EVALUATOR 3.0: An Efficient On-the-Fly Model-Checker for Regular Alternation-Free Mu-Calculus

Radu Mateescu
INRIA Rhône-Alpes / VASY
http://www.inrialpes.fr/vasy/people/Radu.Mateescu

Outline

- Introduction
- Regular alternation-free mu-calculus
- On-the-fly model-checking
- Diagnostic generation
- Implementation and applications
- Conclusion

Context of the work

- CADP (Caesar/Aldebaran Development Package): a toolbox for analysing concurrent systems
- State-of-the-art functionalities:
- compilation, interactive simulation, verification
- rapid prototyping, random execution, test generation
- Distributed over 280 sites (industry and academics)
- Applications:
- 65 published case-studies
- 13 additional research tools http://www.inrialpes.fr/vasy/cadp

Model-Checking

Goal: verify that a concurrent finite-state system meets a set of desired correctness properties.

Requirements for model-checking

Expressiveness of the temporal logic

- useful temporal properties (safety, liveness, fairness)
- modal μ-calculus [Kozen-83] = « temporal logic assembler »

Complexity of the model-checking problem

- full μ-calculus = exponential-time
- alternation-free μ-calculus = linear-time

User-friendliness of the model-checker interface

- abstraction mechanisms for defining new operators
- diagnostic generation facilities

Interpretation models

Labelled Transition System (LTS)
$M=\left(S, A, T, s_{0}\right)$

LTS representations in CADP:

- explicit (« predecessor » function)
- iterative computations using sets of states
- BCG (Binary Coded Graphs) environment [Garavel-92]
- implicit (« successor» function)
- on-the-fly exploration of the transition relation
- Open / Caesar environment [Garavel-98]

Regular alternation-free μ-calculus

Let $M=\left(S, A, T, s_{0}\right)$ be an LTS.
Action formulas (\approx ACTL):

$$
\alpha::=a|\neg \alpha| \alpha_{1} \vee \alpha_{2}
$$

Regular formulas (\approx PDL):

$$
\beta::=\alpha\left|\beta_{1} \cdot \beta_{2}\right| \beta_{1}\left|\beta_{2}\right| \beta^{*}
$$

State formulas ($\sim \mu$-calculus):

$$
\varphi::=\mathrm{F}|\neg \varphi| \varphi_{1} \vee \varphi_{2}|\langle\beta\rangle \varphi| Y \mid \mu Y . \varphi
$$

Action formulas

Let $M=\left(S, A, T, s_{0}\right)$. Semantics $[[\alpha]] \subseteq A$:

- $[[a]]=\{a\}$
- [[$\neg \alpha]]=A \backslash[[\alpha]]$
- $\left[\left[\alpha_{1} \vee \alpha_{2}\right]\right]=\left[\left[\alpha_{1}\right]\right] \cup\left[\left[\alpha_{2}\right]\right]$

Derived operators:

- $\mathrm{T}=a \vee \neg a$
- $\mathrm{F}=\neg \mathrm{T}$
- $\alpha_{1} \wedge \alpha_{2}=\neg\left(\neg \alpha_{1} \vee \neg \alpha_{2}\right)$
- $\alpha_{1} \Rightarrow \alpha_{2}=\neg \alpha_{1} \vee \alpha_{2}$
- $\alpha_{1} \Leftrightarrow \alpha_{2}=\left(\alpha_{1} \Rightarrow \alpha_{2}\right) \wedge\left(\alpha_{2} \Rightarrow \alpha_{1}\right)$

Regular formulas

Let $M=\left(S, A, T, s_{0}\right)$. Semantics $[[\beta]] \subseteq S \times S$:

- [[$\alpha]]=\left\{\left(s, s^{\prime}\right) \mid \exists a \in[[\alpha]] .\left(s, a, s^{\prime}\right) \in T\right\}$
- [[$\left.\left.\beta_{1} \cdot \beta_{2}\right]\right]=\left[\left[\beta_{1}\right]\right] \circ\left[\left[\beta_{2}\right]\right]$
(composition)
- [[$\left.\left.\beta_{1} \mid \beta_{2}\right]\right]=\left[\left[\beta_{1}\right]\right] \cup\left[\left[\beta_{2}\right]\right]$
(union)
- $\left[\left[\beta^{*}\right]\right]=[[\beta]]$ *
(star closure)

Derived operators:

- nil = F^{*}
- $\beta^{+}=\beta \cdot \beta^{*}$

State formulas

Let $M=\left(S, A, T, s_{0}\right)$ and $\rho: Y \rightarrow 2^{S}$ a context mapping variables to state sets. Semantics [[φ]] $\rho \subseteq S$:

- [[F]] $\rho=\varnothing$
- [[$\neg \varphi]] \rho=S \backslash[[\varphi]] \rho$
- [[$\left.\left.\varphi_{1} \vee \varphi_{2}\right]\right] \rho=\left[\left[\varphi_{1}\right]\right] \rho \cup\left[\left[\varphi_{2}\right]\right] \rho$
- $[[\langle\beta\rangle \varphi]] \rho=\left\{s \in S \mid \exists\left(s, s^{\prime}\right) \in[[\beta]] . s^{\prime} \in[[\varphi]] \rho\right\}$
- [[Y] $] \rho=\rho(Y)$
- [[$\mu Y . \varphi]] \rho=\cup_{k \geq 0} \Phi_{\rho}{ }^{k}(\varnothing)$
where $\Phi_{\rho}: 2^{s} \rightarrow 2^{s}, \Phi_{\rho}(U)=[[\varphi]] \rho[U / Y]$
Derived operators:
- $[\beta] \varphi=\neg\langle\beta\rangle \neg \varphi$
$\cdot \nu Y . \varphi=\neg \mu Y . \neg \varphi[\neg Y / Y]$

Satisfaction of state formulas

- Let $M=\left(S, A, T, s_{0}\right)$ and φ a state formula.
M satisfies $\varphi(M \mid=\varphi) \quad$ iff
$\forall s \in S . s \mid=\varphi \quad$ iff
$[[\varphi]]=S$
- Global model-checking:
check a formula on all states

$$
S=[[\varphi]]
$$

- Local (on-the-fly) model-checking:
check a formula on the initial state

$$
s_{0} \in\left[\left[\left[T^{*}\right] \varphi\right]\right]
$$

Safety properties

- Absence of ERROR actions:
[T*. ERROR] F
- Mutual exclusion between OPEN and CLOSE:
[$\mathrm{T}^{*} . \mathrm{OPEN}_{1} .\left(\neg \mathrm{CLOSE}_{1}\right)^{*} . \mathrm{OPEN}_{2}$] F
- Alternation between SEND and RECV:
[(\neg SEND)*. RECV] F \wedge
[T*. RECV . (\neg SEND)*. RECV] F ^
[T*. SEND . (\neg RECV)*. SEND] F
$=\left[\left(\left(\right.\right.\right.$ nil \| (T*. RECV)).$(\neg S E N D)^{*}$. RECV) | (T^{*}. SEND . (\neg RECV)*. SEND)] F

Liveness properties

- Deadlock freedom:

$$
\left[\mathrm{T}^{*}\right]\langle\mathrm{T}\rangle \mathrm{T}
$$

- Potential reachability of a RECV after a SEND and some ERRORs:

```
< T*. SEND . (T*. ERROR)*. T*. RECV > T
```

- Inevitable reachability of a GRANT after a REQ:

$$
\text { [T*. REQ] } \mu Y .\langle T\rangle T \wedge[\neg G R A N T] Y
$$

Fairness properties

- Absence of livelocks (tau-circuits) :

$$
\begin{aligned}
& \neg v Y \cdot\langle\text { tau }\rangle Y= \\
& \mu Y \cdot[\text { tau }] Y
\end{aligned}
$$

