Compositional Verification of Concurrent
Systems by Combining Bisimulations

Frédéric Lang, Radu Mateescu

Inria, LIG, Université Grenoble Alpes (Grenoble, France)
http://convecs.inria.fr

Franco Mazzanti Q“l
ISTI-CNR (Pisa, Italy) &&T

http://fmt.isti.cnr.it

http://convecs.inria.fr/
http://convecs.inria.fr/
http://convecs.inria.fr/

Motivation

m Explicit-state model checking of concurrent system
» Asynchronous model P,||...| [P,

» LTS (Labelled Transition System) semantics

» Action-based modal p-calculus property ¢

m Problem: state-space explosion

m Compositional verification can circumvent explosion
» Apply to P,|]|...| | P, LTS reductions that preserve ¢

» Mateescu & Wijs (2014) define @-preserving reductions: action
hiding and quotient wrt. strong or divbranching bisimulation

» Applied sucessfully to many case studies

m We refine the approach by combining both bisimulations

23" FM - October 2019 &1/7»40/‘ L1 G I l 2

Outline

1. Background

2. The mono-bisimulation approach of Mateescu & Wijs
3. Our refined approach combining bisimulations

4. Applications and experimental results

5. Conclusion

FM - October 2019 » L I I 3

1. Background

FM - October 2019 &L'Z‘a" LI G | I I

Divbranching bisimulation
(van Glabbeek & Weijland, 1996)

m Short for divergence-preserving branching bisimulation

m Weaker than strong bisimulation:
special treatment of invisible (t) transitions

m Preserves choices of visible actions and infinite sequences
of t-transitions

. a b >O
m Example: i E is divbranching bisimilar to:
T T T
a
~db *— ’6 250
T

m Like strong, divbranching is a congruence for | |
= reduction applicable compositionally

FM - October 2019 &L?‘a’- L I I 5

Compositional reduction

m Alternation between n-ary compositions/reductions
(rcomp,), until all processes are aggregated

m Many strategies are possible
Example: Py | |P,| | Pg
» rcomp, (rcomp, (P,), rcomp, (P,), rcomp, (Ps5)))),
» rcomp, (rcomp, (rcomp, (P,), rcomp, (P,))), rcomp, (Ps))), ...

m LTS constrain each others by synchronization

m Aim: maintain the “largest intermediate LTS size” small
m No optimal strategy available: heuristic is needed

m We use smart reduction (Crouzen & Lang, 2011)

FM - October 2019 hrl&a’- L I I 6

The action-based modal mu-calculus LlLl
(Kozen, 1983)

m Temporal logic interpreted over LTS
m Action formulas:
o:=alfalse | —a | o, va,

Notation: [[o]] set of actions satisfying o

m State formulas:
¢ ::=false | =g | <0>@g | @1V @, | uX. @q | X

Notation: Pl=0 LTS P satisfies ¢
m Derived operators: true | [o] 05 | @, A @, | VX. @,
m Subsumes (action-based) CTL, ACTL, PDL, PDL-A, etc.

FM - October 2019 &z L I I 7

2. The mono-bisimulation
approach of Mateescu & Wijs

FM - October 2019 &1, v I I 8

The mono-bisimulation approach

m Find actions a,, ..., a,, and relation R among divbranching
and strong bisimulations, such that ¢ can be verified on

R reduction of hide a,, ..., a,, in P,||...] | P,
instead of
P.l]...]1|P,

m Procedure H(¢p) computes the largest seta,, ..., a,,
H(p) =N h(o) h(a) = if te[[a]] then [[a]] else all but [[a]]
Example: H(uX.<a> true v <true> X) = all but a

m Afragment L 4, of L, is defined such that:

» Risdivbranchingifo e L, 4,
» Ris strong otherwise (less reduction)

A—— | T
FM - October 2019 » L I I 9

The fragment L,

Strong modalities <a> ¢ are replaced by weak modalities:
¢ ::=false | =@, | ©; v o, | uX. @y | X

there is a sequence of actions satisfying
Pqr. O, 0, o, that traverses only states satisfying
¢®, and ends in a state satisfying o,

