A Generic On-the-Fly Solver for Alternation-Free Boolean Equation Systems

Radu Mateescu INRIA Rhône-Alpes / VASY 655, avenue de l'Europe F-38330 Montbonnot Saint Martin, France http://www.inrialpes.fr/vasy

Outline

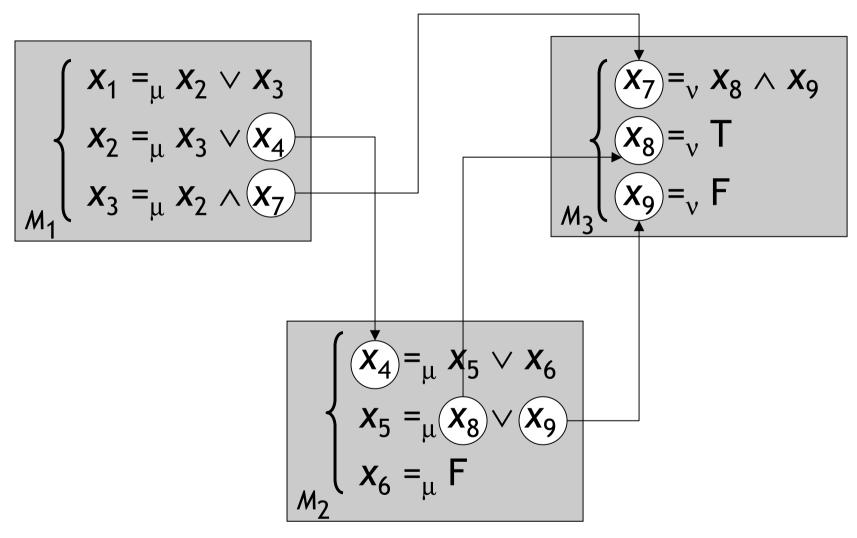
- Introduction
- Boolean Equation Systems
- On-the-fly resolution algorithms
- Equivalence checking and model checking
- Implementation and experiments
- Future work

Introduction

- On-the-fly verification
 - Builds the state space incrementally
 - Allows to detect errors in large systems
- Practical needs
 - Easy construction of on-the-fly verification tools
 - Generic software components for verification
- Boolean Equation Systems (BES)
 - Technology for equivalence checking and model checking
 - On-the-fly resolution and diagnostic generation

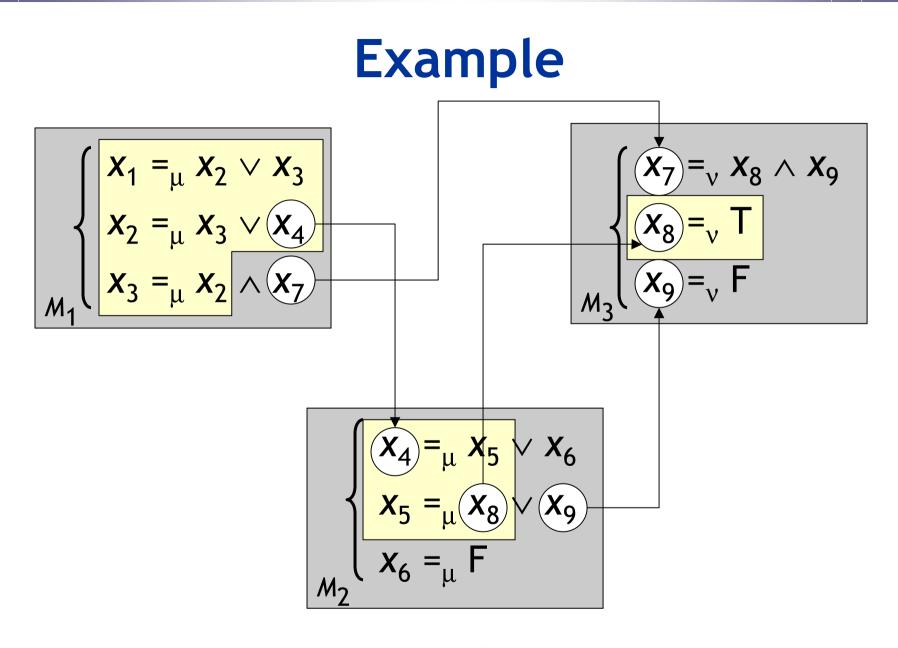
→ Goal: provide generic software (libraries)

