Compositional Verification of Concurrent Systems by Combining Bisimulations

Frédéric Lang, Radu Mateescu

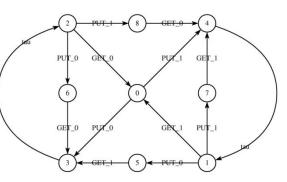
Inria, LIG, Université Grenoble Alpes (Grenoble, France) http://convecs.inria.fr

Franco Mazzanti ISTI-CNR (Pisa, Italy) http://fmt.isti.cnr.it

Motivation

Explicit-state model checking of concurrent system

- ► Asynchronous model P₁||...||P_n
- LTS (Labelled Transition System) semantics
- Action-based modal μ -calculus property ϕ
- Problem: state-space explosion



- Compositional verification can circumvent explosion
 - Apply to $P_1 | | ... | | P_n$ LTS reductions that preserve φ
 - Mateescu & Wijs (2014) define φ-preserving reductions: action hiding and quotient wrt. strong or divbranching bisimulation
 - Applied successfully to many case studies
- We refine the approach by combining both bisimulations

- 1. Background
- 2. The mono-bisimulation approach of Mateescu & Wijs
- 3. Our refined approach combining bisimulations
- 4. Applications and experimental results

5. Conclusion

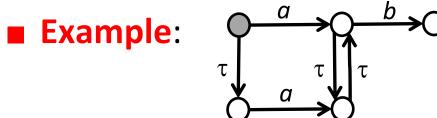
1. Background

FM - October 2019

Divbranching bisimulation (van Glabbeek & Weijland, 1996)

- Short for divergence-preserving branching bisimulation
- Weaker than strong bisimulation: special treatment of invisible (τ) transitions
- Preserves choices of visible actions and infinite sequences of τ-transitions

∼ db



is divbranching bisimilar to:

■ Like strong, divbranching is a congruence for || ⇒ reduction applicable compositionally

Compositional reduction

- Alternation between n-ary compositions/reductions (rcomp_n), until all processes are aggregated
- Many strategies are possible
 Example: P₁||P₂||P₃
 - rcomp₃ (rcomp₁ (P₁), rcomp₁ (P₂), rcomp₁ (P₃)))),
 - rcomp₂ (rcomp₂ (rcomp₁ (P₁), rcomp₁ (P₂))), rcomp₁ (P₃))), ...
- LTS constrain each others by synchronization
- Aim: maintain the "largest intermediate LTS size" small
- No optimal strategy available: heuristic is needed
- We use smart reduction (Crouzen & Lang, 2011)

The action-based modal mu-calculus L_μ (Kozen, 1983)

- Temporal logic interpreted over LTS
- Action formulas:

 $\alpha ::= \alpha \mid false \mid \neg \alpha \mid \alpha_1 \lor \alpha_2$

Notation: [[α]] set of actions satisfying α
State formulas:

- $\phi ::= \textbf{false} \mid \neg \phi_0 \mid <\alpha > \phi_0 \mid \phi_1 \lor \phi_2 \mid \mu X. \phi_0 \mid X$ Notation: $P \mid = \phi$ LTS P satisfies ϕ
- Derived operators: **true** | [α] ϕ_0 | $\phi_1 \land \phi_2$ | vX. ϕ_0
- Subsumes (action-based) CTL, ACTL, PDL, PDL- Δ , etc.

2. The mono-bisimulation approach of Mateescu & Wijs

The mono-bisimulation approach

- Find actions a₁, ..., a_m and relation R among divbranching and strong bisimulations, such that φ can be verified on *R* reduction of hide a₁, ..., a_m in P₁||...||P_n instead of P₁||...||P_n
 Procedure H(φ) computes the largest set a₁, ..., a_m
 - $H(\phi) = \cap h(\alpha) \qquad h(\alpha) = \text{if } \tau \in [[\alpha]] \text{ then } [[\alpha]] \text{ else all but } [[\alpha]]$ Example: $H(\mu X. < a > true \lor < true > X) = all but a$
- A fragment $L_{\mu-db}$ of L_{μ} is defined such that:
 - ► *R* is **divbranching** if $\phi \in L_{\mu-db}$
 - *R* is strong otherwise (less reduction)

