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Taking numbers for granted 
Some formal methods do not define numbers 
They assume numbers pre-exist as "basic types" 

 B 
 assumes  ℤ ⊃ ℕ ⊃ ℕ1      (with MININT and MAXINT)  
 PVS 
 assumes number ⊃ real ⊃ rational ⊃ integer ⊃ natural 
 VDM 
 assumes  real ⊃ rat ⊃ int ⊃ nat ⊃ nat1 
 Z 
 assumes  ℤ ⊃ ℕ ⊃ ℕ1 
 

3 



What is wrong with this? 
Actually, these formal methods are closer to 
programming languages: 

 they borrow the FORTRAN concept of basic types 
 closer to programming than to mathematics 
 

Properties involving numbers cannot be proven 
within these formal methods: 

 number-specific theories need to be imported 
 a unified framework including numbers is preferable 
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This talk 
Focus on formal methods that define numbers 
Focus on ℕ and ℤ 

 we consider arbitrary large numbers 
 this excludes "machine integers" and "modular 
arithmetics" 

Defining ℕ is easy            (note: 0∈ℕ) 

Defining ℤ is not trivial: 
 we compare the techniques used to define ℤ 
 we suggest a "most suitable" approach 
 criteria: elegance, implementability, concisess 
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Building ℕ: two approaches  
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Approach 1: set theory 
Zermelo-Fraenkel and Von Neumann construct ℕ 
as follows:  

 0 := ∅  
 1 := 0 ∪ {0} = {0} = {∅} 
 2 := 1 ∪ {1} = {0, 1} = {∅, {∅}} 
 3 := 2 ∪ {2} = {0, 1, 2} = {∅,{∅},{∅,{∅}}}  
 etc.      --   n+1 := n ∪ {n} = {0, 1, …, n} 

No formal method seems to use this approach 
(even those based on set theory) 
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Approach 2: algebraic terms 
Peano defines natural numbers using 5 axioms 

 
This amounts to having 2 constructors: 
           0 : → Nat  
          succ : Nat → Nat 

 
Many formal methods define ℕ this way: 
           CASL, Coq, Isabelle/HOL,  
           LOTOS, Maude, mCRL2, etc. 
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Term rewrite systems: Bool 
 
  SORTS 
     bool 
   CONS 
     false : -> bool 
     true : -> bool 
   OPNS 
     not : bool -> bool 
     and : bool bool -> bool 
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VARS 
      b : bool 
RULES 
      not (true) -> false 
      not (false) -> true 
 
      and (false, b) -> false 
      and (true, b) -> b 
 



Term rewrite systems: Nat (1/3) 
SORTS 
    nat 
CONS 
     zero : -> nat 
     succ : nat -> nat 
OPNS 
     even : nat -> bool 
     odd : nat -> bool 
     eq : nat nat -> bool 
     lt : nat nat -> bool 
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    pred : nat -> nat 
     add : nat nat -> nat  
     sub : nat nat -> nat 
     mult : nat nat -> nat 
     div : nat nat -> nat 
     mod : nat nat -> nat 
 

VARS 
      m n p q : nat 
RULES 
        % pred (zero) is undefined 
        pred (succ (n)) -> n 

 
        



Term rewrite systems: Nat (2/3) 
odd (zero) -> false 
odd (succ (n)) -> even (n) 
 

lt (zero, zero) -> false 
lt (zero, succ (n)) -> true 
lt (succ (n), zero) -> false 
lt (succ (m), succ (n)) -> lt (m, n) 
 

% sub (m, n) undefined if lt (m, n) 
sub (m, zero) -> m 
sub (succ (m), succ (n)) ->  
                                         sub (m, n) 
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even (zero) -> true 
even (succ (n)) -> odd (n) 
 

eq (zero, zero) -> true 
eq (zero, succ (n)) -> false 
eq (succ (n), zero) -> false  
eq (succ (m), succ (n)) -> eq (m, n) 
 
 add (m, zero) -> m 
 add (m, succ (n)) ->  
                              add (succ (m), n) 
 



Term rewrite systems: Nat (3/3) 
mult (m, zero) -> zero 
mult (m, succ (n)) -> add (m, mult (m, n)) 
 

% div (m, zero) and mod (m, zero) are undefined 
 

if and (not (eq (n, zero)), lt (m, n)) -> true then 
         div (m, n) -> zero 
         mod (m, n) -> m 
 

if and (not (eq (n, zero)), not (lt (m, n))) -> true then 
         div (m, n) -> succ (div (sub (m, n), n)) 
         mod (m, n) -> mod (sub (m, n), n) 
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Building ℤ using set theory 
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Approach #1: Set-theoretic definition of ℤ 