- Fair reachability (by skipping circuits) of a RECV after a SEND:
[T*. SEND . $\left.(\neg \text { RECV })^{*}\right]\left\langle T^{*}\right.$. RECV $\rangle T$

On-the-fly model-checking

Translation to BESs

Translation to PDL with recursion

State formula (expanded):

$$
v Y_{0} \cdot\left[T^{*} . \text { SEND }\right] \mu Y_{1} \cdot\langle T\rangle T \wedge[\neg R E C V] Y_{1}
$$

| $v Y_{0}\left[\mathrm{~T}^{*}\right.$. SEND $] Y_{1}$ |
| :--- | :--- |
| v-block M_{0} |$\underset{\mu \text {-block } M_{1}}{\mu Y_{1} \mid\langle\mathrm{T}\rangle \mathrm{T} \wedge[\neg \text { RECV }] Y_{1}}$

PDLR specification:

$$
\begin{aligned}
& \left(Y_{0},\left\{Y_{0}={ }_{v}\left[T^{*} . \text { SEND }\right] Y_{1}\right\}\right. \\
& \left.\quad\left\{Y_{1}={ }_{\mu}\langle T\rangle T \wedge[\neg R E C V] Y_{1}\right\}\right)
\end{aligned}
$$

Simplification

PDLR specification:

$$
\begin{aligned}
& \left(Y_{0},\left\{Y_{0}={ }_{v}\left[T^{*} \text {. SEND }\right] Y_{1}\right\}\right. \\
& \left.\quad\left\{Y_{1}={ }_{\mu}\langle T\rangle T \wedge[\neg R E C V] Y_{1}\right\}\right)
\end{aligned}
$$

$v Y_{0}$	$\left[T^{*} . S E N D\right] Y_{1}$			
v-block M_{0}		\quad	μY_{1}	$Y_{2} \wedge Y_{3}$
:---	:---			
μY_{2}	$\langle T\rangle T$			
μY_{3}	$[\neg$ RECV $] Y_{1}$			

μ-block M_{1}
Simple PDLR specification:

$$
\begin{aligned}
& \left(Y_{0},\left\{Y_{0}={ }_{v}\left[T^{*} . \text { SEND }\right] Y_{1}\right\}\right. \\
& \left.\quad\left\{Y_{1}=_{\mu} Y_{2} \wedge Y_{3}, Y_{2}=_{\mu}\langle T\rangle T, Y_{3}=_{\mu}[\neg R E C V] Y_{1}\right\}\right)
\end{aligned}
$$

Translation to HML with recursion

Simple PDLR specification:

$$
\begin{aligned}
& \left(Y_{0},\left\{Y_{0}={ }_{v}\left[T^{*} . \text { SEND }\right] Y_{1}\right\}\right. \\
& \left.\quad\left\{Y_{1}=_{\mu} Y_{2} \wedge Y_{3}, Y_{2}=_{\mu}\langle T\rangle T, Y_{3}=_{\mu}[\neg R E C V] Y_{1}\right\}\right)
\end{aligned}
$$

$v Y_{0}$	$Y_{4} \wedge Y_{5}$
$v Y_{4}$	$\left[\right.$ SEND Y_{1}
$v Y_{5}$	$[\mathrm{~T}] Y_{0}$

ν-block M_{0}

μY_{1}	$Y_{2} \wedge Y_{3}$
μY_{2}	$\langle T\rangle T$
μY_{3}	$[\neg R E C V] Y_{1}$

μ-block M_{1}
Simple HMLR specification:

$$
\begin{aligned}
& \left(Y_{0},\left\{Y_{0}=_{v} Y_{4} \wedge Y_{5}, Y_{4}={ }_{v} \text { [SEND }\right] Y_{1}, Y_{5}=_{v}[T] Y_{0}\right\} \\
& \left.\left\{Y_{1}=_{\mu} Y_{2} \wedge Y_{3}, Y_{2}={ }_{\mu}\langle T\rangle T, Y_{3}=_{\mu}[\neg R E C V] Y_{1}\right\}\right)
\end{aligned}
$$

