CADP 2010: A Toolbox for the
Construction and Analysis of
Distributed Processes

Hubert Garavel - Frédéric Lang
Radu Mateescu - Wendelin Serwe

INRIA - LIG / VASY
http://vasy.inria.fr/

%l INRIA

ZINRIA®

LI G

Talk overview

e Part I: What is CADP?
e Part Il: What is new in CADP 2010?

e Conclusion

o
. B]
%I INRIA o —

What is CADP?

W]NRIAL'I~G

CADP

e A modular toolbox for asychronous systems

e At the crossroads between:
- concurrency theory
- formal methods
- computer-aided verification
- compiler construction

e A long-run effort:
- development of CADP started in the mid 80s
- initially: only 2 tools (CAESAR and ALDEBARAN)
- last stable version: CADP 2006
- today: nearly 50 tools in CADP 2010

g
[B]
ZINRIAY - T

CADP main features

Formal specification languages

Verification paradigms:
- Model checking (modal p-calculus)
- Equivalence checking (bisimulations)
- Visual checking (graph drawing)

Verification techniques:
Reachability analysis
On-the-fly verification
Compositional verification
Distributed verification
Static analysis

Other features:
- Step-by-step simulation
- Rapid prototyping
- Test-case generation

- Performance evaluation

o
I B]
%I INRIA o —

Verification technology: LTS (1/2)

e Labelled Transition Systems

e LTS = state-transition graph
- no information attached to states (except the initial state)
- information ("labels” or "actions”) attached to transitions

ZIINRIA L‘.

C —
G VASY 6

Verification technology: LTS (2/2)

e "Explicit” LTS (enumerative, global):

- comprehensive sets of states, transitions, labels

- BCG: a file format for storing large LTSs

- a set of tools for handling BCG files

- CADP 2010: BCG limits extended from 22° to 244
 "Implicit” LTS (on the fly, local):

- defined by initial state and transition function

- Open/Caesar: a language-independent API

- many languages connected to Open/Caesar

- many tools developed on top of Open/Caesar

WINRIA s

VASY 7

Verification technology: BES (1/2)

e Boolean Equation Systems

o least (1) and greatest (v) fix points
e DAG of equation systems (no cycles - alternation-free)

A

rX1 =HXZVX3

X; =, X3 V(Xy)

\X3 i X2 /\@

3

r

M3

~

X7

HI5IE)

=V X8 N\ X9

A%

A%

T
F

r
X4)= 0
< X5 =“

M2‘ X6 K

(5 V X¢
F

WINRIA s

VASY 8

Verification technology : BES (2/2)

e BES can be given:
- explicitly (stored in a file)
- or implicitly (generated on the fly)

e« CAESAR_SOLVE: a solver for implicit BES

- works on the fly: explores while solving
- translates dynamically BES into Boolean graphs

- implements 9 resolution algorithms AO-A8
(general vs specialized)

- generates diagnostics (examples or counter-examples)
- fully documented API

e« BES_SOLVE: a solver for explicit BES

| | —
W iNrIAT - VASY 9

What is new in CADP 2010?

S W]NR[AL‘ISG L

Specification: support for LOTOS

e LOTOS (ISO standard 8807):

- Types/functions: algebraic data types

- Processes: process algebra based on CCS and CSP
e Tools: CAESAR, CAESAR.ADT, CAESAR.OPEN, etc.

e New features:
- 64-bit support (as for all tools of CADP 2010)

- Structured types (tuples, unions, lists, trees, strings, sets,
etc.) can be stored canonically using bounded hash tables

- Enhanced data flow analysis for further state space
reductions

- Dynamically resizable state tables
- Code specialization according to the amount of RAM

‘ B]
EE— WINRIA LI G VASY 11

Specification: support for FSP

e FSP (Finite State Processes) [Magee-Kramer]

- A simple, concise process calculus
- Supported by the LTSA tool

e New tools: FSP2LOTOS and FSP.OPEN
- Translation from FSP to LOTOS + EXP + SVL
- On-the-fly state space generation for FSP

- Benefits wrt LTSA:
» Non-guarded process recursion is handled
= Larger LTSs can be generated (64-bit support)
» Easy interfacing with all other CADP tools

| ‘ B
WINRIAT - VASY 12

Specification: support for LOTOS NT

e Goal: replace LOTOS with a better language
e« LOTOS NT:

- easier to learn than LOTQOS
- more concise than LOTOS
- coherent synthesis of LOTOS, ESTELLE, SDL, and Promela
e Key ideas:
- types and functions: functional languages (first-order only)
- processes: process algebras
- with imperative-style syntax to be close to mainstream languages

o New tools: LPP, LNT2LOTOS, LNT.OPEN
- Translation from LOTOS NT to LOTOS
- On-the-fly state space generation for LOTOS NT