In mathematical textbooks, ℤ is defined as: 
       ℤ = ℕ × ℕ / ∼ 
where  ∼ is the equivalence relation such that: 

        (m, n) ∼ (m', n')  ⇔  m + n' = m' + n 
Advantages: 

 standard approach in mathematics 
 similar to the definition of rational numbers: 
 ℚ = ℤ × ℤ*/∼ where (m, n) ∼ (m', n')  ⇔  m.n' = m'.n 

Approach adopted by CASL and Isabelle/HOL 
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5 drawbacks  (wrt computer science) 
Heavy concepts: cartesian product and quotient set 
Integers defined very differently from naturals 
Against the intuition: 

 one needs a half-line towards – ∞ 
 instead; one builds a surface that is then projected 

Forbids induction proofs over integers [cf. Isabelle] 
Computationally expensive: 

 waste of memory bits:  each Int costs two Nats 
 waste of CPU time:  no structural equality ⇒ 
 comparing two Ints costs more than comparing pairs of Nats   
(normalization of terms may be suitable) 
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Building ℤ using algebraic terms 
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Goal - Proposed taxonomy 
Can we find Peano-like definitions for ℤ ? 

 using only basic notions (sorts, operations, equations) 
How to compare  these various definitions? 

 By the freeness/non-freeness of their constructors 
 By the number m of their sorts 
 By the number n of their constructors 

 
 

17 

non-free constructors 

free constructors 

number of sorts involved 
(including Int) 

number of constructors 
number of equations often in O (n2) 



Terms and denotations 
Let [.] be the denotation:  algebraic term → ℤ 
 

Clearly, [.] should be surjective 
so that all integers can be denoted by some term 
 

Do we want [.] to be injective too (ie., bijective)? 
 if [.] not injective : non-free constructors 
 there exist at least two ground terms that are 
syntactically different but can be proven equal 
 if [.] injective : free constructors 
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Free vs non-free constructors 
Software tools usually prefer free constructors 
(few tools implement non-free constructors) 
 
One can always eliminate non-free constructors  
by splitting each of them into a pair  
(constructor, non-constructor) 

 but, for signed integers, such elimination does not 
give elegant results 
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Building ℤ using algebraic terms 
— with non-free constructors 
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Approach #2:  
The set-theoretic definition (ℤ = ℕ × ℕ/∼) 
 implicitly defines a constructor: 
     pair : nat × nat → int 
 

This is a non-free constructor: 
       pair (zero, succ (zero)) ∼  

   pair (succ (zero), succ (succ (zero)) 
 

    Equivalence classes are even infinite: 
      (∀p, q, k)  pair (p, q) ∼ pair (p + k, q + k) 
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Approach #3:               (used in KIV) 
Very intuitive idea: 

 nat is defined with 2 constructors zero and succ 
 int can be defined with 3 constructors: 
       zero : → int 
      succ :  int → int 
      pred : int → int       symmetric of succ 

These are non-free constructors: 
        pred (succ (zero)) = succ (pred (zero)) = zero 

    More generally: 
        (∀x) pred (succ (x)) = succ (pred (x)) = x 
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Approach #4:             (used in PSF) 

Another intuitive idea:  define  ℤ  as {+, –} × ℕ 
 

This is done using a single constructor: 
      pair : sign × nat → int  
 
This constructor is not free: 
        pair (+, zero) = pair (–, zero) 
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Approach #5:            (SMTlib, Maude)  
Variant on the previous version 
No introduction of a "sign" sort 
But two constructors: 
      + : nat → int  
      –  : nat → int 
Again, these constructors are not free: 
    + (zero) = – (zero) 

 How do SMTlib and Maude handle this issue? 
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The SMTlib solution 
The authors of SMTlib (v2.5, 2015) are aware of 
this issue. They write:  

 

  "The set of values for the Int sort consists of all 
numerals and all terms of the form (– n) where n 
is a numeral other than 0". 

 

Syntactic prohibition of (– 0) is easy 
But what about (– x) where x = 0? 

 this sounds like dependent types 
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The Maude solution 
Use of "higher-level" features: 

 0) assume that Nat is defined 
 1) define a new sort NzNat as a subsort of Nat 
 2) define a new sort Int such that Nat subsort of Int 
 3) define a sort NzInt such that  
     (NzNat subsort of NzInt) and (NzInt subsort of Int) 
 4) define an operation "–" : NzNat → NzInt 
 5) extend "–" to Int such that – 0 = 0 and – – x = x 

Correct, but heavy machinery 
Is there a lighter solution? 
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Building ℤ using algebraic terms 
— with free constructors 

27 



Approach #6:          (used in mCRL2) 
Sources: the recent book by Groote & Mousavi  and 
http://www.mcrl2.org/dev/user_manual/language_reference/data.html 

