Computation Tree Regular Logic for Genetic Regulatory Networks

Radu Mateescu, Pedro Tiago Monteiro, Estelle Dumas, and Hidde de Jong

INRIA Grenoble - Rhône-Alpes
VASY and IBIS project-teams

Context

- EC-MOAN (Escherichia Coli - MOdeling and ANalysis) European project FP6-NEST-PATH-COM no. 043235

Analysis of genetic regulatory networks (GNA - Genetic Network Analyzer)

A first connection from GNA to CADP

 [Batt-Bergamini-deJong-Garavel-Mateescu-04]- GNA2BCG: translation from KSs to LTSs
- Succinct (same number of states)
- Reduction using branching bisimulation

- Does not preserve strong bisimulation (extra self-loops)
- Properties expressed on LTSs (action-based logics)
- Difficult to relate with the input GNA model
- Requires expertise in model checking

Motivation of current work

Devise a temporal logic that:

- Is state-based (interpreted directly on KSs)
- Is powerful enough to capture biological properties
- Multistability (branching-time)
- Oscillations (linear-time)
- Has a reasonable model checking complexity
- Preferably linear-time w.r.t. the KS size
- Has a user-friendly syntax for non-experts
- Succinct and intuitive formulation of properties
- A small number of temporal operators

Computation Tree Regular Logic - CTRL (syntax)

$\varphi::$	$=\mathrm{p}$
	$\|\neg \varphi\| \varphi_{1} \vee \varphi_{2}$
	$\mathrm{EF}_{\rho} \varphi$
	$\mid \mathrm{AF}_{\rho} \varphi$
	$\mathrm{EF}^{\infty}{ }_{\rho}$
	$\mathrm{AF}^{\infty}{ }_{\rho}$

$\rho::=\varphi$
$\mid \rho_{1} \cdot \rho_{2}$
regular formulas
$\left|\rho_{1}\right| \rho_{2}$
| ${ }^{\text {p* }}$
one-step interval
concatenation
atomic proposition boolean connectors potentiality
inevitability
potential looping
inevitable looping
choice
iteration 0 or more times

CTRL - state formulas (semantics)

- $E F_{\rho} \varphi$

- $A F_{\rho} \varphi$

- $E F^{\infty}{ }_{\rho}$

- $A F^{\infty}{ }_{\rho}$

目

CTRL - regular formulas (semantics)

- φ

- $\rho_{1} \mid \rho_{2}$

$$
\text { - } \rho_{1} \cdot \rho_{2}
$$

- ρ^{*}

CTRL - derived operators (syntax)

$$
\begin{aligned}
& \mathrm{EG}_{\rho} \varphi=\neg \mathrm{AF}_{\rho} \neg \varphi \\
& \mathrm{AG}_{\rho} \varphi=\neg \mathrm{EF}_{\rho} \neg \varphi \\
& \mathrm{EG}^{\perp}=\neg \mathrm{AF}^{\infty}{ }_{\rho} \\
& \mathrm{AG}^{\perp}{ }_{\rho}=\neg \mathrm{EF}_{\rho}^{\infty}
\end{aligned}
$$

trajectory invariance potential saturation inevitable saturation
nil = false*
$\rho+=\rho \cdot \rho^{*}$
empty interval
iteration 1 or more times

CTRL - derived operators (semantics)

- $\mathrm{EG}_{\rho} \varphi$
- $\mathrm{EG}^{+}{ }_{\rho}$

- $A G_{\rho} \varphi$

- $\mathrm{AG}^{\perp}{ }_{\rho}$

Examples (biological properties)

- Multistability: reachability of several equilibrium states

$A G_{\text {true* }}\left(p \Rightarrow\left(E F_{\text {true* }}\right.\right.$ eql $_{1} \wedge E F_{\text {true* }}$ eql ${ }_{2} \wedge E F_{\text {true** }}$ eql 3$\left.)\right)$
- Oscillations:

```
existence
of complex
    cycles
```


$\mathrm{EF}_{\text {true* }} \mathrm{EF}^{\infty} \mathrm{c} 1+$. true*. c2-. true*. c3+..true*. c1-.true*. c2+.true*. c3-. true*

