
Our approach to the RERS
challenge 2020

Frédéric Lang, Wendelin Serwe
Inria & LIG – CONVECS team (Grenoble, France)

Franco Mazzanti
ISTI-CNR – FM&&T group (Pisa, Italy)

1

Rigorous Examination of Reactive Systems
 Every year since 2012
 Several categories:

 Sequential systems (C programs) : reachability, LTL
 Parallel systems (Networks of automata) : CTL, LTL

 Competition flow:
 Organizers release problems of various complexities

built by property-preserving transformations of smaller systems
 Participants have 4-6 weeks to solve the problems and submit results
 Two categories of medals (gold, silver, bronze) are awarded during

the event: achievements and ranking
 Participants also give a talk where they explain their approach

 In 2019, we won all gold medals in the parallel LTL and parallel
CTL categories with 100 % success using CADP

Our participation in RERS 2020

• Category: parallel CTL

• Main tool: CADP (cadp.inria.fr)

• Auxiliary tools:
 PMC (convecs.inria.fr/software/pmc)

Partial model checking on top of CADP

 KandISTI/FMC (fmt.isti.cnr.it/kandisti)
Cross-checking of CTL results

• We lacked time to tackle parallel LTL: not at the
core of CADP, requires craftwork

3

The CADP toolbox
 http://cadp.inria.fr

• Developed by Inria/CONVECS for more than 30 years

• Model & equivalence checking, rapid prototyping, test case
generation, ... (> 80 tools and libraries)

• Enumerative techniques: LTS model

• Main languages and tools used in this work:
 LNT system description language,
 MCL property description language,
 GENERATOR/DISTRIBUTOR state space generators,
 EVALUATOR model checker,
 BCG_MIN LTS minimizer,
 SVL scripting language and compiler, ...

4

RERS parallel verification tasks

• System description P1 || ... || Pn

 9 system descriptions 101 to 109
from 5 to 16 parallel processes P1, P2, ...
from 26 to 75 actions L0, L1, …

 Synchronization on the intersection of actions
 We used the DOT representation provided by the

organizers, automatically translated to LNT

• Property 
– 10 CTL properties for each system description

from 10X#01 to 10X#10

5

Process reduction
Given a (mu-calculus, or CTL) formula 

• extract from  the maximal set of actions that can
be hidden in the system [MW14]...

• extract from  a set of so-called strong actions,
defining a sharp bisimulation relation, stronger than
branching and weaker than strong [LMM20]...

… so that hiding + reduction preserve 

Applied whenever possible
[MW14] R. Mateescu, A. Wijs. Property-Dependent Reductions

Adequate With Divergence-Sensitive Branching Bisimilarity. SCP, 2014.

6

[LMM20] F. Lang, R. Mateescu, F. Mazzanti. Sharp Congruences Adequate with
Temporal Logics Combining Weak and Strong Modalities. TACAS, 2020.

1st attempt: On-the-fly verification

 Using the Evaluator model checker of CADP

 Successful on 48/90 (53 %) problems:
 Problem 101: 10/10

 Problem 102: 8/10 (all but 102#{07,08})

 Problem 103: 9/10 (all but 103#02)

 Problem 104: 2/10 (104#{04,09})

 Problem 105: 3/10 (105#{02,03,04})

 Problem 106: 2/10 (106#{01,07})

 Problem 107: 3/10 (107#{01,09,10})

 Problem 108: 7/10 (all but 108#{02,07,08})

 Problem 109: 4/10 (109#{01,04,06,10})

