On the Most Suitable Axiomatization of Signed Integers

Hubert Garavel

Inria Grenoble – LIG

Université Grenoble Alpes

Saarland University

http://convecs.inria.fr

Motivation

Taking numbers for granted

Some formal methods do not define numbers
 They assume numbers pre-exist as "basic types"
 B

assumes $\mathbb{Z} \supset \mathbb{N} \supset \mathbb{N}_1$ (with MININT and MAXINT)

Informatics mathematics

► PVS

assumes number \supset real \supset rational \supset integer \supset natural

► VDM

assumes real \supset rat \supset int \supset nat \supset nat1

► Z assumes $\mathbb{Z} \supset \mathbb{N} \supset \mathbb{N}_1$

What is wrong with this?

- Actually, these formal methods are closer to programming languages:
 - they borrow the FORTRAN concept of basic types
 - closer to programming than to mathematics
- Properties involving numbers cannot be proven within these formal methods:
 - number-specific theories need to be imported
 - a unified framework including numbers is preferable

This talk

- Focus on formal methods that define numbers
 Focus on ℕ and ℤ
 - we consider arbitrary large numbers
 - this excludes "machine integers" and "modular arithmetics"
- Defining \mathbb{N} is easy (note: $0 \in \mathbb{N}$)

Defining \mathbb{Z} is not trivial:

- \blacktriangleright we compare the techniques used to define $\mathbb Z$
- we suggest a "most suitable" approach
- criteria: elegance, implementability, concisess

Building N: two approaches ∎

Approach 1: set theory

■ Zermelo-Fraenkel and Von Neumann construct N as follows:

Approach 2: algebraic terms

Peano defines natural numbers using 5 axioms

■ This amounts to having 2 constructors: 0 : → Nat succ : Nat → Nat

■ Many formal methods define N this way: CASL, Coq, Isabelle/HOL, LOTOS, Maude, mCRL2, etc.

Term rewrite systems: Bool

SORTS

bool

CONS

false : -> bool

true : -> bool

OPNS

not : bool -> bool

and : bool bool -> bool

VARS b:bool RULES not (true) -> false not (false) -> true

> and (false, b) -> false and (true, b) -> b

Term rewrite systems: Nat (1/3)

SORTS

nat

CONS

zero : -> nat

succ : nat -> nat

OPNS

even : nat -> bool

odd : nat -> bool

eq : nat nat -> bool

lt : nat nat -> bool

pred : nat -> nat add : nat nat -> nat sub : nat nat -> nat mult : nat nat -> nat div : nat nat -> nat mod : nat nat -> nat VARS m n p q : nat **RULES** % pred (zero) is undefined

pred (succ (n)) -> n

Term rewrite systems: Nat (2/3)

even (zero) -> true even (succ (n)) -> odd (n)

eq (zero, zero) -> true eq (zero, succ (n)) -> false eq (succ (n), zero) -> false eq (succ (m), succ (n)) -> eq (m, n)

add (m, zero) -> m add (m, succ (n)) ->

add (succ (m), n)

odd (zero) -> false odd (succ (n)) -> even (n)

It (zero, zero) -> false
It (zero, succ (n)) -> true
It (succ (n), zero) -> false
It (succ (m), succ (n)) -> It (m, n)

% sub (m, n) *undefined if* lt (m, n) sub (m, zero) -> m sub (succ (m), succ (n)) ->

sub (m, n)

Term rewrite systems: Nat (3/3)

```
mult (m, zero) -> zero
mult (m, succ (n)) -> add (m, mult (m, n))
```

% div (m, zero) and mod (m, zero) are undefined

if and (not (eq (n, zero)), lt (m, n)) -> true then
 div (m, n) -> zero
 mod (m, n) -> m

if and (not (eq (n, zero)), not (lt (m, n))) -> true then
 div (m, n) -> succ (div (sub (m, n), n))
 mod (m, n) -> mod (sub (m, n), n)

Building Z using set theory

Approach #1: Set-theoretic definition of Z

■ In mathematical textbooks, ℤ is defined as:

$$\mathbb{Z} = \mathbb{N} \times \mathbb{N} / \sim$$

where \sim is the equivalence relation such that:

 $(m, n) \sim (m', n') \iff m + n' = m' + n$

Advantages:

- standard approach in mathematics
- ▶ similar to the definition of rational numbers: $Q = Z \times Z^*/\sim$ where (m, n) ~ (m', n') ⇔ m.n' = m'.n

Approach adopted by CASL and Isabelle/HOL

5 drawbacks (wrt computer science)