Examples (concurrent system properties)

- Alternation between send/receive (safety):

$\mathrm{AG}_{\text {(nil। (true*.rcv)).(-snd)*.rcv) I (true*.snd.(-rcv)*.snd) }}$ false

CTL formulation:
$\neg \mathrm{E}[\neg \mathrm{snd} \mathrm{Urcv}] \wedge \mathrm{AG}(\mathrm{rcv} \Rightarrow \neg \mathrm{E}[\neg \mathrm{snd} \mathrm{Urcv}]) \wedge \mathrm{AG}($ snd $\Rightarrow \neg \mathrm{E}[\neg \mathrm{rcv} \mathrm{U}$ snd] $)$

- Inevitable reception after possible errors (liveness):

$A G_{\text {true*.snd }} A F_{\text {(true*.err)*.rcv }}$ true

- Bounded overtaking (fairness):

$$
\mathrm{AG}_{\text {true*. }}{ }^{*} \text { req1 } \mathrm{AG}^{\perp}{ }_{(\text {(get1)**.req2.(-get1)*.get2 }}
$$

LTL formulation:
$\mathrm{G}\left(\mathrm{req}_{1} \Rightarrow\left(\right.\right.$ get $_{1} \mathrm{R} \neg$ req $\left._{2}\right) \vee\left(\neg\right.$ get $_{1} \mathrm{U}\left(\left(\right.\right.$ req $_{2} \wedge\left(\right.$ get $_{1} \mathrm{R} \neg$ get $\left.\left._{2}\right)\right) \vee$ $\left(\operatorname{get}_{2} \wedge\left(\right.\right.$ get $\left.\left.\left.\left.\left._{1} R \neg \operatorname{req}_{2}\right)\right)\right)\right)\right)$

Expressiveness of CTRL

- CTRL subsumes CTL (Computation Tree Logic)
$\mathrm{E}[\varphi \mathrm{U} \psi]=\mathrm{EF}_{\varphi^{*}} \Psi$
$\mathrm{A}[\varphi \cup \Psi]=\mathrm{AF}_{\varphi^{*}} \Psi$
the until operator U is not primitive in CTRL
- CTRL subsumes LTL (Linear Time Logic)
$\mathrm{EF}^{\infty}{ }_{\text {true* }}$. final. true
acceptance condition in Büchi automata
- CTRL subsumes CTL*

$$
\begin{aligned}
& \left\{\mathrm{p}, \neg \varphi, \varphi_{1} \vee \varphi_{2}, \mathrm{EF}_{\rho} \varphi, \mathrm{EF}_{\mathrm{\rho}}{ }\right\} \\
& \approx \mathrm{PDL}-\mathrm{delta} \supseteq \mathrm{CTL}^{*}
\end{aligned}
$$

CTRL fragment corresponding to a state-based counterpart of PDL-delta

Expressiveness of CTRL

On-the-fly model checking approach

- Avoid building a CTRL model checker from scratch
\rightarrow reuse verification technology available in CADP

State-based world

- KSs

- CTRL
φ

Action-based world

- LTSs
 - preserves strong bisimulation - can be done on-the-fly

Translation approach

Translation from CTRL to RES

$$
\underbrace{}_{(\mathrm{p} \mid q)^{*} . \mathrm{r}}\left(\mathrm{AF}_{\left(\left(\mathrm{p}^{*} . q\right) \mid \mathrm{r}^{*}\right)^{*} \cdot \mathrm{q}^{*}} \mathrm{r} \vee \mathrm{EF}^{\infty} \text { true }^{*} \text {.p.true } . q\right)
$$

CTRL

$$
\left\{X_{1}={ }_{v} \mathrm{AG}_{(\mathrm{p} \mid \mathrm{q})^{*} \cdot \mathrm{r}} X_{2}, X_{2}={ }_{v} Y_{1} \vee Z_{1}\right\}
$$

$$
\left\{Y_{1}={ }_{\mu} A F_{\left(\left(p^{*} . q\right) \mid r^{*}\right)^{*} \cdot q^{*}} r\right\}
$$

$$
\left\{Z_{1}={ }_{v} \mathrm{EF}_{\text {true*..p.true }}{ }^{*} . q Z_{1}\right\}
$$

