
Benchmarking Implementations of Term
Rewriting and Pattern Matching in Algebraic,
Functional, and Object-Oriented Languages

— The 4th Rewrite Engines Competition —

Hubert Garavel
joint work with

Imad Arrada and Mohammad-Ali Tabikh
Inria Grenoble – LIG

Université Grenoble Alpes
http://convecs.inria.fr

April 2018

http://convecs.inria.fr/

1. Motivation

2

The CAESAR.ADT compiler (1/2)
CAESAR.ADT: a compiler for LOTOS data types

 designed for model checking purpose
 implements data structures very compactly
 compiles pattern matching [Schnoebelen-88]
 boostrapped (written itself in LOTOS data types)

A heavily used compiler:
 designed in 1989-1992
 used every day since then
 only 2 publications [Garavel-89-c] [Garavel-Turlier-93]

3

http://cadp.inria.fr/man/caesar.adt.html
http://cadp.inria.fr/publications/Garavel-89-c.html
http://cadp.inria.fr/publications/Garavel-89-c.html
http://cadp.inria.fr/publications/Garavel-89-c.html
http://cadp.inria.fr/publications/Garavel-89-c.html
http://cadp.inria.fr/publications/Garavel-89-c.html
http://cadp.inria.fr/publications/Garavel-89-c.html
http://cadp.inria.fr/publications/Garavel-Turlier-93.html
http://cadp.inria.fr/publications/Garavel-Turlier-93.html
http://cadp.inria.fr/publications/Garavel-Turlier-93.html
http://cadp.inria.fr/publications/Garavel-Turlier-93.html
http://cadp.inria.fr/publications/Garavel-Turlier-93.html
http://cadp.inria.fr/publications/Garavel-Turlier-93.html

The CAESAR.ADT compiler (2/2)
2007: performance study [van-Weerdenburg-07]

 reports average performance results for CAESAR.ADT
 but measured on few experiments only

Questions:

 how does CAESAR.ADT compare with other tools?
 do we maintain it? do we replace it?

4

https://doi.org/10.1016/j.entcs.2007.02.049

The LNT2LOTOS translator
Most LOTOS users complained about data types
LNT: a more "user-friendly" language

 imperative syntax: assignments, return, if-then-else,
case with pattern-matching, while and for loops with
break, exceptions, etc.
 functional-language semantics (first-order only)

LNT2LOTOS [Garavel-Lang-Serwe-17]
 translator from LNT to LOTOS data types (+ some C)
 LNT (imperative) -> LOTOS (algebraic) -> C (imperative)
 is this "crazy" translation scheme efficient enough?

5

http://cadp.inria.fr/publications/Garavel-Lang-Serwe-17.html

More generally…
There are many tools for term rewriting:

 Maude, Elan, Tom, etc.
Many languages implement pattern-matching on
algebraic terms:

 functional languages: SML, OCaml, Haskell, etc.
 object-oriented languages: Scala, Rust, etc.

Are these implementations efficient?
 how to compare them? (CPU time, memory)
 which are the best algorithms?

6

Initial questions

 2015: we undertook a systematic comparison

Which are the right tools against which
CAESAR.ADT and LNT2LOTOS should be
compared?

Where are the term-rewrite specifications to be
used as benchmarks?

 7

2. Former competitions
for rewrite engines

8

Former Rewrite Engines Competitions
2006: 1st REC competition [Roşu-06]
tools: ASF+SDF, Elan, Maude
2007: [van-Weerdenburg-07]
tools: ASF+SDF, Clean, Haskell, LOTOS (CADP),
Maude, µCRL, mCRL2 (innermost and jitty
rewriters)
2008: 2nd REC competition [Durán-et-al-09]
tools: ASF+SDF, Maude, Stratego, Termware, Tom
2010: 3rd REC competition [Durán-et-al-10]
tools: ASF+SDF, Maude, Stratego/XT, Tom, TXL
 9

http://fsl.cs.illinois.edu/index.php/Rewrite_Engines_Competition
https://doi.org/10.1016/j.entcs.2007.02.049
https://doi.org/10.1016/j.entcs.2009.05.025
https://doi.org/10.1007/978-3-642-16310-4_16

Tool selection
 Retained: Haskell, LOTOS, Maude, mCRL2, Tom
 Excluded: Termware (performed poorly), TXL
(discouraged by its author)
 Upgraded:

mCRL2 replaces µCRL
Rascal replaces ASF+SDF
 Stratego/XT 2.0 replaces Stratego/XT 1.0
 Tom replaces ELAN