Translation to BESs

$v Y_{0}$	$Y_{4} \wedge Y_{5}$
$v Y_{4}$	$[$ SEND $] Y_{1}$
$v Y_{5}$	$[T] Y_{0}$

Boolean variables: $x_{i, j} \equiv s_{i} \mid=Y_{j}$

μY_{1}	$Y_{2} \wedge Y_{3}$
μY_{2}	$\langle\mathrm{~T}\rangle \mathrm{T}$
μY_{3}	$[\neg$ RECV $] Y_{1}$

$$
\begin{aligned}
& x_{0,0}={ }_{v} x_{0,4} \wedge x_{0,5} \\
& x_{0,4}={ }_{v} x_{1,1} \\
& x_{0,5}={ }_{v} x_{1,0} \\
& x_{1,0}={ }_{v} x_{1,4} \wedge x_{1,5} \\
& x_{1,4}={ }_{v} T \\
& x_{1,5}={ }_{v} x_{2,0} \wedge x_{3,0} \\
& x_{2,0}={ }_{v} x_{2,4} \wedge x_{2,5} \\
& x_{2,4}={ }_{v} T \\
& x_{2,5}={ }_{v} x_{0,0} \\
& x_{3,0}={ }_{v} x_{3,4} \wedge x_{3,5} \\
& x_{3,4}={ }_{v} T \\
& x_{3,5}={ }_{v} x_{0,0} \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& x_{1,1}={ }_{\mu} x_{1,2} \wedge x_{1,3} \\
& x_{1,2}={ }_{\mu} T \\
& x_{1,3}={ }_{\mu} x_{2,1} \wedge x_{3,1} \\
& x_{2,1}={ }_{\mu} x_{2,2} \wedge x_{2,3} \\
& x_{2,2}={ }_{\mu} T \\
& x_{2,3}={ }_{\mu} \mathrm{T} \\
& x_{3,1}={ }_{\mu} x_{3,2} \wedge x_{3,3} \\
& x_{3,2}={ }_{\mu} \mathrm{T} \\
& x_{3,3}={ }_{\mu} x_{0,1} \\
& x_{0,1}={ }_{\mu} x_{0,2} \wedge x_{0,3} \\
& x_{0,2}={ }_{\mu} \mathrm{T} \\
& x_{0,3}={ }_{\mu} x_{1,1}
\end{aligned}
$$

Boolean Equation Systems

- Syntax:

$$
M=\left\{x_{i}={ }_{\sigma} o p_{i} X_{i}\right\}_{1 \leq i \leq n}
$$

where $\sigma \in\{\mu, v\}, x_{i} \in X, o p_{i} \in\{\vee, \wedge\}, X_{i} \subseteq X$ for all $i=1 . . n$

- Semantics:

Bool $=\{\mathrm{F}, \mathrm{T}\}$ and $\delta: X \rightarrow$ Bool
[[op $\left.\left.\left\{x_{1}, \ldots, x_{k}\right\}\right]\right] \delta=\delta\left(x_{1}\right)$ op ... op $\delta\left(x_{k}\right)$

$$
[[M]] \delta=\sigma \Psi_{\delta}
$$

where $\Psi_{\delta}:$ Bool $^{n} \rightarrow$ Bool n,

$$
\Psi_{\delta}\left(b_{1}, \ldots, b_{n}\right)=\left(\left[\left[o p_{i} X_{i}\right]\right] \delta\left[b_{1} / x_{1}, \ldots, b_{n} / x_{n}\right]\right)_{1 \leq i \leq n}
$$