Alternation-free BES



On-the-fly resolution

- Alternation-free BES $B = (x, M_1, ..., M_n)$
 - Compute x without solving the whole BES
- Approach:
 - Associate a resolution routine R_i to block M_i
 - $R_i(x_j)$ computes the value of x_j in M_i
 - Evaluation of right-hand side formulas and substitution
 - Bounded call stack $R_1(x) \rightarrow ... \rightarrow R_n(x_k)$
 - Simple algorithms (a single kind of fixed points)
 Easy to entimize (nerticular kinds of blocks)
 - Easy to optimize (particular kinds of blocks)



Resolution algorithms: Principles

- Represent blocks as *boolean graphs* [Andersen-94]
- Block *M* represented by boolean graph G = (V, E, L):
 - V: set of vertices (variables)
 - E: set of edges (dependencies between variables)
 - $L: V \rightarrow \{ \lor, \land \}$: vertex labeling (disjunctive/conjunctive)
- Principle of resolution algorithms:
 - *Forward* exploration of *G* starting at $x \in V$
 - *Backward* propagation of stable (computed) variables
 - *Termination* when x is stable or G is entirely explored
 - Diagnostic by keeping relevant successors [Mateescu-00]

Example BES (µ-block) boolean graph $\begin{cases} \mathbf{x}_1 =_{\mu} \mathbf{x}_2 \lor \mathbf{x}_3 \\ \mathbf{x}_2 =_{\mu} \mathbf{F} \\ \mathbf{x}_3 =_{\mu} \mathbf{x}_4 \lor \mathbf{x}_5 \\ \mathbf{x}_4 =_{\mu} \mathbf{T} \\ \mathbf{x}_5 =_{\mu} \mathbf{x}_1 \end{cases}$ 2 5 ∇ : \vee -variables \square : \land -variables

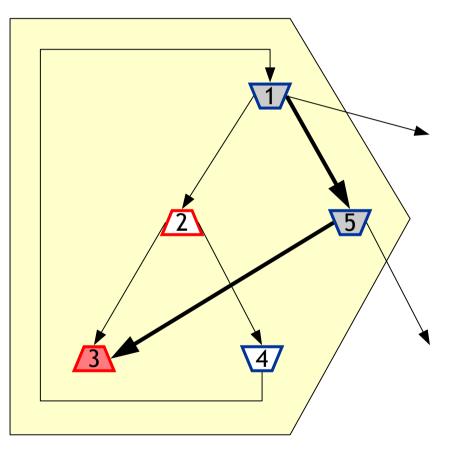
Three effectiveness criteria

For each resolution routine *R*:

- A. The worst-case complexity of a call R(x) must be O(|V|+|E|)
 - → linear-time complexity for the overall BES resolution
- B. While executing R (x), every variable explored must be « linked » to x via unstable variables
 → graph exploration limited to « useful » variables
- C. After termination of R(x), all variables explored must be stable
 - \rightarrow keep resolution results between subsequent calls of R

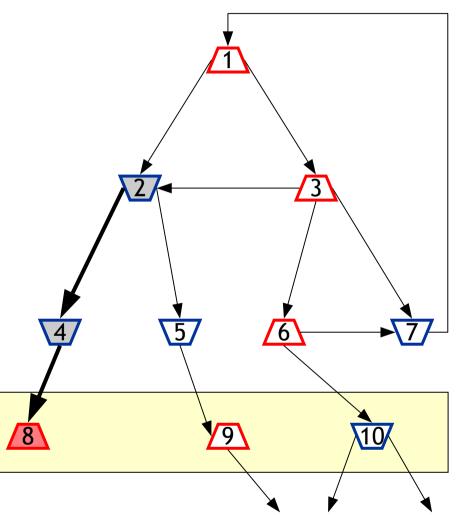
Algorithm A1 (general)