 Included: CafeOBJ, Clean, LNT, OCaml, Opal, Scala,
SML/NJ, SML/MLTON
 10

15-18 tools under assessment
CafeOBJ
JAIST (JP)
Clean
Raboud Univ. (Nijmegen, NL)
Haskell (GHG compiler)
Univ. Glasgow (UK)
LNT (CADP tools)
INRIA Grenoble (FR)
LOTOS (CADP tools)
 INRIA Grenoble (FR)
Maude
SRI (California, US)
mCRL2 (jitty and jittyc rewriters)
Tech. Univ. Eindhoven (NL)

11

OCaml (interpreted or compiled)
INRIA Rocquencourt (FR)
Opal
Tech. Univ. Berlin (DE)
Rascal (interpreted or compiled)
CWI Amsterdam (NL)
Scala
EPFL Lausanne (CH)
SML/NJ (+ Nowhere preprocessor)
Univ. Princeton (New Jersey, US)
SML/MLTON (+ Nowhere preprocessor)
NEC Res. Labs (New Jersey, US)
Stratego/XT
Univ. Delft (NL)
Tom
LORIA / INRIA Nancy (FR)

3. The REC format

12

The REC-2008 format
Introduced during the 2nd REC competition (2008)

 description of conditional term rewrite systems
 tool-independent format
 human-readable, text-based format

Lack of dedicated tools for supporting REC

 no parser, no type checker
 3 tools could read REC files: Maude, Stratego, Tom

13

 The REC-2017 format
Derived from the REC-2008 format
Main changes:

 line-based format (to be handled by Unix scripts)
 distinction between (free) constructors and non-
constructors (separate "CONS" and "OPNS" sections)
 introduction of an "EVAL" section that replaces the
directives "get normal form of"
 introduction of C-like "#include" directives
 elicitation of static semantics constraints
 elicitation of dynamic semantics constraints

14

Example of a REC-2017 specification
REC-SPEC simple
SORTS % abstract data domains
 Bool Nat
CONS % primitive operations
 true : -> Bool
 false : -> Bool
 zero : -> Nat
 succ : Nat -> Nat
OPNS % defined functions
 and : Bool Bool -> Bool
 plus : Nat Nat -> Nat

15

 VARS % free variables
 A B : Bool
 M N : Nat
RULES % function definitions
 and (A, B) -> B if A -><- true
 and (A, B) -> false if A -><- false
 plus (zero, N) -> N
 plus (succ (M),N) -> succ (plus
(M,N))
EVAL % terms to be evaluated
 and (true, false)
 plus (succ (zero), succ (zero))
END-SPEC

Syntax of the REC-2017 format

16

• no notations for numbers
• no infix operators (+, *, mod)

Static semantics
Strong typing with basic features only:

 no overloading of functions
 no implicit type conversions

Free-constructor discipline:
 no equations between constructors

Simplifying constraints:
 constructors of the same type must be grouped
 rewrite rules defining the same non-constructor
must be grouped

17

https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/doc/rec-2017-language.txt?view=log

https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/doc/rec-2017-language.txt?view=log

Dynamic semantics (1/2)
The target tools have different rewrite strategies:

 OCaml: strict evaluation
 Haskell: lazy evaluation
 Maude: associative/commutative rewriting
 mCRL2: just-in-time rewriting
 CAESAR.ADT: decreasing priority between equations
 Stratego/XT: user-defined rewrite strategies

On the same REC benchmark:
 different tools may give different results
 some tools may terminate or not

18

Dynamic semantics (2/2)
 This issue was already there in earlier REC
competitions (⇒ different categories of benchmarks)

Chosen approach:
 require all REC benchmarks to be confluent and
terminating
 thus, all rewrite strategies produce the same result
 perform rewriting on closed terms only (EVAL section)
 partially-defined functions are tolerated, but should
 only be invoked where they are defined

19

4. The REC translators

20

Manual vs automatic translation
In the three original REC competitions:

 a few tools could read the REC-2008 format natively
 for the other tools, the REC-2008 benchmarks were
manually translated to the input language of each tool
 this was tedious, error-prone, and possibly biased

For our study, manual translation would not scale
 more than 1500 files to maintain
 numerous and frequent modifications

⇒ automatic translation was the only feasible option

21

The REC-2017 translators (1/2)
Development of a "serious" compiler for REC-2017

 lack of time / lack of resources / lack of interest

A lightweight approach was preferred:
 exploiting the REC-2017 syntax (sections, lines)
 translators = collection of Unix scripts
 acrobatic combination of shell, cpp, grep, sed, awk
 all connected by data flows using Unix pipes
 only 250 lines of code per translator!
 a bit slow for large REC files (e.g., MAA)