Extended Boolean Graphs

- Slight extension of boolean graphs [Andersen-94] = alternative graphical representation of BESs
- To any BES $M=\left\{x_{i}=_{\sigma} o p_{i} X_{i}\right\}_{1 \leq i \leq n}$ corresponds an extended boolean graph (EBG) $G=(V, E, L, F)$:

$$
\begin{array}{ll}
V=\left\{x_{1}, \ldots, x_{n}\right\} & \text { vertex set } \\
E=\left\{x_{i} \rightarrow x_{j} \mid x_{j} \in X_{i}\right\} & \text { edge set } \\
L: V \rightarrow\{\vee, \wedge\}, L\left(x_{i}\right)=o p_{i} & \text { vertex labeling } \\
F \subseteq V & \text { frontier }
\end{array}
$$

Example

BES

EBG

$$
\left\{\begin{array}{l}
x_{1}={ }_{\mu} x_{2} \vee x_{3} \vee x_{4} \\
x_{2}={ }_{\mu} \mathrm{T} \\
x_{3}={ }_{\mu} x_{2} \wedge x_{3} \\
x_{4}={ }_{\mu} x_{3} \vee x_{4}
\end{array}\right.
$$

Characterization of BES solution

Let $M=\left\{x_{i}=_{\mu} o p_{i} X_{i}\right\}_{1 \leq i \leq n}$ with $G=(V, E, L, F)$.
Let P_{\vee} and P_{\wedge} be two propositions compatible with L.
Consider two μ-calculus formulas:

$$
\begin{aligned}
& \mathrm{EX}=\mu Y .\left(P_{\vee} \wedge\langle-\rangle Y\right) \vee\left(P_{\wedge} \wedge[-] Y\right) \\
& \mathrm{CX}=\vee Y \cdot\left(P_{\vee} \wedge[-] Y\right) \vee\left(P_{\wedge} \wedge\langle-\rangle Y\right)
\end{aligned}
$$

called example formula and counterexample formula.
Theorem 1:

$$
[[M]]_{i}=\mathrm{T} \Leftrightarrow x_{i} \mid={ }_{G} \mathrm{EX}
$$

for all $1 \leq i \leq n$

Example

$$
\mathrm{EX}=\mu Y .\left(P_{\vee} \wedge\langle-\rangle Y\right) \vee\left(P_{\wedge} \wedge[-] Y\right)
$$

$$
\mathrm{CX}=\vee Y .\left(P_{\vee} \wedge[-] Y\right) \vee\left(P_{\wedge} \wedge\langle-\rangle Y\right)
$$

$$
\left\{\begin{array}{l}
x_{1}={ }_{\mu} x_{2} \vee x_{3} \vee x_{4} \\
x_{2}={ }_{\mu} T \\
x_{3}={ }_{\mu} x_{2} \wedge x_{3} \\
x_{4}={ }_{\mu} x_{3} \vee x_{4}
\end{array}\right.
$$

$$
\begin{aligned}
& \mathrm{EX}^{0}=\varnothing \\
& \mathrm{EX}^{1}=\left\{x_{2}\right\} \\
& \mathrm{EX}^{2}=\left\{x_{1}, x_{2}\right\}=[[\mathrm{EX}]] \\
& \mathrm{CX}^{0}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \\
& \mathrm{CX}^{1}=\left\{x_{1}, x_{3}, x_{4}\right\} \\
& \mathrm{CX}^{2}=\left\{x_{3}, x_{4}\right\}=[[\mathrm{CX}]]
\end{aligned}
$$

Subgraphs and frontiers

$G_{1}=\left(V_{1}, E_{1}, L_{1}, F_{1}\right)$ subgraph of $G_{2}=\left(V_{2}, E_{2}, L_{2}, F_{2}\right)$ (noted $G_{1} \leq G_{2}$) iff:

- $V_{1} \subseteq V_{2}$
- $E_{1} \subseteq E_{2}$
- $\left.\left(E_{2} \backslash E_{1}\right)\right|_{V 1}=\left.\left(E_{2} \backslash E_{1}\right)\right|_{F 1}$
- $F_{2} \cap V_{1} \subseteq F_{1}$
- $L_{1}=\left.L_{2}\right|_{V 1}$

Subgraph 1 Subgraph 2

Solution-closed EBGs

An EBG $G_{1}=\left(V_{1}, E_{1}, L_{1}, F_{1}\right)$ is solution-closed iff:

$$
G_{1} \leq G_{2} \Rightarrow[[E X]]_{G 1}=[[E X]]_{G 2} \cap V_{1}
$$

for any $G_{2}=\left(V_{2}, E_{2}, L_{2}, F_{2}\right)$.