Translation from RES to MES

 (operators EF_{ρ} and AG_{ρ})Apply PDL-like identities:
$\bullet A G_{\rho 1 . \rho 2} \varphi=A G_{\rho 1} A G_{\rho 2} \varphi \quad \bullet \mathrm{AG}_{\rho^{*}} \varphi=\varphi \wedge \mathrm{AG}_{\rho} A G_{\rho^{*}} \varphi$

$$
\text { - } \mathrm{AG}_{\rho 1 \mid \rho 2} \varphi=\mathrm{AG}_{\rho 1} \varphi \wedge \mathrm{AG}_{\rho 2} \varphi
$$

$$
\left\{X_{1}={ }_{v} A G_{(p \mid q)^{*} \cdot} \cdot X_{2}, X_{2}=_{v} Y_{1} \vee Z_{1}\right\}
$$

l

$$
\begin{aligned}
& \left\{\begin{array}{l}
X_{1}=X_{3} \wedge X_{4}, \\
X_{3}={ }_{v} Y_{1} \vee Z_{1}, \\
X_{3}=\mathrm{AG}_{\mathrm{r}} X_{2}, \\
\left.X_{4}={ }^{2} A G_{\mathrm{p}} X_{1} \wedge A G_{q} X_{1}\right\}
\end{array}\right.
\end{aligned}
$$

Translation from RES to MES

 (operators AF_{ρ} and EG_{ρ})- No PDL-like identities hold for $\mathrm{AF}_{\rho} \varphi$
\rightarrow propose a different translation scheme
Step 1: Translation to potentiality form (PF)
$\left\{Y_{1}=\mu_{\mu} \mathrm{AF}_{\left(\left(\mathrm{p}^{*} . q\right) \mid r^{*}\right)^{*} \cdot q^{*}} \mathrm{r}\right\} \stackrel{\mathrm{A}:=\mathrm{E}}{\Longrightarrow}\left\{Y_{1}=_{\mu} \mathrm{EF}_{\left(\left(\mathrm{p}^{*}, q\right) \mid r^{*}\right)^{*} \cdot q^{*}} \mathrm{r}\right\}$

PDL-like identities

$$
\begin{aligned}
& \mathrm{PF} \\
& \left\{\begin{array}{l}
Y_{1}={ }_{\mu} Y_{2} \vee Y_{3}, Y_{2}={ }_{\mu} Y_{4} \vee Y_{5}, Y_{3}={ }_{\mu} Y_{6} \vee Y_{7}, Y_{4}={ }_{\mu} \mathrm{r} \\
Y_{5}={ }_{\mu} \mathrm{EF}_{\mathrm{q}} Y_{2}, \quad Y_{6}={ }_{\mu} Y_{8} \vee Y_{9}, Y_{7}={ }_{\mu} Y_{1} \vee Y_{10}, \\
Y_{8}={ }_{\mu} \mathrm{EF}
\end{array} \mathrm{q} Y_{1}, \quad Y_{9}={ }_{\mu} \mathrm{EF}_{\mathrm{p}} Y_{6}, \quad Y_{10}={ }_{\mu} \mathrm{EF}_{\mathrm{r}} Y_{7}\right\}
\end{aligned}
$$

Translation from RES to MES

 (operators AF_{ρ} and EG_{ρ})Step 2: Translation to guarded potentiality form (GPF)

$$
\begin{aligned}
& \text { PF } \\
& \begin{array}{l}
\left\{Y_{1}={ }_{\mu} Y_{2} \vee Y_{3}, Y_{2}={ }_{\mu} Y_{4} \vee Y_{5}, Y_{3}={ }_{\mu} Y_{6} \vee Y_{7}, Y_{4}={ }_{\mu} \mathrm{r},\right. \\
Y_{5}={ }_{\mu} \mathrm{EF}_{\mathrm{q}} Y_{2}, Y_{6}={ }_{\mu} Y_{8} \vee Y_{9}, Y_{7}={ }_{\mu} Y_{1} \vee Y_{10}, \\
\left.Y_{8}={ }_{\mu} \mathrm{EF}_{\mathrm{q}} Y_{1}, Y_{9}={ }_{\mu} \mathrm{EF}_{\mathrm{p}} Y_{6}, Y_{10}={ }_{\mu} \mathrm{EF}_{\mathrm{r}} Y_{7}\right\}
\end{array}
\end{aligned}
$$