- Heavy concepts: cartesian product and quotient set
- Integers defined very differently from naturals
- Against the intuition:
 - one needs a half-line towards ∞
 - instead; one builds a surface that is then projected
- Forbids induction proofs over integers [cf. Isabelle]
- Computationally expensive:
 - waste of memory bits: each Int costs two Nats
 - ► waste of CPU time: no structural equality ⇒ comparing two Ints costs more than comparing pairs of Nats (normalization of terms may be suitable)

Building \mathbb{Z} using algebraic terms

Goal - Proposed taxonomy

Can we find Peano-like definitions for \mathbb{Z} ?

using only basic notions (sorts, operations, equations)

How to compare these various definitions?

- By the freeness/non-freeness of their constructors
- ▶ By the number *m* of their sorts
- By the number n of their constructors

Terms and denotations

• Let [.] be the denotation: algebraic term $\rightarrow \mathbb{Z}$

- Clearly, [.] should be surjective so that all integers can be denoted by some term
- Do we want [.] to be injective too (ie., bijective)?
 if [.] not injective : non-free constructors there exist at least two ground terms that are syntactically different but can be proven equal
 - if [.] injective : free constructors

Free vs non-free constructors

- Software tools usually prefer free constructors (few tools implement non-free constructors)
- One can always eliminate non-free constructors by splitting each of them into a pair (constructor, non-constructor)
 - but, for signed integers, such elimination does not give elegant results

Building Z using algebraic terms — with non-free constructors

Approach #2: NF_1^2

- The set-theoretic definition (Z = N × N/~) implicitly defines a constructor: pair : nat × nat → int
- This is a non-free constructor:
 pair (zero, succ (zero)) ~
 pair (succ (zero), succ (succ (zero))

Equivalence classes are even infinite: $(\forall p, q, k)$ pair $(p, q) \sim pair (p + k, q + k)$

Approach #3: NF_3^1 (used in KIV)

Very intuitive idea:

- nat is defined with 2 constructors zero and succ
- int can be defined with 3 constructors:
 - $zero: \rightarrow int$
 - succ : int \rightarrow int
 - pred : int \rightarrow int symmetric of succ
- These are non-free constructors: pred (succ (zero)) = succ (pred (zero)) = zero
 More generally: (∀x) pred (succ (x)) = succ (pred (x)) = x

Approach #4: NF_1^3 (used in PSF)

Another intuitive idea: define \mathbb{Z} as $\{+, -\} \times \mathbb{N}$

■ This is done using a single constructor: pair : sign × nat → int

This constructor is not free: pair (+, zero) = pair (-, zero)

Approach #5: NF_2^2 (SMTlib, Maude)

- Variant on the previous version
- No introduction of a "sign" sort
- But two constructors:
 - + : nat \rightarrow int
 - $-: nat \rightarrow int$

Again, these constructors are not free:

+ (zero) = - (zero)

How do SMTlib and Maude handle this issue?

The SMTlib solution

- The authors of SMTlib (v2.5, 2015) are aware of this issue. They write:
 - "The set of values for the Int sort consists of all numerals and all terms of the form (– n) where n is a numeral other than 0".
- Syntactic prohibition of (- 0) is easy
- But what about (-x) where x = 0?
 - this sounds like *dependent* types

The Maude solution

- Use of "higher-level" features:
 - ▶ 0) assume that Nat is defined
 - 1) define a new sort NzNat as a subsort of Nat
 - 2) define a new sort Int such that Nat subsort of Int
 - 3) define a sort NzInt such that (NzNat subsort of NzInt) and (NzInt subsort of Int)
 - ► 4) define an operation "-" : NzNat → NzInt
 - ▶ 5) extend "—" to Int such that -0 = 0 and -x = x

informatics mathematics

- Correct, but heavy machinery
- Is there a lighter solution?

