
On the Most Suitable
Axiomatization of

Signed Integers

Hubert Garavel
Inria Grenoble – LIG

Université Grenoble Alpes
Saarland University

http://convecs.inria.fr

http://convecs.inria.fr/

Motivation

2

Taking numbers for granted
Some formal methods do not define numbers
They assume numbers pre-exist as "basic types"

 B
 assumes ℤ ⊃ ℕ ⊃ ℕ1 (with MININT and MAXINT)
 PVS
 assumes number ⊃ real ⊃ rational ⊃ integer ⊃ natural
 VDM
 assumes real ⊃ rat ⊃ int ⊃ nat ⊃ nat1
 Z
 assumes ℤ ⊃ ℕ ⊃ ℕ1

3

What is wrong with this?
Actually, these formal methods are closer to
programming languages:

 they borrow the FORTRAN concept of basic types
 closer to programming than to mathematics

Properties involving numbers cannot be proven
within these formal methods:

 number-specific theories need to be imported
 a unified framework including numbers is preferable

4

This talk
Focus on formal methods that define numbers
Focus on ℕ and ℤ

 we consider arbitrary large numbers
 this excludes "machine integers" and "modular
arithmetics"

Defining ℕ is easy (note: 0∈ℕ)

Defining ℤ is not trivial:
 we compare the techniques used to define ℤ
 we suggest a "most suitable" approach
 criteria: elegance, implementability, concisess
 5

Building ℕ: two approaches

6

Approach 1: set theory
Zermelo-Fraenkel and Von Neumann construct ℕ
as follows:

 0 := ∅
 1 := 0 ∪ {0} = {0} = {∅}
 2 := 1 ∪ {1} = {0, 1} = {∅, {∅}}
 3 := 2 ∪ {2} = {0, 1, 2} = {∅,{∅},{∅,{∅}}}
 etc. -- n+1 := n ∪ {n} = {0, 1, …, n}

No formal method seems to use this approach
(even those based on set theory)

7

Approach 2: algebraic terms
Peano defines natural numbers using 5 axioms

This amounts to having 2 constructors:
 0 : → Nat
 succ : Nat → Nat

Many formal methods define ℕ this way:
 CASL, Coq, Isabelle/HOL,
 LOTOS, Maude, mCRL2, etc.

8

Term rewrite systems: Bool

 SORTS
 bool
 CONS
 false : -> bool
 true : -> bool
 OPNS
 not : bool -> bool
 and : bool bool -> bool

9

VARS
 b : bool
RULES
 not (true) -> false
 not (false) -> true

 and (false, b) -> false
 and (true, b) -> b

Term rewrite systems: Nat (1/3)
SORTS
 nat
CONS
 zero : -> nat
 succ : nat -> nat
OPNS
 even : nat -> bool
 odd : nat -> bool
 eq : nat nat -> bool
 lt : nat nat -> bool

10

 pred : nat -> nat
 add : nat nat -> nat
 sub : nat nat -> nat
 mult : nat nat -> nat
 div : nat nat -> nat
 mod : nat nat -> nat

VARS
 m n p q : nat
RULES
 % pred (zero) is undefined
 pred (succ (n)) -> n

Term rewrite systems: Nat (2/3)
odd (zero) -> false
odd (succ (n)) -> even (n)

lt (zero, zero) -> false
lt (zero, succ (n)) -> true
lt (succ (n), zero) -> false
lt (succ (m), succ (n)) -> lt (m, n)

% sub (m, n) undefined if lt (m, n)
sub (m, zero) -> m
sub (succ (m), succ (n)) ->
 sub (m, n)

11

even (zero) -> true
even (succ (n)) -> odd (n)

eq (zero, zero) -> true
eq (zero, succ (n)) -> false
eq (succ (n), zero) -> false
eq (succ (m), succ (n)) -> eq (m, n)

 add (m, zero) -> m
 add (m, succ (n)) ->
 add (succ (m), n)