GPF (\approx derivatives of regular expressions [Brzozowski-64])

$$
\begin{aligned}
& \left\{Y_{1}={ }_{\mu} \mathrm{EF}_{\mathrm{p}} Y_{3} \vee \mathrm{EF}_{\mathrm{q}} Y_{1} \vee \mathrm{EF}_{\mathrm{q}} Y_{2} \vee Y_{4},\right. \\
& \left.Y_{2}={ }_{\mu} \mathrm{EF}_{\mathrm{q}} Y_{2} \vee Y_{4}, Y_{3}={ }_{\mu} \mathrm{EF}_{\mathrm{p}} Y_{3} \vee \mathrm{EF}_{\mathrm{q}} Y_{1}, Y_{4}={ }_{\mu} \mathrm{r}\right\}
\end{aligned}
$$

Translation from RES to MES (operators AF_{ρ} and EG_{ρ})

Step 3: Determinization

GP

$$
\begin{aligned}
& \left\{Y_{1}={ }_{\mu} E F_{p} Y_{3} \vee E F_{q} Y_{1} \vee E F_{q} Y_{2} \vee Y_{4},\right. \\
& \left.Y_{2}={ }_{\mu} \mathrm{EF}_{\mathrm{q}} Y_{2} \vee Y_{4}, Y_{3}={ }_{\mu} \mathrm{EF}_{\mathrm{p}} Y_{3} \vee E F_{q} Y_{1}, Y_{4}={ }_{\mu} \mathrm{r}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { determinization: } \\
& Y_{\{1\}}={ }_{\mu} \mathrm{AF}_{\mathrm{p}} Y_{\{3\}} \vee \mathrm{AF} Y_{q 1,2\}} \vee \mathrm{AF}{ }_{p \wedge q} Y_{\{1,2,3\}} \vee Y_{4}
\end{aligned}
$$

$$
\text { simplification: } A F_{p \wedge q} \varphi \Rightarrow A F_{q} \varphi
$$

MES

$$
\begin{aligned}
& \left\{Y_{\{1\}}={ }_{\mu} A F_{p} Y_{\{3\}} \vee A F_{q} Y_{\{1\}} \vee Y_{\{4\}},\right. \\
& \left.Y_{\{3\}}={ }_{\mu} A F_{p} Y_{\{3\}} \vee A F_{q} Y_{\{1\}}, Y_{\{4\}}={ }_{\mu} r\right\}
\end{aligned}
$$

Translation from RES to MES (operators $E F^{\infty}{ }_{\rho}, \mathrm{AG}^{\perp}{ }_{\rho}, \mathrm{AF}^{\infty}{ }_{\rho}$ and $\mathrm{EG}^{\perp}{ }_{\rho}$)

RES

$\left\{Z_{1}={ }_{v} \mathrm{EF}^{\infty}{ }_{\text {true*..p.true*.q }} Z_{1}\right\}$
similar procedure applies for $\mathrm{AF}^{\infty}{ }_{\rho}$

RES of alternation depth 2

$$
\left\{Z_{0}={ }_{v} Z_{1}\right\} \cdot\left\{Z_{1}={ }_{\mu} E F^{\infty}{ }_{\text {true* }} \text {.p.true*. } q Z_{0}\right\}
$$

\downarrow PDL-like identities

MES of alternation depth 2

$$
\begin{aligned}
& \left\{Z_{0}={ }_{v} Z_{1}\right\} \\
& \left\{Z_{1}={ }_{\mu} E F_{p} Z_{2} \vee E F_{\text {true }} Z_{1}, Z_{2}={ }_{\mu} E F_{q} Z_{0} \vee E F_{\text {true }} Z_{2}\right\}
\end{aligned}
$$