Building Z using algebraic terms — with free constructors

Approach #6: F_2^3 (used in mCRL2)

Sources: the recent book by Groote & Mousavi and <u>http://www.mcrl2.org/dev/user_manual/language_reference/data.html</u>

Three sorts:

- Pos: non zero natural numbers (constructors for a binary representation)
- Nat: natural numbers
 - $@c0: \rightarrow Nat$ $@cNat: Pos \rightarrow Nat$

Int: integers

 $@cInt: Nat \rightarrow Int$ $@cNeg: Pos \rightarrow Int$

The mCRL2 solution

Intuitively:

- @clnt (m:Nat) corresponds to +m
- @cNeg (m:Pos) corresponds to -m

There is an intended dissymetry Nat / Pos
 duplication of zero is avoided
 @cNeg (zero) would not type check

Approach #7: F_3^2 (used in Coq)

- Two possible definitions: Coq library vs. Christine Paulin's tutorial (LASER school, Elba Island, 2011)
 - **ZO : Z**
- | Zpos : nat \rightarrow Z
- | Zneg : nat \rightarrow Z
- where:
- (Zpos n) stands for n+1 (Zneg n) stands for -n-1

ZO : **Z**

- | Zpos : positive \rightarrow Z
- | Zneg : positive \rightarrow Z
- where:
 - (Zpos n) stands for n
 - (Zneg n) stands for -n

Can we do better?

mCRL2:

- ► 3 sorts: Nat, Pos, Int
- 2 constructors: @clnt, @cNeg

Coq:

- 2 sorts: nat (or Positive), Z
- ► 3 constructors: Z0, Zneg, Zpos

Is there a (2 sorts, 2 constructors) solution?

Approach #8: F_2^2 (used in CADP)

- 2 sorts: Nat (reused) and Int (defined)
- 2 constructors for Int:
 - ▶ Pos : Nat \rightarrow Int Pos (n) denotes n
 - ▶ Neg : Nat \rightarrow Int Neg (n) denotes -n-1
- The classical idempotence identities:
 - $(\forall n) + (+n) = n \qquad \land -(-n) = n$
 - get a counterpart:
 - $(\forall n)$ Pos (Pos (n)) = n \land Neg (Neg (n)) = n

There is no "simpler" solution

Search for functions F (similar to + and –) that are

- involutive : F(F(n)) = n
- simple (i.e., affine) : F (n) = an + b

Solutions:

- F (n) = n \Rightarrow F corresponds to our Pos operator
- $F_{b}(x) = -x + b$

There is a infinite family of solutions indexed by b but only b = -1 satisfies $F(\mathbb{N}) \cup F_b(\mathbb{N}) = \mathbb{Z}$

 \Rightarrow F₋₁ corresponds to our Neg operator \Rightarrow the pair (Pos, Neg) is unique

What about derived functions?

- Claim: using the Pos and Neg constructors, the usual operators on Int can be defined simply
 - as simply as their Nat equivalents using 0 and succ
- In the next slides: [thanks to R. Mateescu and M. Sighireanu]
 - succ: $Int \rightarrow Int$ succ is no longer a constructor for Int
 - ▶ pred: $Int \rightarrow Int$
 - ▶ eq , < : Int, Int \rightarrow Bool equality and order relations
 - ▶ + : Int, Int \rightarrow Int
 - ▶ $-: Int \rightarrow Int and -: Int, Int \rightarrow Int$
- unary and binary

▶ *, div, mod, rem : Int, Int \rightarrow Int

Operators "succ" and "pred"

(in green : existing operators defined on \mathbb{N}) (in blue : operators to be defined on \mathbb{Z})

succ (Pos (n)) = Pos (succ (n)) succ (Neg (0)) = Pos (0) succ (Neg (succ (n))) = Neg (n)

pred (Pos (0)) = Neg (0)
pred (Pos (succ (n))) = Pos (n)
pred (Neg (n)) = Neg (succ (n))

Operators "eq" and "<"

Pos (m) eq Pos (n) = m eq n Pos (m) eq Neg (n) = false Neg (m) eq Pos (n) = false Neg (m) eq Neg (n) = m eq n

```
Pos (m) < Pos (n) = m < n
Pos (m) < Neg (n) = false
Neg (m) < Pos (n) = true
Neg (m) < Neg (n) = n < m
```
Operators "abs", "odd", and "even"

abs (Pos (n)) = Pos (n) abs (Neg (n)) = Pos (succ (n))

odd (Pos (n)) = odd (n)odd (Neg (n)) = even (n)

even (Pos (n)) = even (n)even (Neg (n)) = odd (n)

Operators "+" and (unary, binary) "-"

Pos (0) + x = xPos (succ (n)) + x = Pos (n) + succ (x)Neg (0) + x = pred (x)Neg (succ (n)) + x = Neg (n) + pred (x)

informatics mathematics

$$-(Pos(0)) = Pos(0)$$

- -(Pos(succ(n))) = Neg(n)
- -(Neg(n)) = Pos(succ(n))

x - y = x + (-(y))

Operator "*" (two definitions)