(. . . -

. there is a sequence of actions satisfying

| <(([)1?. OLT) . (Pl?- Ol,> 5| o, that traverses only states satisfying

_ ¢, and ends in a state satisfying <o.,> ¢, |

" there is an infinite sequence of actions
| <(p1?. o> @ satisfying o.. that traverses only states

_satisfying ¢,)

where t € [[a]], T ¢ [[o,]]
FM - October 2019 ot " - m 10

Expressiveness of L,

Translation to L _y, is possible for the following operators:

m PDL-A: <a.*>0, <o *.o,> <0.> @
m ACTL: A (9; 41U 0,) A (97 41Uy, 0,) AG,, (9)
E (91 1V ¢,) E (91 21U ©,) EF 0 (00)
(L-ACTL\X is slightly less expressive than Lu_db)
m CTL: A(p,Uop,) Alp, W, AG (@) AF (o)

E(p,Uq,) E(p;Wo,) EF(q,) EG (o)
A (([o,] 1) Ug,) All[ag] @) W ,)
AG (9, v [a,] @,) EF (¢ A <a,> ¢,)

where @, ¢y, ¢, €L, g, T € [[o]], T € [[0t,]]

New result

! T
FM - October 2019 &zua,- N 11

Compositional verification example

RO el T 200
a, a,
m (O, = <true*.ag,> true € Ly ap

smart divbranching reduction of
hide all but a, in (P, |[a,]|P,) |= @,
—> Largest LTS: 3 states / 3 transitions (P,)

m O, = [true*.a,.a,] false Z L\ b
smart strong reduction of
hide all but a,, a, in (P, |[a,]|P,) |= o,
—> Largest LTS: 6 states / 8 transitions

FM - October 2019 &z b I I 12

3. Our refined approach
combining bisimulations

FM - October 2019 &1’% LI G I I

13

Principles

m Formulas may combine strong and weak modalities
Examples: [true*.a,.a,] false <true*> (<a,> true A <a,> true)

m Such formulas are not preserved by divbranching

m Theorem: If no action of some P, is matched by a strong
modality then P, can be reduced for divbranching

m We write ¢ € L, ,(A,) and call A, the set of strong actions
if all strong modalities of ¢ satisfy [[a]] < A,

Examples: [true*.a,.a,] false € L ({a,}) L ab = Lstr(D)

A—— | T
FM - October 2019 » L I I 14

New verification strategy

m Partitioning the set of processes
> ﬂfs: processes among P,, ..., P, containing strong actions
» P ={P,, ..., P.}\ P.: processes not containing strong actions

m Refactoring P,||...] P, into (| |p csP) |1 (| 1pwesmPy)

m Reducing the sets of processes compositionally
according to theorem:
» Q =smart divbranching reduction of (| |,. _ s P,)
» Q' =smart strong reduction of (| |, _.sP.) || Q

m Finally checking hide H(p) in Q" |= o

FM - October 2019 » L I I 15

Example

a a a

R=9 el 209
a, a,

m O, = [true*.a,.0,] false € L, ({0,})
smart strong reduction of hide all but a,, g, in
((smart divbranching reduction of --a,¢ P,
hide all but g, in P,)
|[a,]]
(smart strong reduction of --a,€ P,
hide all but a,, a, in P,)) |= o,

m = Largest LTS: 3 states / 3 transitions
instead of 6 states / 8 transitions

e T — ' T
FM - October 2019 &z b I I 16

Extracting A, from the formula

m Problem: Given ¢ € L, how toinfer A;s.t. ¢ € L, (A) ?

m Hard for arbitrary low-level L, formula
» Need to prove that a strong modality can be turned to weak one
» Analogy: prove that binary code implements function correctly

m Easier for higher-level logics (CTL, ACTL, PDL, PDL-A):

Use knowledge of L 4, expressiveness (patterns)
Example: A (([a] false) U true) e Lu_str({b})
because A (([o,,] 9;) U®,) € Ly, and true € L ({b})

m A_can be safely over-approximated, but smaller is better
m Automatic extraction of minimal A, faces issues

FM - October 2019 &ZXIW . I I 17

Issues with extracting a minimal A,

m Issue 1: It requires semantic reasoning

» Example: in AG (<a> true = [a] ©,), a seems to be strong
In fact it is not as this formula is equivalent to AG ([a] ¢,)