Term rewrite systems: Nat (3/3)
mult (m, zero) -> zero
mult (m, succ (n)) -> add (m, mult (m, n))

% div (m, zero) and mod (m, zero) are undefined

if and (not (eq (n, zero)), lt (m, n)) -> true then
 div (m, n) -> zero
 mod (m, n) -> m

if and (not (eq (n, zero)), not (lt (m, n))) -> true then
 div (m, n) -> succ (div (sub (m, n), n))
 mod (m, n) -> mod (sub (m, n), n)

12

Building ℤ using set theory

13

Approach #1: Set-theoretic definition of ℤ

In mathematical textbooks, ℤ is defined as:
 ℤ = ℕ × ℕ / ∼
where ∼ is the equivalence relation such that:

 (m, n) ∼ (m', n') ⇔ m + n' = m' + n
Advantages:

 standard approach in mathematics
 similar to the definition of rational numbers:
 ℚ = ℤ × ℤ*/∼ where (m, n) ∼ (m', n') ⇔ m.n' = m'.n

Approach adopted by CASL and Isabelle/HOL

14

5 drawbacks (wrt computer science)
Heavy concepts: cartesian product and quotient set
Integers defined very differently from naturals
Against the intuition:

 one needs a half-line towards – ∞
 instead; one builds a surface that is then projected

Forbids induction proofs over integers [cf. Isabelle]
Computationally expensive:

 waste of memory bits: each Int costs two Nats
 waste of CPU time: no structural equality ⇒
 comparing two Ints costs more than comparing pairs of Nats
(normalization of terms may be suitable)

15

Building ℤ using algebraic terms

16

Goal - Proposed taxonomy
Can we find Peano-like definitions for ℤ ?

 using only basic notions (sorts, operations, equations)
How to compare these various definitions?

 By the freeness/non-freeness of their constructors
 By the number m of their sorts
 By the number n of their constructors

17

non-free constructors

free constructors

number of sorts involved
(including Int)

number of constructors
number of equations often in O (n2)

Terms and denotations
Let [.] be the denotation: algebraic term → ℤ

Clearly, [.] should be surjective
so that all integers can be denoted by some term

Do we want [.] to be injective too (ie., bijective)?
 if [.] not injective : non-free constructors
 there exist at least two ground terms that are
syntactically different but can be proven equal
 if [.] injective : free constructors

18

Free vs non-free constructors
Software tools usually prefer free constructors
(few tools implement non-free constructors)

One can always eliminate non-free constructors
by splitting each of them into a pair
(constructor, non-constructor)

 but, for signed integers, such elimination does not
give elegant results

19

Building ℤ using algebraic terms
— with non-free constructors

20

Approach #2:
The set-theoretic definition (ℤ = ℕ × ℕ/∼)
 implicitly defines a constructor:
 pair : nat × nat → int

This is a non-free constructor:
 pair (zero, succ (zero)) ∼

 pair (succ (zero), succ (succ (zero))

 Equivalence classes are even infinite:
 (∀p, q, k) pair (p, q) ∼ pair (p + k, q + k)

 21

Approach #3: (used in KIV)
Very intuitive idea:

 nat is defined with 2 constructors zero and succ
 int can be defined with 3 constructors:
 zero : → int
 succ : int → int
 pred : int → int symmetric of succ

These are non-free constructors:
 pred (succ (zero)) = succ (pred (zero)) = zero

 More generally:
 (∀x) pred (succ (x)) = succ (pred (x)) = x

22

Approach #4: (used in PSF)

Another intuitive idea: define ℤ as {+, –} × ℕ

This is done using a single constructor:
 pair : sign × nat → int

This constructor is not free:
 pair (+, zero) = pair (–, zero)

23

Approach #5: (SMTlib, Maude)
Variant on the previous version
No introduction of a "sign" sort
But two constructors:
 + : nat → int
 – : nat → int
Again, these constructors are not free:
 + (zero) = – (zero)

 How do SMTlib and Maude handle this issue?

