Compilation and Verification
of LOTOS Specifications

Hubert Garavel Joseph Sifakis

Centre d’Etudes Rhone-Alpes Laboratoire de Génie Informatique
VERILOG Institut LM.A.G.
Grenoble, France Grenoble, France

Motivation 1

Verification: comparison of a LOTOS program against requirements.
Two approaches:

¢ theorem proving: (Boyer-Moore, LCF, ...)
e model checking:

— step 1: translation LOTOS — finite state model (graph)

— step 2: verification of requirements on the model

translation

temporal logic
formula

property
automaiton

Idecision method decision method

yes/no yes/no

Theorem Proving vs. Model Checking 2

theorem proving | model checking
analysis level source-level graph-level
symbolic evaluation yes no
full automation no yes
generality yes no
efficiency no yes

Model checking is less general but more efficient

Given | & requirement R
a LOTOS specification represented by a graph G

theorem proving model checking
R undecidable theoretically impossible | theoretically impossible
R decidable theoretically possible . : :

G infinite practically not efficient e e
£ demd.a.ble] theoretically possible : . .

G finite PR Pt practically impossible

|G| > 105-107 states e d

[R decidable] . .

G finite theoretically possible

|G| < 10%-107 states

practically not efficient

possible and efficient

Compilation vs. Interpretation 3

¢ verification by model checking

e problem: efficient translation LOTOS — graph

e two solutions:

— interpretation scheme (LOTOS simulators)
direct implementation of LOTOS dynamic semantics rules

— compilation scheme (C&ESAR)
implementation of an Extended Petri Net semantics

interpretation scheme

CAESAR compilation scheme

direct translation
LoT0s — graph

stepwise translation
LOoTOS — ... — ... — graph

no intermediate form

two intermediate forms:
SuBLOTOS and networks

only a run-time phase

compile-time and run-time phases

computations performed
several times, at each step

computations performed
only once, at compile-time

states = LOTOS terms
= high cost in memory

states = compact bit strings
(position of control + values of variables)

transitions «— term rewriting
—> high cost in time

transitions < Petri Net rules
(use of a static control skeleton)

CASAR: Principles of Functioning ¢

LOTOS specification

analysis

|
s o
|

expansion

l
l

generation

compile-time

Tl

simulation run-time

oooooooooooooooooooooooooooo

Static Control Constraints

Restriction to a subset of LoTOS

|77

e recursion is not allowed on the left or right side of “| [...]

process P [...]1 ...
(13 P Lowal

endproc

e recursion is not allowed on the left side of “>>” or “[>”
Also:
e process instantiation with identical gate parameters:
P Bisin By sass B vord Lo:a)
is handled differently than in the ISO semantics of LOTOS

e abstract data types must be implemented by concrete types

Reasons

In this subset of LoTOS:

e all specifications have a finite state control skeleton

e expressiveness is still sufficient for protocols

A good solution to the expressiveness vs. efficiency problem.

Expansion: from Lotos to SubLotos 6

SUBLOTOS = subset of LOTOS obtained by syntactic transformations

e climination of LOTOS “macro”-operators: >>, exit, choice, par

hide ¢ in
exit (V) >> accept X:S in B I(Cl;:;\lf, Stop
6 ?X:S; B)
choice G in [G1, G2] [1 P [G] |P [Gi]l [1 P [G2]
par G in [G1, G2] ||| P [G] P [G1]1 |l P [G2]

e recursion development to have “constant” gates

process P [Gl, G2] ... process P [Gl, G2]
Gi; P [G2, G1i] Gl; G2; P [G1, G2]
endproc endproc

e renaming of gates, variables and processes

Static control constraints => SUBLOTOS is an imperative language.