22

The REC-2017 translators (2/2)
Syntactic and static semantics checks:

 no checks before translation (i.e., on REC-2017 source files)
 all checks after translation: a REC-2017 file is reputed to be
correct if its 17 translations are accepted by all the target tools

Confluence:
 checked by the Opal compiler
 sufficient conditions ("deterministic" rules)

Termination:
 design of a translator from REC-2017 to AProVE
 AProVE often proves quasi-decreasingness, but may also loop
forever (e.g., integer division with premises)

23

Differences between translators (1/2)
Translators differ in 13 points:

 (a) Are constructors and non-constructors handled
identically (noted "I") or not (noted "D")?
 (b) Are constructors declared together with their
result type ("T") or separately ("S")?
 (c) Are equality/inequality functions defined
automatically ("E")?
 (d) Are printing functions defined automatically ("P")?
 (e) Are rewrite rules encapsulated within the non-
constructor they define ("F") or separately ("S")?

24

Differences between translators (2/2)
 (f) Should a type identifier always start with an upper-
case (noted "U") or a lower-case letter (noted "L")?
 (g), (h), (i) Same question for constructors, non-
constructors, and free variables
 (j) Should a constructor F with arity 0 be invoked as
"F" or "F ()"?
 (k) Same question for a non-constructor
 (l) Should a constructor F with arity > 0 be invoked as
"F x y … " (noted "J") or "F (x, y, …)" (noted "A")?
 (m) Same question for a non-constructor

25

Overview of the 13 differences

26

Translation of REC-2017 terms
For all languages but one: line-based translations
using regular expressions are enough
For OCaml only: an ad-hoc C program counting
commas and nested parentheses was written

 this is due to OCaml's "irregular" syntax

27

constructor arity REC-2017 term OCaml expression

no 0 f f

yes 0 C C

no 1 f (e) (f e)

yes 1 C (e) (C e)

no >1 f (e1, e2) (f e1 e2)

yes >1 C (e1, e2) (C (e1, e2))

Multiple translations
Some languages/tools call for multiple translations

2 translators for CafeOBJ
 CafeOBJ-A: uses eq, ceq, red
 CafeOBJ-B: uses trans, ctrans, exec

2 translators for TOM
 TOM-A: no distinction between constructors and
 non-constructors
 TOM-B: distinction between constructors and
 non-constructors; uses %match

28

Example: source REC-2017 code

29

Example: (1) generated Maude code

30

Example: (2) generated Haskell code

31

Example: (3) generated LOTOS code

32

Example: (4) generated LNT code

33

Example: (5) generated Scala code

34

5. The REC benchmarks

35

The 3rd REC benchmarks (2010)
Group 1: TRS (unconditional term rewrite systems)

 5 models, 25 instances
Group 2: CTRS (conditional term rewrite systems)

 5 models, 17 instances
Group 3: MODULO (associativity/commutativity)

 4 models, 6 instances
 only Maude supports rewriting modulo AC

Group 4: CS (context sensitive)
 1 model, 3 instances
 non-functional evaluation: rewrite on open terms
 36

Collecting benchmarks (1/2)
Gather former REC benchmarks:

REC 2008 and 2010 benchmarks
merge TRS and CTRS into a single class

Look for other models available:
 personal archives of Pierre-Etienne Moreau
 examples from Muck van Weerdenburg

Identify multiple/derived versions of the same model
Turn all models into the REC-2017 format:

 identification of constructors
 separation between constructors and non-constructors
 modification of models dealing with open terms

 37

Collecting benchmarks (2/2)
Handle parametric models

 introduce shared code libraries for parametric models
 (REC-LIB package and C-like "#include" directives)

Ensure correctness
 check correctness by translation to target languages
 check confluence using Opal
 check termination using AProVE (when possible)
 correction of mistakes
 save those incorrect models that could not be
repaired in a special package named REC-BAD

38

Adding new benchmarks

Complexify models that were too simple:

 langton*

Introduction of new benchmarks:
 tak*: Takeuchi function
 intnat: signed integers
 add*: binary adders on 8, 16, 32 bits
 mul*, omul*: binary multipliers on 8, 16, 32 bits
 maa: Message Authenticator Algorithm
(13 sorts, 18 construct., 646 non-construct., 684 rules)

39

The resulting collection
85 benchmarks in REC language

 48,000+ lines of REC code

Divided into two packages:
 REC-SIMPLE (15 benchmarks) :
 "easy" examples
 all tools can process them in 2 minutes at most