24

The SMTlib solution
The authors of SMTlib (v2.5, 2015) are aware of
this issue. They write:

 "The set of values for the Int sort consists of all
numerals and all terms of the form (– n) where n
is a numeral other than 0".

Syntactic prohibition of (– 0) is easy
But what about (– x) where x = 0?

 this sounds like dependent types

25

The Maude solution
Use of "higher-level" features:

 0) assume that Nat is defined
 1) define a new sort NzNat as a subsort of Nat
 2) define a new sort Int such that Nat subsort of Int
 3) define a sort NzInt such that
 (NzNat subsort of NzInt) and (NzInt subsort of Int)
 4) define an operation "–" : NzNat → NzInt
 5) extend "–" to Int such that – 0 = 0 and – – x = x

Correct, but heavy machinery
Is there a lighter solution?

26

Building ℤ using algebraic terms
— with free constructors

27

Approach #6: (used in mCRL2)
Sources: the recent book by Groote & Mousavi and
http://www.mcrl2.org/dev/user_manual/language_reference/data.html

Three sorts:

Pos: non zero natural numbers
(constructors for a binary representation)
 Nat: natural numbers

 @c0 : → Nat @cNat : Pos → Nat
 Int: integers

 @cInt : Nat → Int @cNeg : Pos → Int

28

http://www.mcrl2.org/dev/user_manual/language_reference/data.html
http://www.mcrl2.org/dev/user_manual/language_reference/data.html

The mCRL2 solution
Intuitively:

 @cInt (m:Nat) corresponds to +m
 @cNeg (m:Pos) corresponds to –m

There is an intended dissymetry Nat / Pos

 duplication of zero is avoided
 @cNeg (zero) would not type check

29

Approach #7: (used in Coq)
Two possible definitions: Coq library vs. Christine
Paulin's tutorial (LASER school, Elba Island, 2011)

30

 Z0 : Z
| Zpos : nat → Z
| Zneg : nat → Z
where:
 (Zpos n) stands for n+1
 (Zneg n) stands for –n–1

 Z0 : Z
| Zpos : positive → Z
| Zneg : positive → Z
where:
 (Zpos n) stands for n
 (Zneg n) stands for –n

Can we do better?
mCRL2:

 3 sorts: Nat, Pos, Int
 2 constructors: @cInt, @cNeg

Coq:
 2 sorts: nat (or Positive), Z
 3 constructors: Z0, Zneg, Zpos

Is there a (2 sorts, 2 constructors) solution?

31

Approach #8: (used in CADP)
2 sorts: Nat (reused) and Int (defined)
2 constructors for Int:

 Pos : Nat → Int Pos (n) denotes n
 Neg : Nat → Int Neg (n) denotes – n – 1

The classical idempotence identities:
(∀n) + (+ n) = n ʌ – (– n) = n
get a counterpart:

 (∀n) Pos (Pos (n)) = n ʌ Neg (Neg (n)) = n

32

There is no "simpler" solution
Search for functions F (similar to + and –) that are

 involutive : F (F (n)) = n
 simple (i.e., affine) : F (n) = an + b

Solutions:
 F (n) = n ⇒ F corresponds to our Pos operator
 Fb (x) = – x + b
 There is a infinite family of solutions indexed by b
 but only b = –1 satisfies F (ℕ) ∪ Fb (ℕ) = ℤ

 ⇒ F–1 corresponds to our Neg operator
 ⇒ the pair (Pos, Neg) is unique

33

What about derived functions?
Claim: using the Pos and Neg constructors,
the usual operators on Int can be defined simply

 as simply as their Nat equivalents using 0 and succ
In the next slides: [thanks to R. Mateescu and M. Sighireanu]

 succ: Int → Int succ is no longer a constructor for Int
 pred: Int → Int
 eq , < : Int, Int → Bool equality and order relations
 + : Int, Int → Int
 – : Int → Int and – : Int, Int → Int unary and binary
 *, div, mod, rem : Int, Int → Int