The fragment $L_{\mu-db}$

Strong modalities $\langle \alpha \rangle \phi$ are replaced by weak modalities: $\phi ::= false | \neg \phi_0 | \phi_1 \lor \phi_2 | \mu X. \phi_0 | X$

 $| < (\phi_1 ?. \alpha_\tau)^* > \phi_2$

there is a sequence of actions satisfying α_{τ} that traverses only states satisfying ϕ_1 and ends in a state satisfying ϕ_2

 $| < (\phi_1 ?. \alpha_\tau)^*. \phi_1 ?. \alpha_a > \phi_2$

there is a sequence of actions satisfying α_{τ} that traverses only states satisfying ϕ_1 and ends in a state satisfying $<\alpha_a > \phi_2$

 $| < \varphi_1 ?. \alpha_{\tau} > @$

there is an infinite sequence of actions satisfying α_τ that traverses only states satisfying ϕ_1

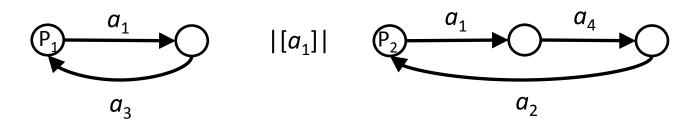
where $\tau \in [[\alpha_{\tau}]], \tau \notin [[\alpha_{g}]]$

Expressiveness of L_{\mu-db}

Translation to L_{u-db} is possible for the following operators: $<\alpha_{\tau}^{*}>\phi_{0}$ $<\alpha_{\tau}^{*}.\alpha_{\sigma}>\phi$ $<\alpha_{\tau}>@$ **PDL-** Δ : $A(\phi_{1 \alpha 1} U \phi_{2}) \qquad A(\phi_{1 \alpha 1} U_{\alpha 2} \phi_{2}) \qquad AG_{\alpha 0}(\phi_{0})$ ACTL: $E(\phi_{1 \alpha 1}U\phi_{2}) \qquad E(\phi_{1 \alpha 1}U_{\alpha 2}\phi_{2}) \qquad EF_{\alpha 0}(\phi_{0})$ (μ -ACTL\X is slightly less expressive than L_{μ -db}) A $(\phi_1 U \phi_2)$ A $(\phi_1 W \phi_2)$ AG (ϕ_0) CTL: **AF** (ϕ_0) **E** $(\phi_1 \mathbf{U} \phi_2)$ **E** $(\phi_1 \mathbf{W} \phi_2)$ **EF** (ϕ_0) **EG** (ϕ_0) **A** (([α_a] ϕ_1) **U** ϕ_2) **A** (([α_a] ϕ_1) **W** ϕ_2) **New result AG** ($\phi_1 \vee [\alpha_\alpha] \phi_2$) **EF** ($\phi_1 \wedge \langle \alpha_\alpha \rangle \phi_2$) $\phi_0, \phi_1, \phi_2 \in \mathsf{L}_{\mathfrak{u}\text{-db}}, \tau \in [[\alpha_{\tau}]], \tau \notin [[\alpha_{q}]]$ where

Contract The The

Compositional verification example



• $\phi_1 = \langle true^*.a_1 \rangle true \in L_{\mu-db}$ • smart divbranching reduction of hide all but a_1 in $(P_1 | [a_1] | P_2) | = \phi_1$ $\Rightarrow Largest LTS: 3 states / 3 transitions (P_2)$

■ $\varphi_2 = [true^*.a_1.a_2] false \notin L_{\mu-db}$ smart strong reduction of hide all but a_1, a_2 in $(P_1 | [a_1] | P_2) | = \varphi_2$ ⇒ Largest LTS: 6 states / 8 transitions

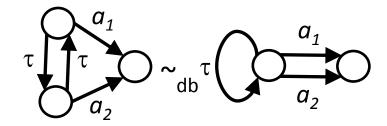
3. Our refined approach combining bisimulations

Principles

Formulas may combine strong and weak modalities Examples: [true*.a₁.a₂] false <true*> (<a₁> true < <a2> true

