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Motivation 

Verification: comparison of a LOTOS program against requirements. 

Two approaches: 

• theorem proving: (Boyer-Moore, LcF, ... ) 

• model checking: 

-step 1: translation LOTOS --7 finite state model (graph) 

- step 2: verification of requirements on the model 

translation 

graph 

decision method decision method 

yes/no yes/no 
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Theorem Proving vs. Model Checking 2 

II theorem proving I model checking I 
analysis level source-level graph-level 

symbolic evaluation yes no 
full automation no yes 

generality yes no 
efficiency no yes 

Model checking is less general but more efficient 

c· { a requirement R 
Iven a LOTOS specification represented by a graph G 

theorem proving model checking 

R undecidable theoretically impossible theoretically impossible 
R decidable theoretically possible 

theoretically impossible 
G infinite practically not efficient 

[R decidable] 
theoretically possible 

G finite practically impossible 
practically not efficient IGI > 106- 107 states 

[R decidable] 
theoretically possible 

G finite possible and efficient 
practically not efficient IGI < 106- 107 states 



Compilation vs. Interpretation 3 

• verification by model checking 

• problem: efficient translation LOTOS ---+ graph 

• two solutions: 

-interpretation scheme (LOTOS simulators) 
direct implementation of LoTOS dynamic semantics rules 

-compilation scheme (CJESAR) 

implementation of an Extended Petri Net semantics 

interpretation scheme CJESAR compilation scheme 

direct translation stepwise translation 
LOTOS ---+ graph LOTOS ---+ ••• ---+ ••• ---+ graph 

no intermediate form 
two intermediate forms: 

SuBLOTOS and networks 
only a run-time phase compile-time and run-time phases 

computations performed computations performed 
several times, at each step only once, _at compile-time 

states == LOTOS terms states == compact bit strings 
====? high cost in memory (position of control + values of variables) 

transitions ~ term rewriting transitions ~ Petri Net rules 
====? high cost in time (use of a static control skeleton) 



CJESAR: Principles ·of Functioning 4 

.......................................................................... 

analysis 

. 
expansion 

compile-time 

generation 

network optimisation 

.......................................................................... 

simulation run-time 

.......................................................................... 

graph 



Static Control Const,raints 

Restriction to a subset of LOTOS 

• recursion is not allowed on the left or right side of " I [ ... ] I " 
process P [ ... ] 

Ill P [ ... J 
endproc 

• recursion is not allo-vved on the left side of "> >" or "[>" 

Also: 

• process instantiation -vvith identical gate parameters: 

P [ ... , G, ... , G, ... ] ( ... ) 

is handled differently than in the ISO semantics of LOTOS 

• abstract data types must be implemented by concrete types 

Reasons 

In this subset of LOTOS: 

• all specifications have a finite state control skeleton 

• expressiveness is still sufficient for protocols 

A good solution to the expressivenes·s vs. efficiency problem. 
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Expansion: from Lotos to SubLotos 6 

SuB LOTOS= subset of LOTOS obtained by syntactic transformations 

• elimination of LOTOS "macroi'-operators: >>,exit, choice, par 

hide 8 in 
(8 IV. stop 

exit (V) >> accept X:S B . ' lll 
I [8] I 
8 ?X:S; B) 

choice G ln [G1, G2] [] p [G] p [G1] [] p [G2] 

par G lll [G1, G2] I I i p [G] p [G1] I I I p [G2] 

• recursion development to have "constanti' gates 

process P [G1, G2] 
G1; P [G2, G1] 

endproc 

process P [G1, G2] ... 
G1; G2; P [G1, G2] 

endproc 

• renaming of gates, variables and processes 

Static control constraints ===:::? SuBLOTOS is an imperative language. 

