Compositional verification applied to RERS 2019

Frédéric Lang
Inria & LIG – CONVECS team (Grenoble, France)

Franco Mazzanti
ISTI-CNR – FM&&T group (Pisa, Italy)
Approach

• Categories: parallel CTL and parallel LTL
• Main tool: CADP (cadp.inria.fr)
• Auxiliary tools:
 – SPOT (spot.lrde.epita.fr) Translation of LTL to Büchi automata
 – KandISTI/FMC (fmt.isit.cnr.it/kandisti) Cross-checking of CTL results
 – nuXmv (nuxmv.fbk.eu) Cross-checking of LTL results
• Main technique: Compositional verification
The CADP toolbox

http://cadp.inria.fr

• Developed by Inria/CONVECS for > 30 years
• Model & equivalence checking, rapid prototyping, test case generation, ... (> 80 tools and libraries)
• Enumerative techniques: LTS model
• Main languages and tools used in this work:
 – LNT system description language,
 – MCL property description language,
 – EVALUATOR model checker ,
 – BCG_MIN LTS minimization tool,
 – SVL scripting language and compiler, ...
RERS parallel verification tasks

- System description $P_1 \parallel \ldots \parallel P_n$
 - 9 system descriptions from 8 to 70 parallel processes and from 29 to 234 actions
 - We used the DOT representation
 - Automated translation from DOT to LNT

- Property φ
 - 20 CTL properties for each system description
 - 20 LTL properties for each system description
CTL compositional verification

• Results of [MW14] are used to infer from \(\varphi \)
 – a set of actions \(H \) that can be hidden
 – an equiv. relation \(R \) that preserves \(\varphi \) (improved)
• A reduced model \(M \) is obtained using SVL as smart \(R \) reduction of hide \(H \) in \(P_1 \parallel ... \parallel P_n \)
• \(\varphi \) is verified on \(M \) using EVALUATOR:
 \[
P_1 \parallel ... \parallel P_n \models \varphi \quad \text{iff} \quad M \models \varphi
 \]

CTL results

• **All 180 CTL properties verified** on this laptop:
 – 158 min. CPU (≈ 2.5 hours) / ≈ 5 hours elapsed
 – 200 MB memory
 – Largest intermediate LTS ≤ 3363 states

• Cross-checking with **KandISTI/FMC**:
 – on the fly, explicit verification on unreduced LTS
 – 126 problems solved out of 180 (70 %)
 max 2h, 64 GB memory available
 – **CADP** results confirmed
LTL compositional verification

• Reduced model M obtained using same approach
• Use of Büchi automaton B
 – Automated translation of $\neg \varphi$ to transition-based Büchi automaton using SPOT (HOA format)
 – Automated encoding from HOA to LNT
 – Accepting transitions encoded by action ACC
• EVALUATOR is used to verify the acceptance condition encoded as an MCL formula:

 $P_1 || \ldots || P_n \models \varphi \iff M || B \models \neg<true^* . ACC> @$
LTL results

• All 180 LTL properties verified on this laptop:
 – 144 min. CPU (≈ 2.5 hours) / ≈ 5 hours elapsed
 – 200 MB memory
 – Largest intermediate LTS ≤ 1068 states

• Cross-checking with nuXmv:
 – LTL verification on the reduced LTS (risk)
 – all problems solved
 – CADP results confirmed
Conclusion

• **Compositional verification is effective** to solve **CTL** and **LTL** parallel benchmarks of RERS 2019

• **Causes of success:**
 – Expressive languages (LNT, MCL, SVL, ...)
 – Efficient tools
 – Team working: combination of expertises, synergy
 – Hard work and tenacity

• **Diversity of approaches** ⇒ trust increases

• **New results**: papers in preparation