Such formulas are not preserved by divbranching

$$\bigcirc \overset{a_1}{\longrightarrow} \bigcirc \overset{\tau}{\longrightarrow} \bigcirc \overset{a_2}{\longrightarrow} \bigcirc \sim_{db} \bigcirc \overset{a_1}{\longrightarrow} \bigcirc \overset{a_2}{\longrightarrow} \bigcirc \bigcirc \overset{a_2}{\longrightarrow} \bigcirc \overset{a_3}{\longrightarrow} \bigcirc \overset{a_4}{\longrightarrow} \odot \overset{a_4}{\longrightarrow} \bigcirc \overset{a_4}{\longrightarrow} \odot \overset{a_4$$



- Theorem: If no action of some P_i is matched by a strong modality then P_i can be reduced for divbranching
- We write $\phi \in L_{\mu\text{-str}}(A_s)$ and call A_s the set of strong actions if all strong modalities of ϕ satisfy $[[\alpha]] \subseteq A_s$

Informatics mathematics

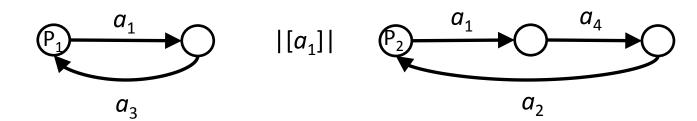
Examples: [true*. $a_1.a_2$] false $\in L_{u-str}(\{a_2\})$

New verification strategy

Partitioning the set of processes

- \mathcal{P}_s : processes among P₁, ..., P_n containing strong actions
- ▶ $\mathscr{P}_w = \{P_1, ..., P_n\} \setminus \mathscr{P}_s$: processes not containing strong actions
- Refactoring $P_1 | | ... | | P_n$ into $(| |_{P^s \in \mathscr{P}} P_s) | | (| |_{P^w \in \mathscr{P}} P_w)$
- Reducing the sets of processes compositionally according to theorem:
 - ▶ Q = smart divbranching reduction of $(||_{P^w \in \mathscr{P}_w} P_w)$
 - ► Q' = smart strong reduction of $(||_{P^s \in \mathscr{F}} P_s) || Q$
- Finally checking hide $H(\phi)$ in Q' |= ϕ

Example



• $\varphi_2 = [true^*.a_1.a_2] \text{ false } \in L_{u-str}(\{a_2\})$ smart strong reduction of hide all but a_1, a_2 in ((smart divbranching reduction of $-a_2 \notin P_1$ hide all but a_1 in P_1) $|[a_1]|$ smart strong reduction of $-a_{2} \in P_{2}$ hide all but a_1, a_2 in P_2) |= ϕ_2 $\blacksquare \Rightarrow$ Largest LTS: **3 states / 3 transitions** instead of 6 states / 8 transitions

Extracting A_s from the formula

- Problem: Given $\phi \in L_{\mu}$, how to infer A_s s.t. $\phi \in L_{\mu-str}(A_s)$?
- Hard for arbitrary low-level L_{μ} formula
 - Need to prove that a strong modality can be turned to weak one
 - Analogy: prove that binary code implements function correctly
- Easier for higher-level logics (CTL, ACTL, PDL, PDL- Δ): Use knowledge of L_{µ-db} expressiveness (patterns) Example: A (([a] false) U true) ∈ L_{µ-str}({b}) because A (([α_a] ϕ_1) U ϕ_2) ∈ L_{µ-db} and true ∈ L_{µ-str}({b})
- A_s can be safely over-approximated, but smaller is better
 Automatic extraction of minimal A_s faces issues

Issues with extracting a minimal A_s

Issue 1: It requires semantic reasoning

- **Example**: in AG (<*a*> true \Rightarrow [*a*] ϕ_0), *a* seems to be strong In fact it is not as this formula is equivalent to AG ([*a*] ϕ_0)
- L_{μ} satisfiability checking (EXPTIME) might be necessary
- Issue 2: minimal A_s is not unique
 - ► Example: $\varphi = \langle a_1 \rangle \operatorname{true} \land \langle a_2 \rangle \operatorname{true} \rangle \notin L_{\mu-\operatorname{str}}(\emptyset)$ $\varphi \equiv \langle (\langle a_1 \rangle \operatorname{true}) \land \langle a_1 \rangle \operatorname{true} ?.a_2 \rangle \operatorname{true} \in L_{\mu-\operatorname{str}}(\{a_1\})$ $\varphi \equiv \langle (\langle a_2 \rangle \operatorname{true} ?.\operatorname{true}) \land \langle a_2 \rangle \operatorname{true} ?.a_1 \rangle \operatorname{true} \in L_{\mu-\operatorname{str}}(\{a_2\})$
 - \triangleright a_1 and a_2 can be weak actions but not both simultaneously
 - Choosing one or the other may impact performance
 - In general: rely on expertise, side proof needed