 REC (70 benchmarks):
 "difficult" examples
 all tools have been assessed on these benchmarks

40

Measuring language conciseness
counted in lexical tokens (keywords, identifiers, symbols)
the base is Haskell: 1.0 means 5,754,474 lexical tokens

41

6. The benchmark
execution platform

42

Hardware/software platform
Requirements for reproducibility:

 single-user mode
 local file system (no NAS, NFS, SAMBA, etc.)
 standalone (no remote admin. by computer staff)

Reuse of old workstations
 32 bits: Sun Ultra 20 M2 (2007)
 AMD Opteron 1210 dual core 1.8 GHz, 2 GB RAM
 64 bits: Transtec 2500L (2004)
 2 x AMD Opteron 246 2.0 GHz, 16 GB RAM

Common operating system: Debian Linux 8
 43

Collecting tool execution statistics
Use of the memtime 1.4 utility

 originally developed for Uppaal (in 2002)
 later enhanced at INRIA Grenoble
 see http://cadp.inria.fr/resources

Usage: memtime COMMAND …
 Exit [0]

 0.68 user, 2.07 system, 110.51 elapsed -- Max VSize = 15572KB, Max RSS = 1916KB

Limitation: only time results have been used
 memory results are not meaningful, as memtime only
 measures the memory consumption of the main process,
 ignoring all the sub-processes launched by this process

44

http://cadp.inria.fr/resources

Imposing timeouts on tool execution
Termination issues:

only a few tools terminate properly: Haskell, LNT, LOTOS, Opal
(because they have exhausted all available memory)
most other tools seem to compute forever
upper time limits and interrupts are needed

Use of the Linux timeout utility
Usage: timeout 360 COMMAND …

 the execution of COMMAND will be halted after 360 seconds

Problem: some tools manipulate POSIX signals
 they protect themselves from timeout interrupts
 mCRL2 (bug fixed), Scala (bug reported)

 45

Combining memtime and timeout
Wrong combination:
 timeout 360 memtime COMMAND …

 if timeout occurs, no statistics are displayed
Correct combination:
 memtime timeout 360 COMMAND …

Execution can terminate in 4 different ways:
 SUCCESS: normal completion (exit code is zero)
 FAILURE: failed execution (exit code is non zero)
 CRASH: abnormal termination by a signal (SIGSEGV, SIGBUS…)
 TIMEOUT: interruption after timeout expired

46

Compilers vs interpreters
For compiled languages, we distinguish between:

 COMP: compilation phase of source file to binary code
 EXEC: execution run of binary code

For interpreted languages:
 TOTAL: total time for processing the source files

In both cases, we measure full-problem solving
 for compiled languages: COMP + EXEC
 for interpreted languages: TOTAL

47

Benchmark execution
Chosen timeout values:

 REC-SIMPLE package: 120 seconds (all tools succeed)
 REC package: 360 seconds
 this value was chosen so that executing all tools
 on all benchmarks takes approximately one day

A fully automated execution platform:
 scripts for running tools on benchmarks
 production of spreadsheet files (in CSV format)
 scripts for producing execution statistics

48

7. Defining a meaningful
score metric

49

Dilemmas
How to compare:
 1. a tool that could solve the problem after a long time

 but is halted by timeout
 2. another tool that immediately stops, declaring that

 it cannot solve the problem?
 both tools have failed
 but the former has taken more time than the latter!

More generally, how to combine:
 success or failure to solve the problem
 CPU time taken
 presence or absence of timeout?

50

A non-trivial problem

 "Any comparison, competitions especially, has the
unenviable task of determining how to trade-off
or combine the three metrics (number [of
problems] solved, time, and number of steps)."

 Adele E. Howe et Eric Dahlman. A Critical Assessment of Benchmark Comparison
in Planning. Journal of Artificial Intelligence Research 17 (2002), 1-33.

51

Chosen metric
We adopted the standard solution mentioned by
[Howe-Dahlman-02]:

 "Because no planner has been shown to solve
 all possible problems, the basic metric for
 performance is the number or percentage of
 problems actually solved within the allowed time.
 This metric is commonly reported in the
 competitions."