‘ T
WinriaT - VASY 13

Specification: other languages

SA!V\ EB3 WSDL-BPEL pi-calculus SDL AA‘DL
/

BIP 1 FSP LOTOS NT Fiacr_e CHP

v e l
EXP LOTOS |« ------ systeme
l
\ Open/Caesar
— W INRIA® \, —

VASY 14

Model checking: Evaluator 3.6

e An on-the-fly model checker

for u-calculus built-on top of

Open/Caesar and Caesar_5Solve
library for BES

e Automatic generation of
diagnostics (LTS fragments:
sequences, trees, or graphs
with cycles)

 Libraries of standard property
patterns

WINRIA s

Formula language:

 alternation-free u-calculus
extended with regular
expressions

e Action predicates:

- strings

- regular expressions

- not, and, or ...
e Path formulas:

- regular express. over actions
e State formulas:

- [Action] ¢, <Action> ¢
[Path] ¢, <Path> ¢
not, and, or ...
least and greatest fixed points

VASY 15

Model checking: Evaluator 4.0

An on-the-fly model checker for
the MCL language (more
powerful than the language of
Evaluator 3.6)

Supports temporal formula with
data (LTS actions contain typed
values)

Based on PBES (Parameterized
Boolean Equation Systems)
rather than BES

Reasonable model checking
complexity (linear-time for
formulas without data)

WINRIA‘\

MCL (Model Checking Language)

e Predefined types (boolean,
natural, integer, natset, real,
character, string)

e Extended action formulas
with value extraction and value
matching

o Extended path formulas:
- enables counting of actions
- if-then-else, case, let, while,
repeat, for, ...
o Extended state formulas:

- fixed points parameterized with
typed variables

- if-then-else, case, let
- quantifiers over finite domains

- fairness operators inspired from
PDL-A to describe cyclic behaviours

VASY 16

Equivalence checking

e Minimizing and comparing LTSs

e Bisimulations relations: strong, branching...

o Compositional generation of large LTSs

e Tools: EXP.OPEN, PROJECTOR, REDUCTOR, SVL

e (Almost) new tool: BISIMULATOR 1.1
- on-the-fly comparison of two LTSs
- 7 equivalence relations supported with their preorders
- diagnostics (common LTS fragment before divergences)

e« New tool: BCG_MIN 2.0

- new signature-based minization algorithm
- support for large LTSs with 107 - 1070 states

e New tool: PROJECTOR 3.0

- enhanced algorithm (3 times faster, 1.5 times less
memory)

‘ B]
WINRIA LI G VASY 17

Distributed verification

e Exploit NoWs, clusters and grids
e« Cumulate CPU and RAM across the network

e Step 1: distributed LTS exploration
- The LTS is built and partitioned on the fly
- Fragments are sets of states and transitions
- PBG = LTS consisting of remote graph fragments
- Tools: DISTRIBUTOR and BCG_MERGE
- New tools: PBG_CP, PBG_INFO, PBG_MV, PBG_OPEN, PBG_RM

e Step 2: distributed BES resolution

- The BES is built, partitioned, and solved on the fly

- Fragments are sets of boolean variables and logical
dependencies between variables

- New tool: distributed BES solver available in BES SOLVE
ZINRIA® .

VASY 18

Performance evaluation

« Combining functional verification and performance
evaluation

e Based on Hermanns' Interactive Markov Chains (IMCs)

e Step 1: Compositional generation of IMCs
- Tools: BCG_MIN, DETERMINATOR, EXP.OPEN, SVL

e Step 2: Markov solvers for IMCs
- Tools: BCG_STEADY and BCG_TRANSIENT

e Step 3: Markov simulation (for big models)

- New Tool: CUNCTATOR
= on-the-fly simulator for IMCs
= on-the-fly hiding/renaming of labels
= various scheduling strategies
» save/restore features

7 | C—
|
"INR]A LI G VASY 19

Conclusion

WINRIA L‘|~

G

Conclusion

e« CADP: a bridge between theory and practice
- 139 case-studies performed using CADP
- 57 research tools built using CADP
- Forum with 160 users and ~1100 messages

e« CADP 2010: a significant development effort
- Comprehensive tool set: ~50 tools

- Many architectures supported (full 64-bit support)
» Processors: Itanium, PowerPC, Sparc, x86, x64
= Operating systems: Linux, MacOS X, Solaris, Windows
= Compilers: gcc3, gcc4, Intel C, Sun C

- Large documentation

- Significant testing effort (+ Contributor tool)

‘ B]
EE— WINRIA LI G VASY 21