34

Operators "succ" and "pred"
 (in green : existing operators defined on ℕ)
 (in blue : operators to be defined on ℤ)

 succ (Pos (n)) = Pos (succ (n))
 succ (Neg (0)) = Pos (0)
 succ (Neg (succ (n))) = Neg (n)

 pred (Pos (0)) = Neg (0)
 pred (Pos (succ (n))) = Pos (n)
 pred (Neg (n)) = Neg (succ (n))

35

Operators "eq" and "<"
 Pos (m) eq Pos (n) = m eq n
 Pos (m) eq Neg (n) = false
 Neg (m) eq Pos (n) = false
 Neg (m) eq Neg (n) = m eq n

 Pos (m) < Pos (n) = m < n
 Pos (m) < Neg (n) = false
 Neg (m) < Pos (n) = true
 Neg (m) < Neg (n) = n < m

36

Operators "abs", "odd", and "even"

 abs (Pos (n)) = Pos (n)
 abs (Neg (n)) = Pos (succ (n))

 odd (Pos (n)) = odd (n)
 odd (Neg (n)) = even (n)

 even (Pos (n)) = even (n)
 even (Neg (n)) = odd (n)

37

Operators "+" and (unary, binary) "-"
 Pos (0) + x = x
 Pos (succ (n)) + x = Pos (n) + succ (x)
 Neg (0) + x = pred (x)
 Neg (succ (n)) + x = Neg (n) + pred (x)

 – (Pos (0)) = Pos (0)
 – (Pos (succ (n))) = Neg (n)
 – (Neg (n)) = Pos (succ (n))

 x – y = x + (– (y))
38

Operator "*" (two definitions)
 Pos (0) * x = Pos (0)
 Pos (succ (n)) * x = (Pos (n) * x) + x
 Neg (0) * x = – (x)
 Neg (succ (n)) * x = (Neg (n) * x) – x

 Pos (m) * Pos (n) = Pos (m * n)
 Pos (m) * Neg (n) = succ (Neg (m * succ (n)))
 Neg (m) * Pos (n) = succ (Neg (succ (m) * n))
 Neg (m) * Neg (n) = Pos (succ (m) * succ (n))

39

Operator "div"

 Pos (m) div Pos (n) = Pos (m div n)
 Pos (m) div Neg (n) = – (Pos (m div succ (n)))
 Neg (m) div Pos (n) = – (Pos (succ (m) div n))
 Neg (m) div Neg (n) = Pos (succ (m) div succ (n))

40

Operator "mod"
The result is zero or has the same sign as the right operand
Consistent with modular arithmetic: (x+n) mod n = x mod n

 y < 0 ʌ x <= y ⇒ x mod y = (x – y) mod y
 y > 0 ʌ x >= y ⇒ x mod y = (x – y) mod y
 y < 0 ʌ x > 0 ⇒ x mod y = (x + y) mod y
 y > 0 ʌ x < 0 ⇒ x mod y = (x + y) mod y
 otherwise ⇒ x mod y = x

41

Operator "rem"
The result is zero or has the same sign as the left operand
Consistent with Euclidian division: x rem y = x – (y * (x div y))

 x >= 0 ʌ y ≠ 0 ⇒ x rem y = x mod abs (y)
 x < 0 ʌ y ≠ 0 ⇒ x rem y = – ((– x) mod abs (y))

42

What about induction?
 Isabelle/HOL manuals complain that the set-
theoretic definition of ℤ forbids inductive proofs

 Our definition of ℤ supports induction:

 P holds for Pos (0)
 P holds for Neg (0)
 if P holds for Pos (n), then P holds for Pos (n+1)
 if P holds for Neg (n), then P holds for Neg (n+1)