SVL script example: 101#02

Property AF (A ([L1] false W < L9 > true)) Visible: L1, L9 Strong: L9

"problem.exp" = leaf sharp reduction hold L9 of
 hide all but L1, L9 in
 par
 L0, L1, L3, L4, L6, L7, L8, L25, L26 -> P1
 || L0, L1, L3, L4, L6, L7, L8, L11, L13 -> P2
 || L11, L13, L14, L15, L16, L20, L22, L23, L24 -> P3
 || L14, L15, L16, L17, L18, L23, L24, L25, L26 -> P4
 || L17, L18, L20, L22 -> P5
 end par
 end hide;
"problem.exp" ⊨ AF (AW (["L1"] false, < "L9" > true));

all but L0, ..., L26 and L1, L9
are automatically hidden in
P1, which is then reduced with
respect to sharp bisimulation

2nd attempt: Partial model checking

 Following [Anderson-95]: Iteratively turn the check
P1 || ... || Pn ⊨  into P2 || ... || Pn ⊨  // P1 (quotienting)

until quotient gets a true/false value

 Successful on 30/42 (71%) remaining problems
 Problem 102: 2/2

 Problem 103: 1/1

 Problem 104: 8/8

 Problem 105: 7/7

 Problem 106: 4/8 (all but 106#{03,04,06,10})

 Problem 107: 5/7 (all but 107#{05,06})

 Problem 108: 1/3 (108#08)

 Problem 109: 2/6 (109#{02,09})

SVL script example: 102#07

Property AF ((< L9 > true) ∧ AG ([L6] false)) Visible: L6, L9 Strong: L9

"problem.exp" = leaf sharp reduction hold L9 of
 hide all but L6, L9 in
 par
 L0, L2, L3, L6, L7, L8, L9, L30, L31 -> P1
 || L0, L2, L3, L6, L7, L8, L9, L10, L11 -> P2
 || L10, L11, L12, L13, L19, L20, L21, L22 -> P3
 || L12, L13, L15, L17, L18, L21, L22, L23, L24, L25 -> P4
 || L15, L17, L18, L19, L20 -> P5
 || L23, L24, L25, L26, L27 -> P6
 || L26, L27, L30, L31 -> P7
 end par
 end hide;
% pmc -leftright -orelim "problem.exp" "problem102_07.mcl"

-orelim to save time and memory
(otherwise check does not succeed)

Remarks

 Some properties were simplified taking into account other results
Example:
 106#05: « AG ([L0] false) » is TRUE

 Thus, 5 properties of problem 106 using L0 can be simplified
e.g., 106#02: A ((< L1 > true) ⇒ A ([L8] false U < L0 > true) W < L7 > true)
becomes A ([L1] false W < L7 > true)

 This allows more labels to be hidden / less labels defined as strong
e.g., 106#02: L8 hidden, L1 not strong ⇒ greater reduction

 For properties of the form AG ([Lx] false), we minimized the
processes wrt. safety equivalence (weaker relation than sharp)

 Invariance properties of the form AG (φ1 ∧ φ2) were split into

independent invariance properties: AG (φ1) and AG (φ2)

Other attempts

 106#06 solved by reasoning and searching a
counterexample using interactive simulation

 We also tried distributed state space
generation using CADP on the
Grid’5000 platform

 But state spaces remained too big, even using
compositional reduction (billions of states)

Comparison with RERS 2019

 In 2019:
 All examples could be verified fastly using compositional sharp

reduction (smart heuristic)

 On-the-fly verification was less successful than in 2020

 Partial model checking was not even tried because of the success of
compositional verification

 In 2020, the problems evolved:
 Processes are larger
 There is less concurrency (up to 16 // processes instead of 70)
 The branching factor and nondeterminism are higher
 This probably limits the « confluence » of concurrent transitions

eliminable by sharp bisimulation

Conclusions

Gold medals (achievement and ranking), no bad answer
We found RERS 2020 much harder than RERS 2019

 0/180 problems remained unsolved in 2019
 11/90 (12%) problems remained unsolved in 2020

(106#{03,04,10}, 107#{05,06}, 108#{02,07}, 109#{03,05,07,08})

As ever, techniques are complementary: what works on
some problems may not work on others

Sharp bisimulation reduction remains very useful
But we did not yet implement full minimization...

Don’t know if results would have been better

14

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14