Translation from MES to HMLR

- Right-hand sides of MES equations:
- Combinations of elementary CTRL modalities $\mathrm{EF}_{\varphi} Y, \mathrm{AF}_{\varphi} Y, \mathrm{EG}_{\varphi} Y, \mathrm{AG}_{\varphi} Y$
- Must convert CTRL modalities to HML modalities
- Take into account the translation from KS to LTS

$\mathrm{p}_{\mathrm{o}}^{\infty}$	CTRL formula	Hml formula
	p	$\langle p\rangle$ true
	EF_{p} X	$\langle p\rangle X$
	$\mathrm{AG}_{p} X$	$[p] X$
	$\mathrm{AF}_{p} \mathrm{X}$	$\langle p\rangle$ true \wedge [true $] X$
KS	$\mathrm{EG}_{p} X$	$\langle p\rangle$ true $\Rightarrow\langle$ true $\rangle X$

LTS

Formula: $\mathrm{EF}_{\text {true }}^{\infty} . p$. true $^{*} . q$ On-the-fly model checking
(illustration on $\mathrm{EF}^{\infty}{ }_{\rho}$)

Bes: abusive merge of the 2 equation blocks into one μ-block

Ks:

$$
Z_{i j}=s_{j} \models Z_{i}
$$

Formula: $\operatorname{AF}_{(p \mid q)^{*} . r}^{\infty}$

On-the-fly model checking

 (illustration on $\mathrm{AF}^{\infty}{ }_{\rho}$)

Bes: $\quad X_{i j}=s_{j} \models X_{i}$

Ks:

abusive merge of the 2 equation blocks into one v-block

Complexity of CTRL model checking

Operator	Complexity	
	ρ deterministic	ρ nondeterministic
EF_{ρ}	AG_{ρ}	$O(\|\rho\| \cdot(\|S\|+\|T\|))$
AF_{ρ}	EG_{ρ}	$O(\|\rho\| \cdot(\|S\|+\|T\|))$
$\mathrm{EF}_{\rho}^{\infty}$	AG_{ρ}^{-}	$O\left(2^{\|\rho\|} \cdot(\|S\|+\|T\|)\right)$
$\mathrm{AF}_{\rho}^{\infty}$	EG_{ρ}^{-1}	$O(\|\rho\| \cdot(\|S\|+\|T\|))$

\approx PDL-delta
linear-time on-the-fly model checking
(double) exponential in size of the regular subformula (but $|\rho| \ll|S|$)
quadratic in size of the KS (general case of alternation depth 2) due to A4cyc

Implementation

- Ctrl2Blk translator (12,000 lines of code)
- SYNTAX / LOTOS NT compiler construction technology
- Between 3 and 5 translation phases (including PNF)

Application

- Analysis of the network controlling the carbon starvation response of E. coli

Verification of CTRL properties

- Four CTRL properties checked on the state-transition graph of the network:

- Properties unexpressible in CTL or LTL
- Checked in linear-time using Ctrl2Blk + Evaluator

Related work (extensions of TL with regular constructs)

- LTL
- ETL [Wolper-82] : LTL + regular grammars
- ForSpec [Armoni-et-al-02] : LTL + regexps + clocks (HW analysis)
- Eagle [Barringer-04] : LTL + regexps + rules (runtime verification)
- CTL*
- CTL* + Büchi automata [Thomas-89]
- CTL
- BRTL [Hamaguchi-et-al-90]: CTL + deterministic Büchi automata
- RCTL [Beer-et-al-98] and Sugar [Eisner-et-al-01]: CTL + AG φ
- RegCTL [Cerna-01]: CTL + regexps

RCTL \leq RegCTL \leq CTRL

Conclusion and future work

- CTRL (Computation Tree Regular Logic):
- Combines branching-time and linear-time operators
- Syntax and semantics definition + translation to HMLR
- Implementation of Ctrl2Blk translator
- Connection with the Evaluator 3.6 model checker of CADP
- Ongoing and future work:
- Local resolution algorithms for BESs with alternation depth two ($\mathrm{AF}^{\infty}{ }_{\rho}$ for ρ nondeterministic)
- Static analysis on the GNA atomic propositions
- Distributed version of the model checker
- Patterns of biologically-relevant temporal properties

