
Our approach to the RERS
challenge 2020

Frédéric Lang, Wendelin Serwe
Inria & LIG – CONVECS team (Grenoble, France)

Franco Mazzanti
ISTI-CNR – FM&&T group (Pisa, Italy)

1

Rigorous Examination of Reactive Systems
 Every year since 2012
 Several categories:

 Sequential systems (C programs) : reachability, LTL
 Parallel systems (Networks of automata) : CTL, LTL

 Competition flow:
 Organizers release problems of various complexities

built by property-preserving transformations of smaller systems
 Participants have 4-6 weeks to solve the problems and submit results
 Two categories of medals (gold, silver, bronze) are awarded during

the event: achievements and ranking
 Participants also give a talk where they explain their approach

 In 2019, we won all gold medals in the parallel LTL and parallel
CTL categories with 100 % success using CADP

Our participation in RERS 2020

• Category: parallel CTL

• Main tool: CADP (cadp.inria.fr)

• Auxiliary tools:
 PMC (convecs.inria.fr/software/pmc)

Partial model checking on top of CADP

 KandISTI/FMC (fmt.isti.cnr.it/kandisti)
Cross-checking of CTL results

• We lacked time to tackle parallel LTL: not at the
core of CADP, requires craftwork

3

The CADP toolbox
 http://cadp.inria.fr

• Developed by Inria/CONVECS for more than 30 years

• Model & equivalence checking, rapid prototyping, test case
generation, ... (> 80 tools and libraries)

• Enumerative techniques: LTS model

• Main languages and tools used in this work:
 LNT system description language,
 MCL property description language,
 GENERATOR/DISTRIBUTOR state space generators,
 EVALUATOR model checker,
 BCG_MIN LTS minimizer,
 SVL scripting language and compiler, ...

4

RERS parallel verification tasks

• System description P1 || ... || Pn

 9 system descriptions 101 to 109
from 5 to 16 parallel processes P1, P2, ...
from 26 to 75 actions L0, L1, …

 Synchronization on the intersection of actions
 We used the DOT representation provided by the

organizers, automatically translated to LNT

• Property
– 10 CTL properties for each system description

from 10X#01 to 10X#10

5

Process reduction
Given a (mu-calculus, or CTL) formula

• extract from the maximal set of actions that can
be hidden in the system [MW14]...

• extract from a set of so-called strong actions,
defining a sharp bisimulation relation, stronger than
branching and weaker than strong [LMM20]...

… so that hiding + reduction preserve

Applied whenever possible
[MW14] R. Mateescu, A. Wijs. Property-Dependent Reductions

Adequate With Divergence-Sensitive Branching Bisimilarity. SCP, 2014.

6

[LMM20] F. Lang, R. Mateescu, F. Mazzanti. Sharp Congruences Adequate with
Temporal Logics Combining Weak and Strong Modalities. TACAS, 2020.

1st attempt: On-the-fly verification

 Using the Evaluator model checker of CADP

 Successful on 48/90 (53 %) problems:
 Problem 101: 10/10

 Problem 102: 8/10 (all but 102#{07,08})

 Problem 103: 9/10 (all but 103#02)

 Problem 104: 2/10 (104#{04,09})

 Problem 105: 3/10 (105#{02,03,04})

 Problem 106: 2/10 (106#{01,07})

 Problem 107: 3/10 (107#{01,09,10})

 Problem 108: 7/10 (all but 108#{02,07,08})

 Problem 109: 4/10 (109#{01,04,06,10})

SVL script example: 101#02

Property AF (A ([L1] false W < L9 > true)) Visible: L1, L9 Strong: L9

"problem.exp" = leaf sharp reduction hold L9 of
 hide all but L1, L9 in
 par
 L0, L1, L3, L4, L6, L7, L8, L25, L26 -> P1
 || L0, L1, L3, L4, L6, L7, L8, L11, L13 -> P2
 || L11, L13, L14, L15, L16, L20, L22, L23, L24 -> P3
 || L14, L15, L16, L17, L18, L23, L24, L25, L26 -> P4
 || L17, L18, L20, L22 -> P5
 end par
 end hide;
"problem.exp" ⊨ AF (AW (["L1"] false, < "L9" > true));

all but L0, ..., L26 and L1, L9
are automatically hidden in
P1, which is then reduced with
respect to sharp bisimulation

