Distributed On-the-Fly Model Checking and Test Case Generation

Christophe Joubert and <u>Radu Mateescu</u> *INRIA Rhône-Alpes / VASY* http://www.inrialpes.fr/vasy

Context and motivation

- Explicit-state verification of concurrent systems
- Combine two approaches to fight state explosion
 - On-the-fly verification
 - Incremental state space construction
 - Distributed verification
 - State space exploration using several machines connected by a network

Two problems

- Model checking of alt-free µ-calculus
- Conformance test case generation

One solution

- Translation to a boolean equation system resolution
- Use of diagnostic generation

Outline

- Boolean equation systems
- Distributed local resolution algorithm
- Model checking of alternation-free mu-calculus
- Conformance test case generation
- Performance measures
- Conclusion and future work

Boolean equation systems (alternation-free)

Sequential local resolution

- 5 resolution algorithms + diagnostic generation

Distributed local resolution

block 1
$$\begin{cases} x_{1,1} \stackrel{\nu}{=} x_{2,1} \land x_{1,2} \\ x_{2,1} \stackrel{\nu}{=} x_{3,1} \land x_{1,3} \\ x_{3,1} \stackrel{\nu}{=} x_{3,1} \lor x_{1,3} \end{cases}$$

block 2
$$\begin{cases} x_{1,2} \stackrel{\mu}{=} x_{2,1} \lor x_{1,3} \lor x_{2,2} \\ x_{2,2} \stackrel{\mu}{=} x_{1,2} \end{cases}$$

block 3
$$\begin{cases} x_{1,3} \stackrel{\nu}{=} \text{ false} \end{cases}$$

MB-DSolve algorithm

diagnostic

portion explored during an on-the-fly resolution

- Two distributed BFS traversals of the boolean graph (forward expansion and backward stabilization)
- Partial distributed termination detection (stabilization of a portion of a block)

Related work (distributed model checking)

- Linear temporal logic
 - Safety properties [Lerda-Sisto-99]
 - Distributed non-nested DFS
 - Full LTL [Barnat-Brim-Stribrna-01]
 - Distributed nested DFS
- Modal μ -calculus
 - Alternation depth 1 [Bollig-Leucker-Weber-02]
 - Alternation depth 2 [Leucker-Somla-Weber-03] [Holmen-Leucker-Lindstrom-04]
 - Distributed game graph exploration
 - UppDMC tool

Labelled Transition Systems

CADP toolbox (http://www.inrialpes.fr/vasy/cadp)

- Explicit representation (succ/pred function)
 - BCG (Binary Coded Graphs)

- Implicit representation (successor function)
 - OPEN/CAESAR [Garavel-98]

Model checking

Modal mu-calculus

Let $M = (Q, A, T, q_0)$ be an LTS.

Action formulas $\alpha ::= a | \neg \alpha | \alpha_1 \lor \alpha_2 | \alpha_1 \land \alpha_2$ State formulas $\varphi ::= F | T | \neg \varphi | \varphi_1 \lor \varphi_2 | \varphi_1 \land \varphi_2$ $| \langle \alpha \rangle \varphi | [\alpha] \varphi$ $| X | \mu X \cdot \varphi | \nu X \cdot \varphi$

Alternation-free fragment

- No mutual recursion between minimal and maximal fixed point variables [Emerson-Lei-86]
- Example:

"every SEND is eventually followed by a RECV"

vX. [SEND] (μ Y. \langle T \rangle T \land [\neg RECV]Y) \land [T]X

• Equational form HMLR [Larsen-88]:

$$\{ X =_{v} [SEND] Y \land [T] X \}$$

$$\{ Y =_{\mu} \langle T \rangle T \land [\neg RECV] Y \}$$

(no cyclic dependencies between blocks)

Translation to BESs

- Principle: $s \mid = X$ iff X_s is true
- Formula:

$$\{ X =_{v} [SEND] Y \land [T] X \}$$

$$\{ Y =_{\mu} \langle T \rangle T \land [\neg RECV] Y \}$$

$$\{ X_{s} =_{v} (\land_{s \rightarrow SEND s}, Y_{s'}) \land (\land_{s \rightarrow s}, X_{s'}) \}$$

$$\{ Y_{s} =_{\mu} (\lor_{s \rightarrow s}, T) \land (\land_{s \rightarrow \neg RECV s}, Y_{s'}) \}$$

• **BES**:

$$\begin{cases} X_{1} = \sqrt{Y_{2}} \land X_{2} \\ X_{2} = \sqrt{X_{1}} \land X_{3} \\ X_{3} = \sqrt{X_{1}} \end{cases} \begin{bmatrix} Y_{1} = \mu Y_{2} \\ Y_{2} = \mu Y_{1} \land Y_{2} \\ Y_{3} = \mu Y_{1} \land Y_{3} \end{bmatrix}$$

SPIN'06, Vienna, Austria, March 30-April 1, 2006

3

Local resolution with diagnostic

Conformance test generation using TGV (Test Generation based on Verification technology)

[Fernandez-Jard-Jeron-Viho-96] [Jard-Jeron-05]