» L, satisfiability checking (EXPTIME) might be necessary
m [ssue 2: minimal A, is not unique

- Examp|e: Q= <true*>(<al> true A <a,> true) & Lu—str(@)
Q= <(<a1> true?.true)*.<al> true?.a,> true € Lu-str({al})
Q= <(<az> true?.true)*.<az> true?.a > true € Lp-str({GZ})

» a, and g, can be weak actions but not both simultaneously
» Choosing one or the other may impact performance

m In general: rely on expertise, side proof needed

A s T
FM - October 2019 2UA— . I I

18

4. Applications and
experimental results

FM - October 2019 &1/240/- LI G I I

19

Implementation ganp

m Approach implemented using CADP toolbox (cadp.inria.fr)
» Formal verification of asynchronous concurrent systems
» Toolbox developed since the late 80’s (= 70 tools and libraries)

m Several software components used in this work:
» LNT.OPEN/GENERATOR: compiling LNT processes to LTS
» EXP.OPEN 2/GENERATOR: composing LTS in parallel
» BCG_MIN 2: minimizing LTS for strong and divbranching

» BCG_OPEN/EVALUATOR 4: model checking MCL temporal logic
(regular alternation-free modal mu-calculus with data)

» SVL: scripting, smart compositional verification heuristic

m Successful application to several examples

FM - October 2019 hrl&a’- L I I 20

TFTP (Trivial File Transfer Protocol)

m Avionics case study (Garavel&Thivolle, 2009)

m 31 verification tasks involve properties that contain both
weak and strong modalities

m Comparison with the mono-bisimulation approach

m Result: largest LTS up to 7 times smaller

mono-bisimulation

Largest LTS size (states) ‘L

100000000
FES-Ea-n g &R A-Ra-a

10000000]
]

A ECTEL EE |

=N N p

1000000 =

100000

1 2 34567 8 910111213141516171819202122232425262728293031
Verification task

Gains in CPU time and memory peak are similar combined bisimulations

,,,,,,,,,,,,,,,,,,,,,,, | T
FM - October 2019 &L L I I 21

RERS (Rigorous Evaluation of Reactive Systems)

m Verification competition http://rers-challenge.org
m RERS 2018 “parallel CTL” benchmark

» 3 concurrent models (101...103) with 9 to 34 parallel processes
» 9 properties — 3 per model (21..23)

m 7 properties combine weak and strong modalities
m Mono-bisimulation: explosion for 5 properties

m Combined bisimulations approach is successful
» 4 properties from 5 to 10 min. and from 22 to 101 MB
» 1 property: 42 min. and 1.6 GB

FM - October 2019 hrl&a’- L I I 22

RERS - CTL example (103#23)

m AG (<A34> true = [A34] A ([A68] false W <A59> true))
checked on a composition of 34 processes (70 actions)

» All but A34, A59, A68 can be hidden (67 actions)
({A59})

m Mono-bisimulation (strong) does not prevent explosion

» A34, A68 are weak, formula belongs to L,

» Stopped after several hours
» Largest LTS: > 4.5 Giga states / 36 Giga transitions
m Combining bisimulations is successful

» Strong action in 7 proc. = 27 proc. reduced for divbranching
» Result true after < 10 min CPU, using 35 MB memory
» Largest LTS: 122,292 states / 888,156 transitions

FM - October 2019 &L’l‘a’- L I I 23

5. Conclusion

m Improvement of property-preserving LTS reductions

» New strategy combining bisimulations applicable to properties
not preserved by divbranching bisimulation

» Based on property analysis, classifying actions as weak or strong
» Big LTS reductions wrt. mono-bisimulation

» Proofs and examples available at doi.org/10.5281/zenodo0.2634148
m Future work:

» Automate A, computation or automatically check user-given A,
» Automate composition refactoring (| |p. . aPs) || (|]p. c 52 Py
» Approach further refined = gold medals won at RERS 2019

FM - October 2019 &1’7"4“"‘ L1 G I I 24

http://doi.org/10.5281/zenodo.2634148