  
Three sorts: 

Pos:  non zero natural numbers 
(constructors for a binary representation) 
 Nat: natural numbers 

    @c0 : → Nat            @cNat : Pos → Nat 
 Int: integers 

    @cInt : Nat → Int            @cNeg : Pos → Int 
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The mCRL2 solution 
Intuitively: 

 @cInt (m:Nat) corresponds to  +m 
 @cNeg (m:Pos) corresponds to  –m 

 
There is an intended dissymetry  Nat / Pos 

 duplication of zero is avoided  
 @cNeg (zero) would not type check 
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Approach #7:          (used in Coq) 
Two possible definitions: Coq library  vs. Christine 
Paulin's tutorial (LASER school, Elba Island, 2011) 
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   Z0 : Z  
| Zpos : nat → Z  
| Zneg : nat → Z 
where: 
 (Zpos n) stands for  n+1  
 (Zneg n) stands for  –n–1 

   Z0 : Z  
| Zpos : positive → Z  
| Zneg : positive → Z 
where:  
 (Zpos n) stands for  n 
 (Zneg n) stands for  –n 



Can we do better? 
mCRL2: 

 3 sorts:   Nat, Pos, Int 
 2 constructors:  @cInt, @cNeg 
 

Coq: 
 2 sorts:  nat (or Positive), Z 
 3 constructors:  Z0, Zneg, Zpos 
 

Is there a (2 sorts, 2 constructors) solution? 
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Approach #8:          (used in CADP) 
2 sorts: Nat (reused) and Int (defined) 
2 constructors for Int: 

 Pos : Nat → Int          Pos (n)  denotes  n 
 Neg : Nat → Int         Neg (n)  denotes  – n – 1 

The classical idempotence identities: 
(∀n)     + (+ n) = n             ʌ     – (– n) = n  
get a counterpart: 

     (∀n)    Pos (Pos (n)) = n    ʌ    Neg (Neg (n)) = n 
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There is no "simpler" solution 
Search for functions F (similar to + and –) that are 

 involutive :                 F (F (n)) = n 
 simple (i.e., affine) : F (n) = an + b 

Solutions: 
 F (n) = n       ⇒ F corresponds to our Pos operator 
 Fb (x) = – x + b 
 There is a infinite family of solutions indexed by b 
 but only b = –1 satisfies    F (ℕ) ∪ Fb  (ℕ) = ℤ 

    ⇒ F–1 corresponds to our Neg operator  
    ⇒ the pair (Pos, Neg) is unique 
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What about derived functions? 
Claim: using the Pos and Neg constructors,  
the usual operators on Int can be defined simply 

 as simply as their Nat equivalents using 0 and succ 
In the next slides:  [thanks to R. Mateescu and M. Sighireanu] 

 succ: Int → Int       succ is no longer a constructor for Int 
 pred: Int → Int 
 eq , < : Int, Int → Bool          equality and order relations 
 + : Int, Int → Int 
 – : Int → Int and  – : Int, Int → Int         unary and binary 
 *, div, mod, rem : Int, Int → Int 

34 



Operators "succ"  and "pred" 
   (in green : existing operators defined on ℕ) 
   (in blue : operators to be defined on ℤ) 
 

     succ (Pos (n)) = Pos (succ (n)) 
     succ (Neg (0)) = Pos (0) 
     succ (Neg (succ (n))) = Neg (n) 
 

     pred (Pos (0)) = Neg (0) 
     pred (Pos (succ (n))) = Pos (n) 
      pred (Neg (n)) = Neg (succ (n)) 
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Operators "eq" and "<" 
     Pos (m) eq Pos (n) = m eq n 
        Pos (m) eq Neg (n) = false 
        Neg (m) eq Pos (n) = false 
        Neg (m) eq Neg (n) = m eq n 
 
     Pos (m) < Pos (n) = m < n 
        Pos (m) < Neg (n) = false 
        Neg (m) < Pos (n) = true 
        Neg (m) < Neg (n) = n < m  
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Operators "abs", "odd", and "even" 

      abs (Pos (n)) = Pos (n) 
      abs (Neg (n)) = Pos (succ (n)) 
 
      odd (Pos (n)) = odd (n) 
      odd (Neg (n)) = even (n) 
 
      even (Pos (n)) = even (n) 
      even (Neg (n)) = odd (n) 
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Operators "+" and (unary, binary) "-"  
     Pos (0) + x = x 
     Pos (succ (n)) + x = Pos (n) + succ (x) 
     Neg (0) + x = pred (x) 
     Neg (succ (n)) + x = Neg (n) + pred (x) 
 

