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Taking numbers for granted

m Some formal methods do not define numbers

m They assume numbers pre-exist as "basic types"

» B
assumes Z >N DN, (with MININT and MAXINT)

» PVS
assumes number D real o rational o integer o natural

= VDM
assumes real oD rat o int > nat o natl

> 7
assumes Z >N > N,
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What is wrong with this?

m Actually, these formal methods are closer to
programming languages:
» they borrow the FORTRAN concept of basic types
» closer to programming than to mathematics

m Properties involving numbers cannot be proven
within these formal methods:

» number-specific theories need to be imported
» a unified framework including numbers is preferable
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This talk

m Focus on formal methods that define numbers

m Focus on N and Z
» we consider arbitrary large numbers

» this excludes "machine integers" and "modular
arithmetics"”

m Defining N is easy (note: 0eN)

m Defining Z is not trivial:
» we compare the techniques used to define Z
» we suggest a "most suitable" approach
» criteria: elegance, implementability, concisess
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Building N: two approaches
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Approach 1: set theory

m Zermelo-Fraenkel and Von Neumann construct N
as follows:

0=

»1:=0u {0} ={0} ={D}
»2:=10{1}={0, 1} ={J, {ID}}
»3:=20U{2}={0, 1, 2} = {D,{D},{F,{D}}}
»etc. - n+tl:=nui{n}={0, 1, .., n}

m No formal method seems to use this approach
(even those based on set theory)
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Approach 2: algebraic terms

m Peano defines natural numbers using 5 axioms

m This amounts to having 2 constructors:
O :— Nat
succ : Nat — Nat

m Many formal methods define N this way:
CASL, Coq, Isabelle/HOL,
LOTOS, Maude, mCRL2, etc.
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Term rewrite systems: Bool

SORTS VARS
bool b : bool
CONS RULES
false : -> bool not (true) -> false
true : -> bool not (false) -> true
OPNS
not : bool -> bool and (false, b) -> false
and : bool bool -> bool and (true, b) -> b




Term rewrite systems: Nat (1/3)

SORTS pred : nat -> nat
nat add : nat nat -> nat
CONS sub : nat nat -> nat
mult : nat nat -> nat
Zero : ->nat div : nat nat -> nat
succ : nat -> nat mod : nat nat -> nat
OPNS VARS
even : nat -> bool mnpd:nat
odd : nat -> bool RULES
eq : nat nat -> bool % pred (zero) is undefined
It : nat nat -> bool pred (succ (n)) ->n
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Term rewrite systems: Nat (2/3)

even (zero) -> true odd (zero) -> false

even (succ (n)) -> odd (n) odd (succ (n)) -> even (n)
eq (zero, zero) -> true It (zero, zero) -> false

eq (zero, succ (n)) -> false It (zero, succ (n)) -> true

eq (succ (n), zero) -> false It (succ (n), zero) -> false

eq (succ (m), succ (n)) ->eq (m, n) | It (succ (m), succ (n)) -> It (m, n)

add (m, zero) ->m % sub (m, n) undefined if It (m, n)
add (m, succ (n)) -> sub (m, zero) ->m
add (succ (m), n) | sub (succ (m), succ (n)) ->
sub (m, n)
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Term rewrite systems: Nat (3/3)

mult (m, zero) -> zero
mult (m, succ (n)) -> add (m, mult (m, n))

% div (m, zero) and mod (m, zero) are undefined

if and (not (eq (n, zero)), It (m, n)) -> true then
div (m, n) -> zero
mod (m, n) -> m

if and (not (eq (n, zero)), not (It (m, n))) -> true then
div (m, n) -> succ (div (sub (m, n), n))
mod (m, n) -> mod (sub (m, n), n)
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Building Z using set theory

rd
informatics #Fmathematics
&L’Z&d——— G

13



Approach #1: Set-theoretic definition of Z

m In mathematical textbooks, Z is defined as:
Z=NxN /~
where ~ is the equivalence relation such that:
(m,n)~(m,n') < m+n'=m'+n
m Advantages:

» standard approach in mathematics

» similar to the definition of rational numbers:
Q=7 x Z*/~where (m, n) ~(m', n') < m.n'=m'.n

m Approach adopted by CASL and Isabelle/HOL

r d

informatics #Fmathematics '
&L’?&a_——
- 14




5 drawbacks (wrt computer science)

m Heavy concepts: cartesian product and quotient set
m Integers defined very differently from naturals
m Against the intuition:

» one needs a half-line towards — «©
» instead; one builds a surface that is then projected

m Forbids induction proofs over integers [cf. Isabelle]

m Computationally expensive:
» waste of memory bits: each Int costs two Nats

» waste of CPU time: no structural equality =
comparing two Ints costs more than comparing pairs of Nats
(normalization of terms may be suitable)

r d
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Building Z using algebraic terms
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Goal - Proposed taxonomy

m Can we find Peano-like definitions for Z ?
» using only basic notions (sorts, operations, equations)

m How to compare these various definitions?
» By the freeness/non-freeness of their constructors
» By the number m of their sorts

» By the number n of their constructors

Fm<— number of sorts involved

non-free constructors —2 N (including Int)

free constructors
——— F
1, €—— number of constructors

number of equations often in O (n?)

r d

informatics #Fmathematics '
&L’?&a_——
_ 17




Terms and denotations

m Let [.] be the denotation: algebraic term — Z

m Clearly, [.] should be surjective
so that all integers can be denoted by some term

m Do we want [.] to be injective too (ie., bijective)?

» if [.] not injective : non-free constructors
there exist at least two ground terms that are
syntactically different but can be proven equal

» if [.] injective : free constructors
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Free vs non-free constructors

m Software tools usually prefer free constructors
(few tools implement non-free constructors)

m One can always eliminate non-free constructors
by splitting each of them into a pair
(constructor, non-constructor)

» but, for signed integers, such elimination does not
give elegant results
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Building Z using algebraic terms
— with non-free constructors
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Approach #2: NF?

m The set-theoretic definition (Z = N x N/~)
implicitly defines a constructor:
pair : nat x nat — int

m This is a non-free constructor:

pair (zero, succ (zero)) ~
pair (succ (zero), succ (succ (zero))

Equivalence classes are even infinite:
(Vp, g, k) pair (p, q) ~ pair (p + k, q + k)
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Approach #3: NFi (used in KIV)

m Very intuitive idea:
» nat is defined with 2 constructors zero and succ

» int can be defined with 3 constructors:
zero : — int
succ : int > int
pred :int > int  symmetric of succ

m These are non-free constructors:
pred (succ (zero)) = succ (pred (zero)) = zero

More generally:
(Vx) pred (succ (x)) = succ (pred (x)) = x
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Approach #4: NF$ (used in PSF)

m Another intuitive idea: define Z as{+ -} x N

m This is done using a single constructor:
pair : sign x nat — int

m This constructor is not free:
pair (+, zero) = pair (—, zero)
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Approach #5: NF3 (SMTlib, Maude)

m Variant on the previous version
m No introduction of a "sign" sort

m But two constructors:
+:nat — int
— :nat —> int
m Again, these constructors are not free:
+ (zero) = — (zero)
m How do SMTlib and Maude handle this issue?
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The SMTIib solution

m The authors of SMTIib (v2.5, 2015) are aware of
this issue. They write:

"The set of values for the Int sort consists of all
numerals and all terms of the form (— n) where n
is a numeral other than 0".

m Syntactic prohibition of (—0) is easy
m But what about (— x) where x = 07?
» this sounds like dependent types
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The Maude solution

m Use of "higher-level" features:
» 0) assume that Nat is defined
» 1) define a new sort NzNat as a subsort of Nat
» 2) define a new sort Int such that Nat subsort of Int

» 3) define a sort NzInt such that
(NzNat subsort of NzInt) and (NzInt subsort of Int)

» 4) define an operation "-" : NzNat — NzInt
» 5) extend "-" to Int such that—0=0and ——x =x

m Correct, but heavy machinery
m Is there a lighter solution?

r d
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Building Z using algebraic terms
— with free constructors
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Approach #6: F5 (used in mCRL2)

m Sources: the recent book by Groote & Mousavi and
http://www.mcrl2.org/dev/user manual/language reference/data.html

m Three sorts:

»P0s: non zero natural numbers
(constructors for a binary representation)

» Nat: natural numbers
@c0 : — Nat @cNat : Pos — Nat
» Int: integers
@clInt : Nat — Int @cNeg : Pos — Int

r d
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http://www.mcrl2.org/dev/user_manual/language_reference/data.html
http://www.mcrl2.org/dev/user_manual/language_reference/data.html

The mCRL2 solution

m Intuitively:
» @cInt (m:Nat) corresponds to +m
» @cNeg (m:Pos) corresponds to —m

m There is an intended dissymetry Nat / Pos

» duplication of zero is avoided
@cNeg (zero) would not type check
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Approach #7: F3 (used in Coq)

m Two possible definitions: Coq library vs. Christine
Paulin's tutorial (LASER school, Elba Island, 2011)

£0:Z 70:Z

Zpos:nat —>Z Zpos : positive — Z

neg:nat —Z Zneg : positive — Z
where: where:
(Zpos n) stands for n+1 (Zpos n) stands for n
(Zneg n) stands for —n=1 | (Zneg n) stands for —n
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Can we do better?

m MCRL2:
» 3 sorts: Nat, Pos, Int
» 2 constructors: @clnt, @cNeg

m Coq:
» 2 sorts: nat (or Positive), Z
» 3 constructors: Z0, Zneg, Zpos

m Is there a (2 sorts, 2 constructors) solution?
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Approach #8: F2 (used in CADP)

m 2 sorts: Nat (reused) and Int (defined)
m 2 constructors for Int:

» Pos : Nat — Int Pos (n) denotes n

» Neg : Nat — Int Neg (n) denotes —n—-1
m The classical idempotence identities:

(Vn) +(+n)=n A —(—n)=n

get a counterpart:

(Vn) Pos(Pos(n))=n A Neg(Neg(n))=n
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There is no "simpler" solution

m Search for functions F (similar to + and —) that are
» involutive : F(F(n))=n
» simple (i.e., affine) : F(n)=an+Db

m Solutions:

» F(n)=n —> F corresponds to our Pos operator
» F (x)=—x+b

There is a infinite family of solutions indexed by b

but only b = -1 satisfies F(N)UF, (N)=2%Z

— F_, corresponds to our Neg operator

= the pair (Pos, Neg) is unique

r d




What about derived functions?

m Claim: using the Pos and Neg constructors,
the usual operators on Int can be defined simply

» as simply as their Nat equivalents using O and succ

m In the next slides: [thanks to R. Mateescu and M. Sighireanul]
» succ: Int > Int  succis no longer a constructor for Int
» pred: Int — Int
» eq,<:Int, Int > Bool equality and order relations
» +:Int, Int > Int
» —:Int—> Intand —:Int, Int > Int unary and binary
» * div, mod, rem : Int, Int — Int

r d
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Operators "succ” and "pred”

(in green : existing operators defined on N)
(in blue : operators to be defined on Z)

succ (Pos (n)) = Pos (succ (n))
succ (Neg (0)) = Pos (0)
succ (Neg (succ (n))) = Neg (n)

pred (Pos (0)) = Neg (0)
pred (Pos (succ (n))) = Pos (n)
pred (Neg (n)) = Neg (succ (n))
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Operators "eq" and "<"

Pos (m) eq Pos (n)=megn
Pos (m) eq Neg (n) = false
Neg (m) eq Pos (n) = false
Neg (m) eqg Neg (n) =meqn

Pos (m) < Pos(n)=m<n
Pos (m) < Neg (n) = false
Neg (m) < Pos (n) = true
Neg (m)<Neg(n)=n<m
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Operators "abs", "odd", and "even"

abs (Pos (n)) = Pos (n)
abs (Neg (n)) = Pos (succ (n))

odd (Pos (n)) = odd (n)
odd (Neg (n)) = even (n)

even (Pos (n)) = even (n)
even (Neg (n)) = odd (n)
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Operators "+" and (unary, binary)

Pos (0) + x = X

Pos (succ (n)) + x = Pos (n) + succ (x)
Neg (0) + x = pred (x)

Neg (succ (n)) + x=Neg (n) + pred (x)

