
Compositional Verification of Concurrent
Systems by Combining Bisimulations

Frédéric Lang, Radu Mateescu

Inria, LIG, Université Grenoble Alpes (Grenoble, France)
http://convecs.inria.fr

Franco Mazzanti
ISTI-CNR (Pisa, Italy)
 http://fmt.isti.cnr.it

http://convecs.inria.fr/
http://convecs.inria.fr/
http://convecs.inria.fr/

Motivation

Explicit-state model checking of concurrent system

Asynchronous model P1||...||Pn

LTS (Labelled Transition System) semantics

Action-based modal -calculus property 

Problem: state-space explosion

Compositional verification can circumvent explosion

Apply to P1||...||Pn LTS reductions that preserve 

Mateescu & Wijs (2014) define -preserving reductions: action
hiding and quotient wrt. strong or divbranching bisimulation

Applied sucessfully to many case studies

We refine the approach by combining both bisimulations

2 23rd FM - October 2019

Outline

 1. Background

 2. The mono-bisimulation approach of Mateescu & Wijs

 3. Our refined approach combining bisimulations

 4. Applications and experimental results

 5. Conclusion

3 FM - October 2019

1. Background

4 FM - October 2019

Divbranching bisimulation
(van Glabbeek & Weijland, 1996)

Short for divergence-preserving branching bisimulation

Weaker than strong bisimulation:
special treatment of invisible () transitions

Preserves choices of visible actions and infinite sequences
of -transitions

Example:

Like strong, divbranching is a congruence for ||
 reduction applicable compositionally

5 FM - October 2019

  



a

a a

is divbranching bisimilar to:
b

b ~db

Compositional reduction

Alternation between n-ary compositions/reductions
(rcompn), until all processes are aggregated

Many strategies are possible
Example: P1||P2||P3

rcomp3 (rcomp1 (P1), rcomp1 (P2), rcomp1 (P3)))),

rcomp2 (rcomp2 (rcomp1 (P1), rcomp1 (P2))), rcomp1 (P3))), ...

LTS constrain each others by synchronization

Aim: maintain the “largest intermediate LTS size” small

No optimal strategy available: heuristic is needed

We use smart reduction (Crouzen & Lang, 2011)

6 FM - October 2019

The action-based modal mu-calculus L
(Kozen, 1983)

Temporal logic interpreted over LTS

Action formulas:

 ::= a | false |  | 1  2

 Notation: [[]] set of actions satisfying 

State formulas:

 ::= false | 0 | <> 0 | 1  2 | X. 0 | X

 Notation: P |=  LTS P satisfies 

Derived operators: true | [] 0 | 1  2 | X. 0

Subsumes (action-based) CTL, ACTL, PDL, PDL-, etc.

7 FM - October 2019

2. The mono-bisimulation
approach of Mateescu & Wijs

8 FM - October 2019

The mono-bisimulation approach

Find actions a1, ..., am and relation R among divbranching
and strong bisimulations, such that  can be verified on
 R reduction of hide a1, ..., am in P1||...||Pn
instead of
 P1||...||Pn

Procedure H() computes the largest set a1, ..., am

H() =  h() h() = if [[]] then [[]] else all but [[]]

Example: H(X.<a> true  <true> X) = all but a

A fragment L-db of L is defined such that:

R is divbranching if   L-db

R is strong otherwise (less reduction)

9 FM - October 2019

The fragment L-db

Strong modalities <>  are replaced by weak modalities:

  ::= false | 0 | 1  2 | X. 0 | X

 | <(1?. )*> 2

 | <(1?. )*. 1?. a> 2

 | <1?. > @

where   [[]],   [[a]]

10 FM - October 2019

there is a sequence of actions satisfying
 that traverses only states satisfying
1 and ends in a state satisfying 2

there is a sequence of actions satisfying
 that traverses only states satisfying
1 and ends in a state satisfying <a> 2

there is an infinite sequence of actions
satisfying  that traverses only states
satisfying 1

Expressiveness of L-db

Translation to L-db is possible for the following operators:

PDL-: <*> 0 <*.a>  <> @

ACTL: A (1 1U 2) A (1 1U2 2) AG0 (0)
 E (1 1U 2) E (1 1U2 2) EF0 (0)
(-ACTL\X is slightly less expressive than L-db)

CTL: A (1 U 2) A (1 W 2) AG (0) AF (0)
 E (1 U 2) E (1 W 2) EF (0) EG (0)

 A (([a] 1) U 2) A (([a] 1) W 2)

 AG (1  [a] 2) EF (1  <a> 2)

 where 0, 1, 2  L-db,   [[]],   [[a]]

11 FM - October 2019

New result

Compositional verification example

1 = <true*.a1> true  L-db

 smart divbranching reduction of
 hide all but a1 in (P1 |[a1]|P2) |= 1
 Largest LTS: 3 states / 3 transitions (P2)

2 = [true*.a1.a2] false  L-db

 smart strong reduction of
 hide all but a1, a2 in (P1 |[a1]|P2) |= 2
 Largest LTS: 6 states / 8 transitions

12

a1

a3

a1 a4

a2

P1 P2 |[a1]|

FM - October 2019

3. Our refined approach
combining bisimulations

13 FM - October 2019

Principles

Formulas may combine strong and weak modalities
Examples: [true*.a1.a2] false <true*> (<a1> true  <a2> true)

Such formulas are not preserved by divbranching

Theorem: If no action of some Pi is matched by a strong
modality then Pi can be reduced for divbranching

