and colors

13

Graph isomorphism (2/2)
Problem complexity:

 P ⊆ GI (Graph Isomorphism) ⊆ QP (Quasi Polynomial) ⊆ NP
 recently, GI = QP according to L. Babai (2019)

Various algorithms:
 Weisfeiler-Leman (1968)
 Luks (1982)

Many tools: Bliss, Conauto, Nishe, Saucy, etc.
 among them, we select Nauty and Traces

14

Net Isomorphism
Isomorphism between two NUPNs (or P/T nets):

 there exist three bijections between places, transitions,
and units
 that preserve arcs, initial markings, root units,
 inclusion between units, containment of places in units

15

Translation: NUPNs →colored graphs

16

place
place marked initially
transition
unit N G(N)

Net isomorphism in terms of graphs

Application to Collection 2 "MCC" (1387 nets):
 NUPN→graph translator (in Python) + Nauty (in C)
 parallel runs: (one server, 60 minutes, 96 GB) per net
 low success rate: 22.4% − no duplicate found

Experimented with 5 alternative translations:
 fewer vertices, more colors, non-oriented graphs, etc.
 use of Traces instead of Nauty
 best success rate: 35.9% − no duplicate found

17

4. Specific methods for nets:
 Signatures

18

Net signatures
A net signature function sig(N) computes a digest
(or checksum) for a net N, and satisfies:
N and N' are isomorphic nets ⇒ sig(N) = sig(N')
In practice, one uses the converse implication

19

Many possible signatures, e.g.:
 number of transitions
 number of sink places
 number of reachable markings → too expensive!

One proposed signature function
sig(N) = fixed-size tuple of 100+ natural numbers

places→16 fields, transitions→3 fields, units→13 fields
 each field is either a natural or a 5-tuple of naturals

 (multiset hashing)

Sample signature for a given net:

121-0-1-110-3457260137-0-2-118-336755784-0-0-0-748333948-1-10-1111-4036028534-0-0-0-748333948-11-20-2222-3840480353-0-0-0-
748333948-0-0-0-748333948-11-20-2222-3840480353-0-0-0-748333948-0-99-4150790648-2-2-4444-21470205-2-2-4444-21470205-2-2-
4444-21470205-2-2-4444-21470205-1111-2-2-3858300795-2-2-3858300795-12-11-622163923-11-622163923-0-11-3856429020-11-121-
242-688397522-11-15643205-22-894725254-1-11-15643205-13-370702091-11-22-894725254-0-220-204525584-0-220-204525584-
19139339-2032892459-822461942-4275843631

Implemented in the CAESAR.BDD tool (Grenoble)
 0.12 second per net on average

20

5. Specific methods for nets:
 Canonization

21

Net canonization
A net canonization function can(N) permutes the
places/transitions/units of a net N, and satisfies:

 can(N) = can(N') ⇒ N and N' are isomorphic nets

This is the reverse implication of signatures

There may be several canonization functions

22

One proposed canonization function
can(N) = successive composition of 3 functions:
1. unit-sorting function

 for each unit, we compute a 35-tuple of fields
 we sort this tuple lexicographically (using Unix sort)
 this gives a (possibly non unique) permutation of units

2. place-sorting function
 for each place, we compute a 27-tuple of fields, etc.

3. transition-sorting function
 for each transition, we compute a 2-tuple of fields, etc.

23

Proposed canonization function
Implementation:

 the CAESAR.BDD tool computes the permutations
 the NUPN_INFO tool applies the permutations
 8 seconds per net on average
 finally, a file deduplication tool is invoked

Relation between canonization and signatures:
 if each of the three permutation is unique, can(N) is
 also a signature function, i.e.:
 can(N) = can(N') ⇔ N and N' are isomorphic nets

24

6. Experimental results

25

Combination of methods
No single method solves the problem efficiently
5 methods are applied in combination
By order of increasing complexity:

 file deduplication
 pre-canonization (+ file deduplication)
 signatures
 canonization (+ file deduplication)
 graph-isomorphism tool

26

Approximated equivalence relation
Positive methods detect isomorphic nets:

 file deduplication, pre-canonization, canonization,
 graph isomorphism
 "certain" equivalence classes increase by merging

Negative methods detect non-isomorphic nets:
 signatures, canonization (if permutations are unique),
 graph isormorphism
 "potential" equivalence classes decrease by splitting
 (i.e., partition refinement)

27

Sample collection of 10 nets

straight boxes: "certain" equivalence classes
dotted boxes: "potential" equivalence classes

28

Results on the 4 collections

Collections 1, 2, 3 have few duplicates (< 7%)
Collection 4 has many duplicates (> 90%)
High success rate (99-100%) but unknowns remain
Experiments done on Grid 5000 clusters

29

Duplicates found in MCC collection
In MCC model CloudReconfiguration (2017):

 reconf_3_05 and reconf_3_15 are duplicates
In MCC model DNAwalker (2016):

 dnawalk-04 and dnawalk-07
 dnawalk-05 and dnawalk-06
 dnawalk-08 and dnawalk-10
 dnawalk-09 and dnawalk-11
 dnawalk-12 and dnawalk-13
 dnawalk-14 and dnawalk-15
 dnawalk-16 and dnawalk-17

30

 potential duplicates
(these nets are neither
ordinary nor safe)

7. Conclusion

31

Conclusion
A concrete, useful problem:

 detecting duplicates in large sets of P/T-nets or NUPNs
A pragmatic combination of approaches:

 file deduplication and pre-canonization
 signatures
 canonization
 reduction to graph isomorphism

Application to 4 large collections:
 from 244 to 241,000 nets
 sucesss rate: 99-100%

32

Future work
Enhance signature and canonization functions

 reduce the number of components in tuples

Additional approach based on SMT solving
 express net isomorphism as QF_IDL formulas

Extend the approach to:
 non-ordinary and non-safe nets
 (currently handled using over-approximations)
 colored nets

33

