Compositional verification applied to RERS 2019

Frédéric Lang Inria & LIG – CONVECS team (Grenoble, France)

Franco Mazzanti ISTI-CNR – FM&&T group (Pisa, Italy)

RERS 2019

Approach

- Categories: parallel CTL and parallel LTL
- Main tool: CADP (cadp.inria.fr)
- Auxiliary tools:
 - SPOT (spot.lrde.epita.fr)
 Translation of LTL to Büchi automata
 - KandISTI/FMC (fmt.isit.cnr.it/kandisti)
 Cross-checking of CTL results
 - nuXmv (nuxmv.fbk.eu)
 Cross-checking of LTL results
- Main technique: Compositional verification

RERS 2019

The CADP toolbox http://cadp.inria.fr

- Developed by Inria/CONVECS for > 30 years
- Model & equivalence checking, rapid prototyping, test case generation, ... (> 80 tools and libraries)
- Enumerative techniques: LTS model
- Main languages and tools used in this work:
 - LNT system description language,
 - MCL property description language,
 - EVALUATOR model checker ,
 - BCG_MIN LTS minimization tool,
 - SVL scripting language and compiler, …

RERS parallel verification tasks

- System description $P_1 \mid | \dots | | P_n$
 - 9 system descriptions from 8 to 70 parallel processes and from 29 to 234 actions
 - We used the DOT representation
 - Automated translation from DOT to LNT
- Property φ
 - 20 CTL properties for each system description
 - 20 LTL properties for each system description

CTL compositional verification

• Results of [MW14] are used to infer from φ

– a set of actions *H* that can be hidden

– an equiv. relation R that preserves φ (improved)

- A reduced model *M* is obtained using SVL as smart *R* reduction of hide *H* in *P*₁ || ... || *P*_n
- φ is verified on *M* using EVALUATOR: $P_1 \mid \mid \dots \mid \mid P_n \mid = \varphi$ iff $M \mid = \varphi$

[MW14] R. Mateescu, A. Wijs. *Property-Dependent Reductions* Adequate With Divergence-Sensitive Branching Bisimilarity. SCP, 2014.

CTL results

- All 180 CTL properties verified on this laptop:
 - 158 min. CPU (≈ 2.5 hours) / ≈ 5 hours elapsed
 - 200 MB memory
 - Largest intermediate LTS \leq 3363 states
- Cross-checking with KandISTI/FMC:
 - on the fly, explicit verification on unreduced LTS
 - 126 problems solved out of 180 (70 %)
 max 2h, 64 GB memory available
 - CADP results confirmed

LTL compositional verification

- Reduced model *M* obtained using same approach
- Use of Büchi automaton **B**
 - Automated translation of $\neg \varphi$ to transition-based Büchi automaton using SPOT (HOA format)
 - Automated encoding from HOA to LNT
 - Accepting transitions encoded by action ACC
- EVALUATOR is used to verify the acceptance condition encoded as an MCL formula:

 $P_1 || ... || P_n |= \varphi$ iff $M || B |= \neg < true^*$. ACC> @

LTL results

- All 180 LTL properties verified on this laptop:
 - 144 min. CPU (≈ 2.5 hours) / ≈ 5 hours elapsed
 - 200 MB memory
 - Largest intermediate LTS \leq 1068 states
- Cross-checking with nuXmv:
 - LTL verification <u>on the reduced LTS</u> (risk)
 - all problems solved
 - CADP results confirmed

Conclusion

- Compositional verification is effective to solve CTL and LTL parallel benchmarks of RERS 2019
- Causes of success:
 - Expressive languages (LNT, MCL, SVL, ...)
 - Efficient tools
 - Team working: combination of expertises, synergy
 - Hard work and tenacity
- Diversity of approaches \Rightarrow trust increases
- New results : papers in preparation