Translation into BES resolution with diagnostic

 L2A (*lead to accept*): all states of the synchronous product Spec × TP from which an accepting state can be reached

$$\phi_{I2a} = \phi_{acc} \wedge vX \cdot [-] (\phi_{acc} \Longrightarrow X)$$

$$\phi_{acc} = \mu Y \cdot acc \vee \langle - \rangle Y$$

• Translation to a BES:

$$s \models \phi_{I2a} = Y_{s} \land X_{s}$$

$$\{X_{s} =_{v} \land_{s \rightarrow s'} (Z_{s'} \lor X_{s'})\} \{Y_{s} =_{\mu} acc_{s} \lor \lor_{s \rightarrow s'} Y_{s'}\}$$

$$\{Z_{s} =_{v} \neg acc_{s} \land \land_{s \rightarrow s'} Z_{s'}\}$$

Tools architecture

Experiments

IDPOT cluster 48 bi-Xeon 2.4 GHz, 1.5 Gb

• VLTS benchmark suite

http://www.inrialpes.fr/vasy/cadp/resources/benchmark_bcg.html

Distributed vs. sequential Evaluator (speedup, absence of deadlock, VLTS)

Distributed vs. sequential Evaluator (memory overhead, absence of deadlock, VLTS)

Distributed Evaluator vs. UppDMC (absence of deadlock, VLTS)

Example	absence of deadlock						
	truth	U(s)	U (MB)	E(s)	E(MB)		
$vasy_2581_11442$	false	44	461	2	272		
vasy_4220_13944	false	56	726	21	294		
vasy_4338_15666	false	64	745	2	313		
vasy_6020_19353	true	59	1085	24	1239		
vasy_6120_11031	false	95	947	1	170		
cwi_7838_59101	true	149	1531	46	2298		
vasy_8082_42933	false	162	1374	2	268		

Evaluator: 21 Xeon / 2.4 GHz / 1.5 Gb UppDMC: 25 bi-Pentium III / 500 MHz / 512 Mb

Distributed Evaluator vs. UppDMC (presence of livelock, VLTS)

Example	presence of livelock						
	truth	U(s)	U (MB)	E(s)	E (MB)		
vasy_2581_11442	false	47	n.c.	7	844		
vasy_4220_13944	false	67	n.c.	622	1149		
vasy_4338_15666	false	64	n.c.	11	1203		
vasy_6020_19353	true	125	n.c.	8	1 4 4 2		
vasy_6120_11031	false	108	n.c.	13	1092		
cwi_7838_59101	true	314	n.c.	16	2793		
vasy_8082_42933	false	134	n.c.	24	2401		

Evaluator: 21 Xeon / 2.4 GHz / 1.5 Gb UppDMC: 25 bi-Pentium III / 500 MHz / 512 Mb

Sequential Extractor vs. TGV (generic TP - accepting state after 10 visible actions, VLTS)

	TGV			(sequential) EXTRACTOR						
EXAMPLE	time	Мв	states	trans.	time	%	Мв	%	states	trans.
vasy_164_1619	15'8s	242	100 319	231266	3'47s	75	210	13	438861	2982696
vasy_166_651	20'23s	242	$170\ 657$	586602	1'41s	92	113	53	444542	$1\ 504\ 985$
cwi_371_641	6'5s	1600	125894	597445	5'20s	12	310	81	1912260	3163177
vasy_386_1171	9s	11	3319	3892	7s	22	10	9	5561	6324
vasy_1112_5290	23s	33	10827	20 888	13s	44	28	15	15008	$41\ 225$
b256	597'4s	2322	264194	854786	139'22s	77	2772	-2	12139232	39020231

TGV:

- 1.82 times slower than Extractor + Determinator
- Produces CTGs between 30% and 50% smaller

"raw" CTGs(contain τ -transitions)

Distributed Extractor + Determinator (generic TP, 7 nodes, VLTS)

	(distr	Determinator				
EXAMPLE	time	Мв	time	Мв	states (final)	transitions (final)
vasy_164_1619	4'39s	470	4'40s	55	103658	975594
vasy_166_651	2'59s	335	2'27s	50	173259	801675
cwi_371_641	12'4s	880	25'8s	185	127218	777278
vasy_386_1171	16s	104	15s	6	2452	3894
vasy_1112_5290	27s	228	17s	7	8 369	41225
b256	180'	6127	19'	459	527875	1709058

final CTGs (without τ -transitions) strongly equivalent to those produced by TGV

Conclusion and future work

- Summary
 - MB-DSolve: distributed local resolution of multi-block BESs
 - Generic implementation using OPEN/CAESAR
 - Two applications distributed & on-the-fly:
 - Model checking of alt-free mu-calculus (Evaluator 3.5)
 - Conformance test case generation (Extractor)
 - Good speedups w.r.t. sequential versions
 - Performance comparable with state-of-the-art tools (UppDMC, TGV)
- Ongoing and future work
 - Further experiments and benchmarks
 - Handling of heterogeneous architectures (grids)
 - Other applications (discrete controller synthesis)