Theorem 2:

$G=(V, E, L, F)$ is solution-closed iff:

$$
F \subseteq\left[\left[\left(P_{\vee} \wedge E X\right) \vee\left(P_{\wedge} \wedge C X\right)\right]\right]_{G}
$$

Example

$$
\begin{aligned}
& F_{1}=\left\{x_{1}\right\} \in[[\mathrm{EX}]]_{G 1} \\
& F_{2}=\left\{x_{3}\right\} \in[[\mathbf{C X}]]_{G 2}
\end{aligned}
$$

Two solution-closed subgraphs

Local resolution algorithm

Idea: compute a solution-closed subgraph containing the boolean variable of interest
SOLVE = DFS of the boolean graph with back-propagation of EX-vertices [Andersen-94,Mateescu-Sighireanu-00]

Example

A solution-closed subgraph rooted at x_{0} computed by SOLVE

Diagnostics

Let $G=(V, E, L, F)$ be an EBG and $x \in V$.
A diagnostic for $x=$
a subgraph $G^{\prime} \leq G$ such that

$$
\begin{array}{cc}
\text { Example } & \text { Counterexample } \\
\text { for } x_{1} & \text { for } x_{4}
\end{array}
$$ $x\left|={ }_{G} E X \Leftrightarrow x\right|={ }_{G}, E X$

If $x \mid={ }_{G}$, EX then
$G^{\prime}=$ example for x
If $x \mid={ }_{G}$, $\mathbf{C X}$ then
$G^{\prime}=$ counterexample for x

Minimal diagnostic characterization

$G=(V, E, L, F)$ diagnostic for $x \in V$ iff G solution-closed.

Theorem 3:
$G=(V, E, L, F)$ is a minimal example for $x \in V$ (wrt. \leq) iff:
a) G is an EX-model
b) $\forall y \in V . L(y)=V \Rightarrow|E(y)|=1$
c) $V=E^{*}(x)$
d) $F=\{y \in V \mid L(y)=v\}$

Precomputation step (only for minimal examples)

Start with a solution-closed subgraph computed by SOLVE.
Define the increasing chain

- $E X^{0}=\varnothing$
- $E X^{k+1}=\Phi^{E X}\left(E X^{k}\right)$
where
$\Phi^{\mathrm{EX}}(U)=\left[\left[\left(P_{\vee} \wedge\langle-\rangle Y\right) \vee\right.\right.$
$\left.\left.\left(P_{\wedge} \wedge[-] Y\right)\right]\right][U / Y]$
Iterate EX ${ }^{k}$ until $\mathrm{EX}^{k+1}=\mathrm{EX}^{k}$
For each v-vertex in $\mathrm{EX}^{\mathrm{k}+1}$ store a successor in EX ${ }^{k}$

Example

Precomputation of the « good» successors for \vee-vertices in a solution-closed subgraph

Generation of minimal examples

Forward exploration of $[[E X]]_{G}$ starting at x
for each y reached do

- if $L(y)=v$ then follow the "good" successor
- if $L(y)=\wedge$ then
follow all successors until reach \wedge-sink vertices

Example

A minimal example for x_{0}

Generation of minimal counterexamples

Forward exploration of $[[C X]]_{G}$ starting at x
for each y reached do

- if $L(y)=\wedge$ then follow a single successor
- if $L(y)=v$ then
follow all successors
until reach v-sink vertices or loop back