4. Applications and experimental results

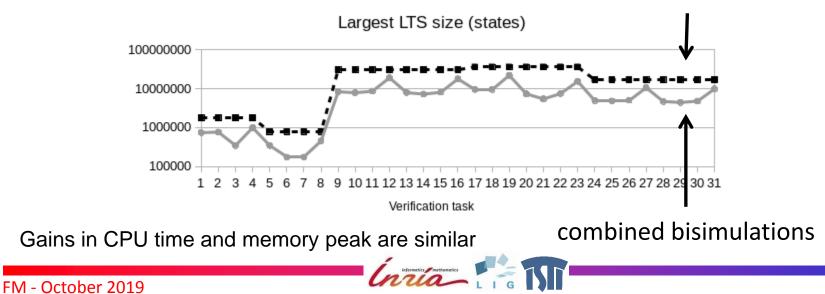
Implementation

- Approach implemented using CADP toolbox (cadp.inria.fr)
 - Formal verification of asynchronous concurrent systems
 - ▶ Toolbox developed since the late 80's (\approx 70 tools and libraries)
- Several software components used in this work:
 - LNT.OPEN/GENERATOR: compiling LNT processes to LTS
 - EXP.OPEN 2/GENERATOR: composing LTS in parallel
 - BCG_MIN 2: minimizing LTS for strong and divbranching
 - BCG_OPEN/EVALUATOR 4: model checking MCL temporal logic (regular alternation-free modal mu-calculus with data)
 - SVL: scripting, smart compositional verification heuristic
- Successful application to several examples

TFTP (Trivial File Transfer Protocol)

- Avionics case study (Garavel&Thivolle, 2009)
- 31 verification tasks involve properties that contain both weak and strong modalities
- Comparison with the mono-bisimulation approach
- Result: largest LTS up to 7 times smaller

mono-bisimulation



RERS (Rigorous Evaluation of Reactive Systems)

- Verification competition http://rers-challenge.org
 RERS 2018 "parallel CTL" benchmark
 - ▶ 3 concurrent models (101...103) with 9 to 34 parallel processes
 - ▶ 9 properties 3 per model (21..23)
- 7 properties combine weak and strong modalities
- Mono-bisimulation: explosion for 5 properties
- Combined bisimulations approach is successful
 - 4 properties from 5 to 10 min. and from 22 to 101 MB
 - ▶ 1 property: 42 min. and 1.6 GB

RERS - CTL example (103#23)

- AG (<A34> true ⇒ [A34] A ([A68] false W <A59> true)) checked on a composition of 34 processes (70 actions)
 - All but A34 , A59, A68 can be hidden (67 actions)
 - ► A34, A68 are weak, formula belongs to $L_{\mu-str}$ ({A59})
- Mono-bisimulation (strong) does not prevent explosion
 - Stopped after several hours
 - Largest LTS: \geq 4.5 Giga states / 36 Giga transitions $\frac{1}{2}$ Gr
- Combining bisimulations is successful
 - Strong action in 7 proc. \Rightarrow 27 proc. reduced for divbranching
 - Result true after < 10 min CPU, using 35 MB memory</p>
 - Largest LTS: 122,292 states / 888,156 transitions

5. Conclusion

Improvement of property-preserving LTS reductions

- New strategy combining bisimulations applicable to properties not preserved by divbranching bisimulation
- Based on property analysis, classifying actions as weak or strong
- Big LTS reductions wrt. mono-bisimulation
- Proofs and examples available at <u>doi.org/10.5281/zenodo.2634148</u>

Future work:

- Automate A_s computation or automatically check user-given A_s
- ▶ Automate composition refactoring $(||_{P^s \in \mathscr{F}} P_s) || (||_{P^w \in \mathscr{F}} P_w)$
- Approach further refined \Rightarrow gold medals won at RERS 2019