— (Pos (0)) = Pos (0)
— (Pos (succ (n))) = Neg (n)
— (Neg (n)) = Pos (succ (n))

X=y = x+(=(y))
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Operator "*" (two definitions)

Pos (0) * x = Pos (0)

Pos (succ (n)) * x = (Pos (n) * x) + x
Neg (0) * x =—(x)

Neg (succ (n)) * x=(Neg (n) * x) — x

Pos (m) * Pos (n) = Pos (m * n)

Pos (m) * Neg (n) = succ (Neg (m * succ (n)))
Neg (m) * Pos (n) = succ (Neg (succ (m) * n))
Neg (m) * Neg (n) = Pos (succ (m) * succ (n))

v d
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Operator "div"

Pos (m) div Pos (n) = Pos (m div n)

Pos (m) div Neg (n) = — (Pos (m div succ (n)))
Neg (m) div Pos (n) = — (Pos (succ (m) div n))
Neg (m) div Neg (n) = Pos (succ (m) div succ (n))
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Operator "mod"

The result is zero or has the same sign as the right operand
Consistent with modular arithmetic: (x+n) mod n = x mod n

y<O0 A Xx<=y = xmody=(x—y)mody
y>0 A x>y = xmody=(x—y)mody
y<O0 A x>0 = xmody=(x+y)mody
y>0 A x<0 = xmody=(x+y)mody
otherwise = Xxmody=x
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Operator "rem”

The result is zero or has the same sign as the left operand
Consistent with Euclidian division: xremy =x—(y * (x div y))

x>>0 A y20 = xremy=xmod abs (y)
x<0 A yz0 = xremy=—((—x) mod abs (y))
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What about induction?

m Isabelle/HOL manuals complain that the set-
theoretic definition of Z forbids inductive proofs

m Our definition of Z supports induction:

> P
> P
e if
e if

nolds for Pos (0)
nolds for Neg (0)

P holds for Pos (n), then P holds for Pos (n+1)

P holds for Neg (n), then P holds for Neg (n+1)
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Funny "minimal” approaches
(single constructor or single sort)
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Approach #9: F3 (mapping N to Z)

m 7Z can be defined as NxN/~
m Bijections from N2 to N exist (diagonal enumeration)

m So, bijections from N to Z exist, e.g.:
f(n) :=if (niseven) then n/2 else —(n+1)/2
l.e.,
f(N)=1{0,-1,1,-2,2,-3,3,-4,4, ..}

m We can define Z with a single constructor f
by using such a bijection
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What about defined functions?

m Computationally expensive

» sign tests must be implemented by O(n) parity tests
even (n) = abs (f (n)) =f (n)
odd (n) = abs (f (n)) =f (n+1)
m Strongly similar to the CADP approach:
Pos (n) =f(2n)
Neg (n) =f (2n+1)
» the one-constructor approach uses Boolean premises

whereas the CADP approach uses pattern matching
on its two constructors Pos and Neg
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Approach #10: F3

m Suggested by Lutz Schroder at WADT 2016
int =0 | -1 | succ:int->int
» +n is represented by succ” (0)
» -n is represented by succ" (-1)
m Funnily: these constructeurs can also describe N
» if 0 means 0, -1 means 1, succ (n) means n+2
m Advantages:

» single sort: int does not depend on any other sort
» strict extension of Peano (by just adding -1)

r d
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What about defined functions?

m Drawbacks:
» computationally expensive: sign tests costs O(n)

» bizarre induction: succ means either incrementation
or decrementation

m Quite similar to the CADP approach:
Pos (succ" (0)) = succ" (0)
Neg (succ” (0)) = succ” (-1)
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Conclusion
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Summary

m Consensus on N, but no consensus on Z
» no definition: B, PVS, VDM, Z, synchronous languages
» set product and quotient: CASL, Isabelle/HOL

» non-free constructors: KIV, PSF, SMTlib (dependent
types), Maude (subsorts and operation overloading)

» free constructors: mCRL, Coq, CADP + funny solutions
m Approach F3 (CADP) seems the most suitable

m Unified definition of Z:
» better interoperability for tools
» reuse/sharing of specifications and proofs
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