Pos (0) * x = Pos (0) Pos (succ (n)) * x = (Pos (n) * x) + xNeg (0) * x = -(x)Neg (succ (n)) * x = (Neg (n) * x) - x

Pos (m) * Pos (n) = Pos (m * n) Pos (m) * Neg (n) = succ (Neg (m * succ (n))) Neg (m) * Pos (n) = succ (Neg (succ (m) * n)) Neg (m) * Neg (n) = Pos (succ (m) * succ (n))

Operator "div"

Pos (m) div Pos (n) = Pos (m div n) Pos (m) div Neg (n) = - (Pos (m div succ (n))) Neg (m) div Pos (n) = - (Pos (succ (m) div n)) Neg (m) div Neg (n) = Pos (succ (m) div succ (n))

Operator "mod"

The result is zero or has the same sign as the right operand Consistent with modular arithmetic: $(x+n) \mod n = x \mod n$

$$y < 0 \land x \le y \implies x \mod y = (x - y) \mod y$$
$$y > 0 \land x \ge y \implies x \mod y = (x - y) \mod y$$
$$y < 0 \land x > 0 \implies x \mod y = (x + y) \mod y$$
$$y > 0 \land x < 0 \implies x \mod y = (x + y) \mod y$$
otherwise
$$\implies x \mod y = x$$

Operator "rem"

The result is zero or has the same sign as the left operand Consistent with Euclidian division: $x \operatorname{rem} y = x - (y * (x \operatorname{div} y))$

$$x \ge 0 \quad \land \quad y \ne 0 \implies x \text{ rem } y = x \text{ mod abs } (y)$$
$$x < 0 \quad \land \quad y \ne 0 \implies x \text{ rem } y = -((-x) \text{ mod abs } (y))$$

What about induction?

Isabelle/HOL manuals complain that the settheoretic definition of $\mathbb Z$ forbids inductive proofs

• Our definition of \mathbb{Z} supports induction:

- P holds for Pos (0)
- P holds for Neg (0)
- if P holds for Pos (n), then P holds for Pos (n+1)
- ▶ if P holds for Neg (n), then P holds for Neg (n+1)

Funny "minimal" approaches (single constructor or single sort)

Approach #9: \mathbf{F}_1^2 (mapping \mathbb{N} to \mathbb{Z})

- $\blacksquare \mathbb{Z}$ can be defined as $\mathbb{N} \times \mathbb{N}/\sim$
- Bijections from \mathbb{N}^2 to \mathbb{N} exist (diagonal enumeration)

So, bijections from \mathbb{N} to \mathbb{Z} exist, e.g.: f(n) := if (n is even) then n/2 else - (n+1)/2

$$f(\mathbb{N}) = \{0, -1, 1, -2, 2, -3, 3, -4, 4, ...\}$$

We can define Z with a single constructor f by using such a bijection

informatics mathematics

What about defined functions?

Computationally expensive

▶ sign tests must be implemented by O(n) parity tests even (n) ⇒ abs (f (n)) = f (n) odd (n) ⇒ abs (f (n)) = f (n+1)

Strongly similar to the CADP approach:

Pos (n) = f(2n)Neg (n) = f(2n+1)

the one-constructor approach uses Boolean premises whereas the CADP approach uses pattern matching on its two constructors Pos and Neg

Approach #10: F_3^1

Suggested by Lutz Schröder at WADT 2016

int = 0 | -1 | succ : int -> int

- +n is represented by succⁿ (0)
- -n is represented by succⁿ (-1)
- Funnily: these constructeurs can also describe \mathbb{N}
 - if 0 means 0, -1 means 1, succ (n) means n+2

Advantages:

- single sort: int does not depend on any other sort
- strict extension of Peano (by just adding -1)

What about defined functions?

Drawbacks:

- computationally expensive: sign tests costs O(n)
- bizarre induction: succ means either incrementation or decrementation

Quite similar to the CADP approach:

Pos (succⁿ (0)) = succⁿ (0) Neg (succⁿ (0)) = succⁿ (-1)

Conclusion

Summary

Consensus on \mathbb{N} , but no consensus on \mathbb{Z}

- no definition: B, PVS, VDM, Z, synchronous languages
- set product and quotient: CASL, Isabelle/HOL
- non-free constructors: KIV, PSF, SMTlib (dependent types), Maude (subsorts and operation overloading)
- free constructors: mCRL, Coq, CADP + funny solutions
- Approach \mathbf{F}_2^2 (CADP) seems the most suitable
- Unified definition of ℤ:
 - better interoperability for tools
 - reuse/sharing of specifications and proofs