        – (Pos (0)) = Pos (0) 
        – (Pos (succ (n))) = Neg (n) 
        – (Neg (n)) = Pos (succ (n))  
 

        x – y  =  x + (– (y)) 
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Operator "*" (two definitions) 
     Pos (0) * x = Pos (0) 
        Pos (succ (n)) * x = (Pos (n) * x) + x 
        Neg (0) * x = – (x) 
        Neg (succ (n)) * x = (Neg (n) * x) – x 
 

        Pos (m) * Pos (n) = Pos (m * n) 
        Pos (m) * Neg (n) = succ (Neg (m * succ (n))) 
        Neg (m) * Pos (n) = succ (Neg (succ (m) * n)) 
        Neg (m) * Neg (n) = Pos (succ (m) * succ (n)) 
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Operator "div" 
 
     Pos (m) div Pos (n) = Pos (m div n) 
     Pos (m) div Neg (n) = – (Pos (m div succ (n))) 
     Neg (m) div Pos (n) = – (Pos (succ (m) div n)) 
     Neg (m) div Neg (n) = Pos (succ (m) div succ (n)) 
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Operator "mod" 
The result is zero or has the same sign as the right operand 
Consistent with modular arithmetic: (x+n) mod n = x mod n 
 
         y < 0   ʌ   x <= y   ⇒   x mod y = (x – y) mod y 
      y > 0   ʌ   x >= y   ⇒   x mod y = (x – y) mod y 
      y < 0   ʌ   x > 0     ⇒   x mod y = (x + y) mod y 
      y > 0   ʌ   x < 0     ⇒   x mod y = (x + y) mod y 
      otherwise            ⇒   x mod y = x 
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Operator "rem" 
The result is zero  or has the same sign as the left operand 
Consistent with Euclidian division: x rem y = x – (y * (x div y)) 
 

     x >= 0   ʌ   y ≠ 0  ⇒  x rem y = x mod abs (y) 
      x < 0     ʌ   y ≠ 0  ⇒  x rem y = – ((– x) mod abs (y)) 
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What about induction? 
 Isabelle/HOL manuals complain that the set- 
theoretic definition of ℤ forbids inductive proofs 
 
 Our definition of ℤ  supports induction: 

 P holds for Pos (0)   
 P holds for Neg (0) 
 if P holds for Pos (n), then P holds for Pos (n+1) 
 if P holds for Neg (n), then P holds for Neg (n+1) 
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Funny "minimal" approaches 
(single constructor or single sort) 
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Approach #9:          (mapping ℕ to ℤ) 
ℤ  can be defined as ℕ×ℕ/∼  
Bijections from ℕ2  to ℕ exist  (diagonal enumeration) 

 

So, bijections from ℕ to ℤ exist, e.g.: 
  f (n) := if  (n is even)  then  n/2  else  – (n+1)/2 
i.e., 
  f (ℕ) = {0, -1, 1, -2, 2, -3, 3, -4, 4, …}  
 

We can define  ℤ  with a single constructor f 
by using such a bijection 
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What about defined functions? 
Computationally expensive 

 sign tests must be implemented by O(n) parity tests 
            even (n) ⇒ abs (f (n)) = f (n) 
            odd (n)   ⇒ abs (f (n)) = f (n+1) 

Strongly similar to the CADP approach: 
                   Pos (n) = f (2n) 

               Neg (n) = f (2n+1) 
 the one-constructor approach uses Boolean premises 
whereas the CADP approach uses pattern matching  
on its two constructors Pos and Neg  
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Approach #10:  
Suggested by Lutz Schröder at WADT 2016 
     int  =   0   |    -1   |   succ : int -> int 

 +n is represented by succn (0) 
 -n is represented by succn (-1) 

Funnily: these constructeurs can also describe ℕ 
 if 0 means 0, -1 means 1, succ (n) means n+2 

Advantages: 
 single sort: int does not depend on any other sort 
 strict extension of Peano (by just adding -1) 
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What about defined functions? 
Drawbacks: 

 computationally expensive: sign tests costs O(n) 
 bizarre induction: succ means either incrementation 
or decrementation 

 
Quite similar to the CADP approach: 

                   Pos (succn  (0)) = succn (0)  
               Neg (succn  (0)) = succn (-1) 
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Conclusion 
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Summary 
Consensus on ℕ, but no consensus on ℤ 

 no definition: B, PVS, VDM, Z, synchronous languages 
 set product and quotient: CASL, Isabelle/HOL 
 non-free constructors: KIV, PSF, SMTlib (dependent 
types), Maude (subsorts and operation overloading) 
 free constructors: mCRL, Coq, CADP + funny solutions 

Approach        (CADP) seems the most suitable 
Unified definition of ℤ: 

 better interoperability for tools 
 reuse/sharing of specifications and proofs 
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