2nd attempt: Partial model checking

 Following [Anderson-95]: Iteratively turn the check
P1 || ... || Pn ⊨ into P2 || ... || Pn ⊨ // P1 (quotienting)

until quotient gets a true/false value

 Successful on 30/42 (71%) remaining problems
 Problem 102: 2/2

 Problem 103: 1/1

 Problem 104: 8/8

 Problem 105: 7/7

 Problem 106: 4/8 (all but 106#{03,04,06,10})

 Problem 107: 5/7 (all but 107#{05,06})

 Problem 108: 1/3 (108#08)

 Problem 109: 2/6 (109#{02,09})

SVL script example: 102#07

Property AF ((< L9 > true) ∧ AG ([L6] false)) Visible: L6, L9 Strong: L9

"problem.exp" = leaf sharp reduction hold L9 of
 hide all but L6, L9 in
 par
 L0, L2, L3, L6, L7, L8, L9, L30, L31 -> P1
 || L0, L2, L3, L6, L7, L8, L9, L10, L11 -> P2
 || L10, L11, L12, L13, L19, L20, L21, L22 -> P3
 || L12, L13, L15, L17, L18, L21, L22, L23, L24, L25 -> P4
 || L15, L17, L18, L19, L20 -> P5
 || L23, L24, L25, L26, L27 -> P6
 || L26, L27, L30, L31 -> P7
 end par
 end hide;
% pmc -leftright -orelim "problem.exp" "problem102_07.mcl"

-orelim to save time and memory
(otherwise check does not succeed)

Remarks

 Some properties were simplified taking into account other results
Example:
 106#05: « AG ([L0] false) » is TRUE

 Thus, 5 properties of problem 106 using L0 can be simplified
e.g., 106#02: A ((< L1 > true) ⇒ A ([L8] false U < L0 > true) W < L7 > true)
becomes A ([L1] false W < L7 > true)

 This allows more labels to be hidden / less labels defined as strong
e.g., 106#02: L8 hidden, L1 not strong ⇒ greater reduction

 For properties of the form AG ([Lx] false), we minimized the
processes wrt. safety equivalence (weaker relation than sharp)

 Invariance properties of the form AG (φ1 ∧ φ2) were split into

independent invariance properties: AG (φ1) and AG (φ2)

Other attempts

 106#06 solved by reasoning and searching a
counterexample using interactive simulation

 We also tried distributed state space
generation using CADP on the
Grid’5000 platform

 But state spaces remained too big, even using
compositional reduction (billions of states)

Comparison with RERS 2019

 In 2019:
 All examples could be verified fastly using compositional sharp

reduction (smart heuristic)

 On-the-fly verification was less successful than in 2020

 Partial model checking was not even tried because of the success of
compositional verification

 In 2020, the problems evolved:
 Processes are larger
 There is less concurrency (up to 16 // processes instead of 70)
 The branching factor and nondeterminism are higher
 This probably limits the « confluence » of concurrent transitions

eliminable by sharp bisimulation

Conclusions

Gold medals (achievement and ranking), no bad answer
We found RERS 2020 much harder than RERS 2019

 0/180 problems remained unsolved in 2019
 11/90 (12%) problems remained unsolved in 2020

(106#{03,04,10}, 107#{05,06}, 108#{02,07}, 109#{03,05,07,08})

As ever, techniques are complementary: what works on
some problems may not work on others

Sharp bisimulation reduction remains very useful
But we did not yet implement full minimization...

Don’t know if results would have been better

14

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14