I LOTOS 

dynamic architecture 
• dynamic creation/ deletion of processes 

. • dynan1ic creation/ deletion of gates 
• dynamic creation/ deletion of variables 
• gates -vvith "variable" value 

functional features 
• dynamic constants 
• single assignment 
• local scope 

I SuBLOTOS (and net-vvorks) 

static architecture 
• static set of processes 
• static set of gates 
• static set of variables 
• gates with "constant" value 

imperative features 
• static variables 
• multiple assignment 
• global scope 



The Network Model 
The Control Part 

• a set of places 

• a set of transitions, with the following attributes 

- a set of input places 

- a set of output places 

- a gate (visible, "1", or "c") 

- a list of offers (" ! V" or "?X : S") 
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• a hierarchical refinement into units ( seqt1ential behaviors) 
r-------------------------------------------------------------------, 

1-------------.J 1-------------.J 

I 
I 
I 
I 
I 
I 

1-------------.J 
1--------------------------------------------------------------------.J 

The Data Part 
• a set of variables 

• actions attached to transitions: 

-assignments: X :==X+ 1 

-conditions: when X> 0 

-iterations: for X among BOOL 



The Network Model 

Operational semantics 

• translation network ----7 graph 

• state = (marking, context) 

- marking == set of n1arked places (control part) 

- context == values of variables (data part) 

• transition relation: state1 gat~ffers state2 

- -vvrt to markings: Petri Net rules 

- wrt to contexts: execution of the action 

Example: 

G !X 
when X <10; Y: X+l 

({Qb ... Qm}, {X= O, Y = 0}) QJ9 ({Q~, ... Q~}, {X= 0, Y = 1}) 
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The Network Model 

E- transitions 
• representation of instantaneous silent events 

• compositional construction of the network 

• semantics: 

{ 
closure algorithm (rv automata theory) 
+ atomicity rule 

Example: 

A; stop [] (B ; stop I I I C; stop) 

A 

c 
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Generation: frolll SubLotos to Network 10 

stop 

[ VQ] -> Bo 

let Xo : So= Va in Bo 

G 0 l···On 
when Vo 

E 

when Vo 

E 

Xo:=Vo 



Generation: frolll SubLotos to Network 11 

choice X 0 :So [] Bo 

hide Go, ... Gn in Bo 

p [ ... ] (V) 

where 
process P [ ... ] (X: 5) 

Bo 
endproc 

L------------.J 

£ 

X:=V 

£ 

for Xo among So 

L.-------------' +merging 



Generation: from SubLotos to Network 12 

Parallel composition: rules for transition merging 

• value matching: 0 1 == ! 1li and 0 2 == ! V2 

• value passing: 01 == ? XI: sl and 02 == ! V2 



Optimization: Reductions of Networks 13 

Reducing networks improves the efficiency of the simulation phase. 

A set of optimizing transformations: 

• based on static analysis techniques 

• preserving strong equivalence 

• fast and effective 

Optimization of the control part 
• based on (local) Petri Net analysis techniques 

- removing non reacl1able places/transitions 

-removing non productive places/transitions 

- removing places Q' such that (:3Q) Q marked ¢:::::? Q' marked 

-eliminating many £-transitions 

Optimization of the data part 
• based on (global) data-flow analysis techniques 

- removi11g variables never used 

-removing assignments of the form X :==X 

- removing variables X' such that (:3X) X == X' 

- discovering variables vvith constant values 

- evaluating constant boolean guards 



Simulation: from Network to Graph 14 

• breadtl1-first graph exploration ( rv marking grapl1 construction) 

- all encou11tered states are stored in a table 

- all edges are written on a file 

• LOTOS abstract data types are implemented by C concrete types 

• three successive steps: 

1. construction of a C program (simulator) 

2. compilation of this progra1n 

3. exec11tion of this program 

network 

simulator construction 

compilation 

execution 

graph 



Conclusion 

A new approach for compiling and verifying LOTOS 

Initial goal: verification by 1nodel checking of LOTOS specifications. 

Derived goal: efficient translation of LOTOS progra1ns into graphs. 

Tl1e proposed co1npilation 1nethod: 

• accepts a large subset of LOTOS 

• uses Petri Nets (extended with data) as an intermediate form 

• could be easily adapted for: 

- interactive simulation 

- test generation 

- seqtlential code generation 

A tool for LOTOS: CJESAR 

• full i111ple1nentation of tl1e translation method 
(25 000 lines of C code, SYNTAX compiler-generator) 

• graphs tlp to 800 000 states and 3 500 000 edges 

• 40-540 states per second (on a SUN4 with 8 l\!Ibytes) 
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• connectio11 with 7 verification tools: ALDEBARAN. PIPN. AUTO 
I I 
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