Example

A minimal counterexample for x_{1}

Implementation

Evaluator 3.0 on-the-fly model-checker:

- Developed within CADP using the Open/Caesar generic environment [Garavel-98] for on-the-fly exploration of LTSs
- About 10,000 lines of code (SYNTAX + FNC-2 + C)

Additional operators

Macro-definition (overloaded) and library inclusion

- Libraries encoding the operators of CTL and ACTL
$\mathrm{EU}\left(\varphi_{1}, \varphi_{2}\right) \quad=\mu Y . \varphi_{2} \vee\left(\varphi_{1} \wedge\langle\mathrm{~T}\rangle Y\right)$
$\operatorname{EU}\left(\varphi_{1}, \alpha_{1}, \alpha_{2}, \varphi_{2}\right)=\mu Y .\left\langle\alpha_{2}\right\rangle \varphi_{2} \vee\left(\varphi_{1} \wedge\left\langle\alpha_{1}\right\rangle Y\right)$
- Libraries of high-level property patterns [Dwyer-99]
- Property classes:
- Absence, existence, universality, precedence, response
- Property scopes:
- Globally, before a, after a, between a and b, after a until b
- More info:
- http://www.inrialpes.fr/vasy/cadp/resources
- Library of robot-task specific properties (ORCCAD)

Diagnostic features

- Interpret EBG-based diagnostics in terms of the LTS
- Keep only the edges related to LTS transitions

Example

Counterexample

- Full diagnostics (examples and counterexamples)
- Facilitate the understanting of temporal logic formulas
- Useful for debugging and teaching purposes

Guided simulation

Evaluator 3.0 used with OCIS for guided simulation:

- Generate a sequence matching a regular formula β (e.g., as a diagnostic for a regular modality)
- example for $\langle\beta\rangle \mathrm{T}$
- counterexample for [β] F
- Load the sequence in the OCIS simulator of CADP
- Continue the simulation step-by-step

Allows to inspect regions of the LTS where problems are suspected (e.g., feature interaction detection)

Case studies

(http://www.inrialpes.fr/vasy/cadp/case-studies)

- SPLICE coordination architecture (CWI + Thalès Nederland)
- GPRS mobile data packet radio service (U. Ottawa)
- Air traffic control system (U. Glasgow)
- Steam-boiler system (OBLOG)
- Truck lifting system (CWI + Add-Controls)
- Distributed locker system (ERICSSON)
- Dynamic reconfiguration protocol (INRIA + Bull)
- Embedded system on Lynx helicopters (CWI + Royal Navy)
- Javaspaces architecture (CWI + Sun Microsystems)
- Needham-Schroeder authentication protocol (CWI)
- Video-on-demand multimedia system (LFCIA + ERICSSON)

Conclusion

Already done:

- Succinct translation of regular alt-free μ-calculus in BESs
- Efficient on-the-fly BES resolution algorithm
- Generation of examples and counterexamples
- Evaluator 3.0 implemented in CADP using Open/Caesar
- 11 published case-studies
- Rhône-Alpes IT Award (November 2002)

Future work:

- Extension with data (Evaluator 4.0):
[SEND ?m:Msg] 〈 T*. RECV !m 〉T

References

- Diagnostic generation:
- R. Mateescu, Efficient Diagnostic Generation for Boolean Equation Systems, Proc. of TACAS'00 (Berlin, Germany), LNCS vol. 1785, pp. 251-265, Springer Verlag, March 2000. Full version available as INRIA Research Report RR3861.
- EVALUATOR 3.0:
- R. Mateescu and M. Sighireanu. Efficient On-the-Fly Model-Checking for Regular Alternation-Free Mu-Calculus, Science of Computer Programming 46(3):255-281, March 2003. Short version available as INRIA Research Report RR-3899.
- Rhône-Alpes IT Award (Lyon, November 2002): http://www.inrialpes.fr/vasy/Press/award_2002.html