LoTos SUBLOTOS (and networks)
dynamic architecture static architecture

e dynamic creation/deletion of processes | e static set of processes

e dynamic creation/deletion of gates e static set of gates

e dynamic creation/deletion of variables | e static set of variables

e gates with “variable” value e gates with “constant” value
functional features imperative features

e dynamic constants e static variables

e single assignment e multiple assignment

e local scope e global scope

The Network Model 7
The Control Part

e a set of places
e a set of transitions, with the following attributes

— a set of input places

— a set of output places

({3} [P}

— a gate (visible, “7”, or “€”)
— a list of offers (“!V” or “?X:8”)

e a hierarchical refinement into units (sequential behaviors)

[e e e e e e e e ey
e o e s e A i i i e . o)

The Data Part

e 2 set of variables
e actions attached to transitions:

— assignments: X = X +1
— conditions: when X > 0
— iterations: for X among BOOL

The Network Model 8

Operational semantics

e translation network — graph
e state = (marking, context)

— marking = set of marked places (control part)
— context = values of variables (data part)

.y : te offi
e transition relation: state; e s state,

— wrt to markings: Petri Net rules

— wrt to contexts: execution of the action

Example:

@ -@®

WhenX<10 Y :=X+1

{Qu - @mb {X =0,y =0}) E20 ({1}, .. QL1 {X =0, Y =1})

statel statez

The Network Model

e-transitions

e representation of instantaneous silent events
e compositional construction of the network

e semantics:

closure algorithm (~ automata theory)
+ atomicity rule

Example:

A; stop [1 (B; stop ||| C; stop)

A L] L] e
L | | C

B

Generation: from SublLotos to Network 10

stop
; I GOji...
A when VO
G Ol)"'On [%] ; BO
B, [1 B, ll l
l E
A when Vg
B
[Vel > By ’
' E
Xo=Vo
let X():SO:% in Bo A

Generation: from SubLotos to Network 11

g

" for X among S

choice X,:S5, [1 By

(P

------------ 4 4 merging

B, 1[Gy,..G,1] B,

hide Go, Gn in BO

B, [> B,
P [..1 (V)

where

process P [...] (X:S)
By

endproc

Generation: from SublLotos to Network 12

Parallel composition: rules for transition merging

GO GO

¢ value matching: O; = 'V

&

.

G 'V,
when V1=V9); (A1 & Aj)

——

S
o

ndng "/2

e value passing: O, =7X;:5;

o

&
&

G 'V,
=V3); (A1 &Aj)

5
S

e value generation: O; =7X;:5; and Oy = 7X5: 5,

&
&

G 7X7:S
=X2); (A1 &Ap)

f>
(S F

Optimization: Reductions of Networks 13

Reducing networks improves the efficiency of the simulation phase.
A set of optimizing transformations:

e based on static analysis techniques
e preserving strong equivalence

e fast and effective

Optimization of the control part

¢ based on (local) Petri Net analysis techniques

— removing non reachable places/transitions
— removing non productive places/transitions
— removing places ' such that (3Q) Q marked <= Q' marked

— eliminating many e-transitions

Optimization of the data part

¢ based on (global) data-flow analysis techniques

— removing variables never used

— removing assignments of the form X := X

— removing variables X’ such that (3X) X = X'
— discovering variables with constant values

— evaluating constant boolean guards

Simulation: from Network to Graph 4

e breadth-first graph exploration (~ marking graph construction)

— all encountered states are stored in a table

— all edges are written on a file
e LOTOS abstract data types are implemented by C concrete types
e three successive steps:

1. construction of a C program (simulator)
2. compilation of this program

3. execution of this program

simulator construction

l

simulator (source)

concrete types

compilation

simulator (object)

l

execution

e >

Conclusion 15

A new approach for compiling and verifying LOTOS

Initial goal: verification by model checking of LOTOS specifications.
Derived goal: efficient translation of LOTOS programs into graphs.
The proposed compilation method:

e accepts a large subset of LOTOS
e uses Petri Nets (extended with data) as an intermediate form
e could be easily adapted for:

— interactive simulation
— test generation

— sequential code generation

A tool for LoT0Ss: CESAR

e full implementation of the translation method
(25 000 lines of C code, SYNTAX compiler-generator)

e graphs up to 800 000 states and 3 500 000 edges
e 40-540 states per second (on a SUN4 with 8 Mbytes)

e connection with 7 verification tools: ALDEBARAN, PIPN, AUTO

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16