We write   L-str(As) and call As the set of strong actions
if all strong modalities of  satisfy [[]]  As

 Examples: [true*.a1.a2] false  L-str({a2}) L-db = L-str()

14 FM - October 2019

a1
a2 

a1

a2

 
a1

a2
a1

a2

 ~db ~db

New verification strategy

Partitioning the set of processes
Ps: processes among P1, ..., Pn containing strong actions

Pw = {P1, ..., Pn} \ Ps: processes not containing strong actions

Refactoring P1||...||Pn into (||Ps  Ps Ps) || (||Pw  Pw Pw)

Reducing the sets of processes compositionally
according to theorem:

Q = smart divbranching reduction of (||Pw  Pw Pw)

Q’ = smart strong reduction of (||Ps  Ps Ps) || Q

Finally checking hide H() in Q’ |= 

15 FM - October 2019

Example

2 = [true*.a1.a2] false  L-str({a2})
smart strong reduction of hide all but a1, a2 in
 ((smart divbranching reduction of -- a2  P1
 hide all but a1 in P1)
 |[a1]|
 (smart strong reduction of -- a2  P2
 hide all but a1, a2 in P2)) |= 2

 Largest LTS: 3 states / 3 transitions
instead of 6 states / 8 transitions

16

a1

a3

a1 a4

a2

P1 P2 |[a1]|

FM - October 2019

Extracting As from the formula

Problem: Given   L, how to infer As s.t.   L-str(As) ?

Hard for arbitrary low-level L formula

Need to prove that a strong modality can be turned to weak one

Analogy: prove that binary code implements function correctly

Easier for higher-level logics (CTL, ACTL, PDL, PDL-):
Use knowledge of L-db expressiveness (patterns)
Example: A (([a] false) U true)  L-str({b})
because A (([a] 1) U 2)  L-db and true  L-str({b})

As can be safely over-approximated, but smaller is better

Automatic extraction of minimal As faces issues

17 FM - October 2019

Issues with extracting a minimal As

Issue 1: It requires semantic reasoning

Example: in AG (<a> true  [a] 0), a seems to be strong
In fact it is not as this formula is equivalent to AG ([a] 0)

L satisfiability checking (EXPTIME) might be necessary

Issue 2: minimal As is not unique

Example:  = <true*>(<a1> true  <a2> true)  L-str()
  <(<a1> true?.true)*.<a1> true?.a2> true  L-str({a1})
  <(<a2> true?.true)*.<a2> true?.a1> true  L-str({a2})

a1 and a2 can be weak actions but not both simultaneously

Choosing one or the other may impact performance

In general: rely on expertise, side proof needed

18 FM - October 2019

4. Applications and
experimental results

19 FM - October 2019

Implementation

Approach implemented using CADP toolbox (cadp.inria.fr)

Formal verification of asynchronous concurrent systems

Toolbox developed since the late 80’s ( 70 tools and libraries)

Several software components used in this work:

LNT.OPEN/GENERATOR: compiling LNT processes to LTS

EXP.OPEN 2/GENERATOR: composing LTS in parallel

BCG_MIN 2: minimizing LTS for strong and divbranching

BCG_OPEN/EVALUATOR 4: model checking MCL temporal logic
(regular alternation-free modal mu-calculus with data)

SVL: scripting, smart compositional verification heuristic

Successful application to several examples

20 FM - October 2019

TFTP (Trivial File Transfer Protocol)

Avionics case study (Garavel&Thivolle, 2009)

31 verification tasks involve properties that contain both
weak and strong modalities

Comparison with the mono-bisimulation approach

Result: largest LTS up to 7 times smaller

21

combined bisimulations

mono-bisimulation

Gains in CPU time and memory peak are similar

FM - October 2019

RERS (Rigorous Evaluation of Reactive Systems)

Verification competition http://rers-challenge.org

RERS 2018 “parallel CTL” benchmark

3 concurrent models (101...103) with 9 to 34 parallel processes

9 properties – 3 per model (21..23)

7 properties combine weak and strong modalities

Mono-bisimulation: explosion for 5 properties

Combined bisimulations approach is successful

4 properties from 5 to 10 min. and from 22 to 101 MB

1 property: 42 min. and 1.6 GB

22 FM - October 2019

RERS - CTL example (103#23)

AG (<A34> true  [A34] A ([A68] false W <A59> true))
checked on a composition of 34 processes (70 actions)

All but A34 , A59, A68 can be hidden (67 actions)

A34, A68 are weak, formula belongs to L-str({A59})

Mono-bisimulation (strong) does not prevent explosion

Stopped after several hours

Largest LTS:  4.5 Giga states / 36 Giga transitions

Combining bisimulations is successful

Strong action in 7 proc.  27 proc. reduced for divbranching

Result true after < 10 min CPU, using 35 MB memory

Largest LTS: 122,292 states / 888,156 transitions

23 FM - October 2019

5. Conclusion

Improvement of property-preserving LTS reductions

New strategy combining bisimulations applicable to properties
not preserved by divbranching bisimulation

Based on property analysis, classifying actions as weak or strong

Big LTS reductions wrt. mono-bisimulation

Proofs and examples available at doi.org/10.5281/zenodo.2634148

Future work:

Automate As computation or automatically check user-given As

Automate composition refactoring (||Ps  Ps Ps) || (||Pw  Pw Pw)

Approach further refined  gold medals won at RERS 2019

24 FM - October 2019

http://doi.org/10.5281/zenodo.2634148