52

8. Experimental results

53

Top-5 podium (April 2018)
5 tools (out of 21) solve >85% of the benchmarks:

 GHC / Haskell (1st)
 Maude (2nd)
 OCaml (3rd [compil.] and 6th [interp.])
 CADP / LOTOS+LNT (4th [LOTOS] and 5th [LNT])
 Tom (7th)

This ranking is identical on 32- and 64-bit platforms

54

32-bit results

55

https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/2018-04-07-overview-360-32.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/raw-v2/2018-04-07-rec360-32.csv?view=log

https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/2018-04-07-overview-360-32.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/2018-04-07-overview-360-32.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/2018-04-07-overview-360-32.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/2018-04-07-overview-360-32.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/2018-04-07-overview-360-32.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/2018-04-07-overview-360-32.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/2018-04-07-overview-360-32.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/2018-04-07-overview-360-32.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/2018-04-07-overview-360-32.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/2018-04-07-overview-360-32.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/2018-04-07-overview-360-32.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/2018-04-07-overview-360-32.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/2018-04-07-overview-360-32.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/2018-04-07-overview-360-32.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/2018-04-07-overview-360-32.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/raw-v2/2018-04-07-rec360-32.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/raw-v2/2018-04-07-rec360-32.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/raw-v2/2018-04-07-rec360-32.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/raw-v2/2018-04-07-rec360-32.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/raw-v2/2018-04-07-rec360-32.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/raw-v2/2018-04-07-rec360-32.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/raw-v2/2018-04-07-rec360-32.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/raw-v2/2018-04-07-rec360-32.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/raw-v2/2018-04-07-rec360-32.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/raw-v2/2018-04-07-rec360-32.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/raw-v2/2018-04-07-rec360-32.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/raw-v2/2018-04-07-rec360-32.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/raw-v2/2018-04-07-rec360-32.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/raw-v2/2018-04-07-rec360-32.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/raw-v2/2018-04-07-rec360-32.csv?view=log

64-bit results

56

https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/2018-04-05-overview-360-64.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/raw-v2/2018-04-05-rec360-64.csv?view=log

https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/2018-04-05-overview-360-64.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/raw-v2/2018-04-05-rec360-64.csv?view=log

9. Conclusion

57

Lessons learnt
Focus on the most widely used part of term rewriting:

 conditional term rewrite systems
 free constructors
 confluence
 termination

A clear vision of the common features between:
 term rewrite systems
 algebraic (abstract data types) languages
 functional languages
 (modern) object-oriented languages

58

Contributions
A software platform for term rewriting:

 REC-2017 format
 85 benchmarks in this format
 translators for 16-18 languages
 scripts for assessing the tools on these benchmarks

 http://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS
Already used in two case studies:

 elegant definition of signed integers [Garavel-17]

 specification of the MAA cryptographic function
 [Garavel-Marsso-17]

59

http://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS
http://cadp.inria.fr/publications/Garavel-17.html
http://cadp.inria.fr/publications/Garavel-Marsso-17.html

Future work (personal)
CAESAR.ADT exhibits honourable performance

 [van-Weerdenburg-07] results are not confirmed

Study why CAESAR.ADT seems slower on 64 bit

Benchmark CAESAR.ADT with its garbage collector

Benchmark TRAIAN 3.0 (forthcoming compiler
LNT→ C) when it is available

Understand what GHC (Haskell) is doing

60

https://doi.org/10.1016/j.entcs.2007.02.049

Future work (collective)
Improve the individual tools by cross-examination
Restart the Rewrite Engine Competition?

 include new languages/tools
 (e.g., Clojure, Erlang, Prolog, Racket, Rust, Scheme)
 collect more REC benchmarks
 try different machines (e.g., with Intel processors)
 better check tool outputs (so far, we trust their results)
 better distinguish between COMP and EXEC phases
 measure memory consumption (ad hoc infrastructure)
 finely tune optimizations (e.g., Java VM options)

61

Acknowledgements
Co-workers:

Imad Larrada (summer project)
Mohammad-Ali Tabikh (master1 project)

Tool experts:

Marc Brockschmidt (Cambridge/AProVE)
Francisco Durán (Malaga/Maude)
Steven Eker (Stanford/Maude)
Florian Frohn (Aachen/ AProVE)
Carsten Fuhs (London/AProVE)
John van Groningen (Nijmegen/Clean)
Jan Friso Groote (Eindhoven/mCRL2)
Paul Klint (Amsterdam/Rascal)

62

Pieter Koopman (Nijmegen/Clean)
Davy Langman (Amsterdam/Rascal)
Xavier Leroy (Paris/OCaml)
Florian Lorenzen (Berlin/Opal)
Pierre-Etienne Moreau (Nancy/Tom)
Jeff Smits (Delft/Stratego)
Jurriën Stutterheim (Nijmegen/Clean)
Eelco Visser (Delft/Stratego)

Discussions:

Bertrand Jeannet (Grenoble)
Fabrice Kordon (Paris)