43

Funny "minimal" approaches
(single constructor or single sort)

44

Approach #9: (mapping ℕ to ℤ)
ℤ can be defined as ℕ×ℕ/∼
Bijections from ℕ2 to ℕ exist (diagonal enumeration)

So, bijections from ℕ to ℤ exist, e.g.:
 f (n) := if (n is even) then n/2 else – (n+1)/2
i.e.,
 f (ℕ) = {0, -1, 1, -2, 2, -3, 3, -4, 4, …}

We can define ℤ with a single constructor f
by using such a bijection
 45

What about defined functions?
Computationally expensive

 sign tests must be implemented by O(n) parity tests
 even (n) ⇒ abs (f (n)) = f (n)
 odd (n) ⇒ abs (f (n)) = f (n+1)

Strongly similar to the CADP approach:
 Pos (n) = f (2n)

 Neg (n) = f (2n+1)
 the one-constructor approach uses Boolean premises
whereas the CADP approach uses pattern matching
on its two constructors Pos and Neg

 46

Approach #10:
Suggested by Lutz Schröder at WADT 2016
 int = 0 | -1 | succ : int -> int

 +n is represented by succn (0)
 -n is represented by succn (-1)

Funnily: these constructeurs can also describe ℕ
 if 0 means 0, -1 means 1, succ (n) means n+2

Advantages:
 single sort: int does not depend on any other sort
 strict extension of Peano (by just adding -1)

47

What about defined functions?
Drawbacks:

 computationally expensive: sign tests costs O(n)
 bizarre induction: succ means either incrementation
or decrementation

Quite similar to the CADP approach:

 Pos (succn (0)) = succn (0)
 Neg (succn (0)) = succn (-1)

48

Conclusion

49

Summary
Consensus on ℕ, but no consensus on ℤ

 no definition: B, PVS, VDM, Z, synchronous languages
 set product and quotient: CASL, Isabelle/HOL
 non-free constructors: KIV, PSF, SMTlib (dependent
types), Maude (subsorts and operation overloading)
 free constructors: mCRL, Coq, CADP + funny solutions

Approach (CADP) seems the most suitable
Unified definition of ℤ:

 better interoperability for tools
 reuse/sharing of specifications and proofs

 50

	On the Most Suitable Axiomatization of �Signed Integers
	Motivation
	Taking numbers for granted
	What is wrong with this?
	This talk
	Building ℕ: two approaches
	Approach 1: set theory
	Approach 2: algebraic terms
	Term rewrite systems: Bool
	Term rewrite systems: Nat (1/3)
	Term rewrite systems: Nat (2/3)
	Term rewrite systems: Nat (3/3)
	Building ℤ using set theory�
	Approach #1: Set-theoretic definition of ℤ
	5 drawbacks (wrt computer science)
	Building ℤ using algebraic terms
	Goal - Proposed taxonomy
	Terms and denotations
	Free vs non-free constructors
	Building ℤ using algebraic terms�— with non-free constructors
	Approach #2:
	Approach #3: (used in KIV)
	Approach #4: (used in PSF)
	Approach #5: (SMTlib, Maude)
	The SMTlib solution
	The Maude solution
	Building ℤ using algebraic terms�— with free constructors
	Approach #6: (used in mCRL2)
	The mCRL2 solution
	Approach #7: (used in Coq)
	Can we do better?
	Approach #8: (used in CADP)
	There is no "simpler" solution
	What about derived functions?
	Operators "succ" and "pred"
	Operators "eq" and "<"
	Operators "abs", "odd", and "even"
	Operators "+" and (unary, binary) "-"
	Operator "*" (two definitions)
	Operator "div"
	Operator "mod"
	Operator "rem"
	What about induction?
	Funny "minimal" approaches�(single constructor or single sort)
	Approach #9: (mapping ℕ to ℤ)
	What about defined functions?
	Approach #10:
	What about defined functions?
	Conclusion
	Summary