- DFS of the boolean graph
- Satisfies A, B, C
- Memory complexity
 O(|V|+|E|)
- Optimized version of [Andersen-94]
- Developed for model checking regular alternation-free μ-calculus [Mateescu-Sighireanu-00]



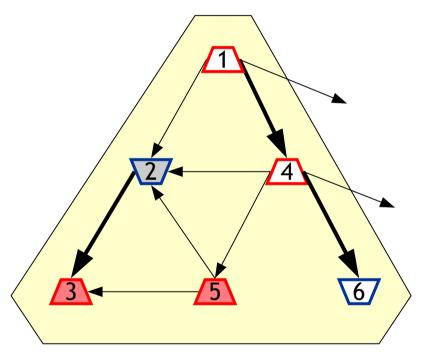
Algorithm A2 (general)

- BFS of the boolean graph
- Satisfies A, C (risk of computing useless variables)
- Slightly slower than A1
- Memory complexity
 O(|V|+|E|)
- Low-depth diagnostics



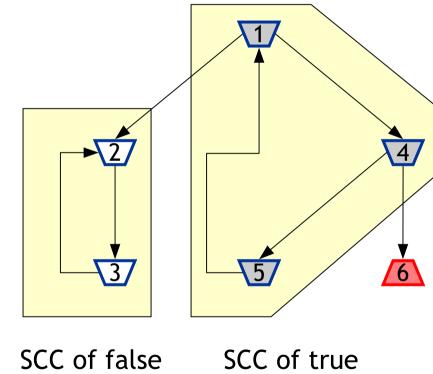
Algorithm A3 (acyclic)

- DFS of the boolean graph
- Back-propagation of stable variables on the DFS stack only
- Satisfies A, B, C
- Avoids storing edges
- Memory complexity
 O(|V|)
- Developed for trace-based verification [Mateescu-02]



Algorithm A4 (disjunctive / conjunctive)

- DFS of the boolean graph
- Detection and stabilization of SCCs
- Satisfies A, B, C
- Avoids storing edges
- Memory complexity
 O(|V|)
- Developed for model checking ACTL and PDL



variables

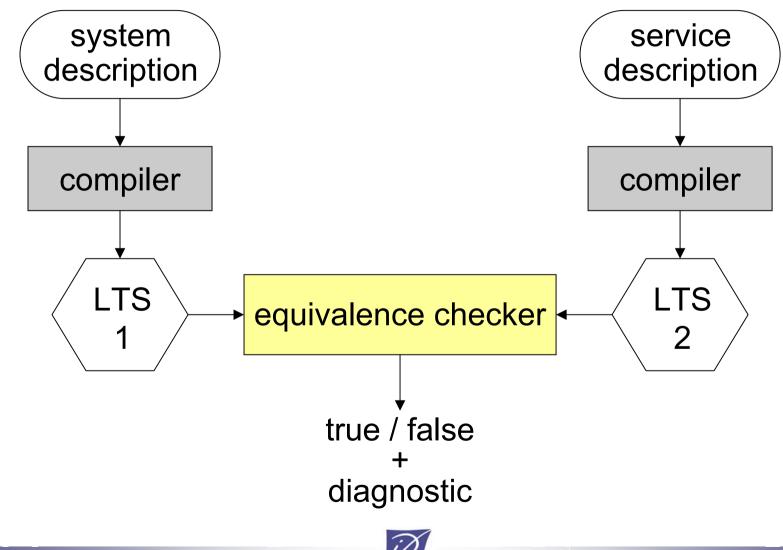
variables

Resolution algorithms: Summary

- A1 (DFS, general)
 - Satisfies A, B, C
 - Memory complexity O (|V|+|E|)
- A2 (BFS, general)
 - Satisfies A, C + « small » diagnostics
 - Memory complexity O (|V|+|E|)
- A3 (DFS, acyclic)
 - Satisfies A, B, C
 - Memory complexity O (|V|)
- A4 (DFS, disjunctive/conjunctive)
 - Satisfies A, B, C
 - Memory complexity O (|V|)

Time complexity O (|V|+|E|)

Equivalence checking



From equivalences to BESs

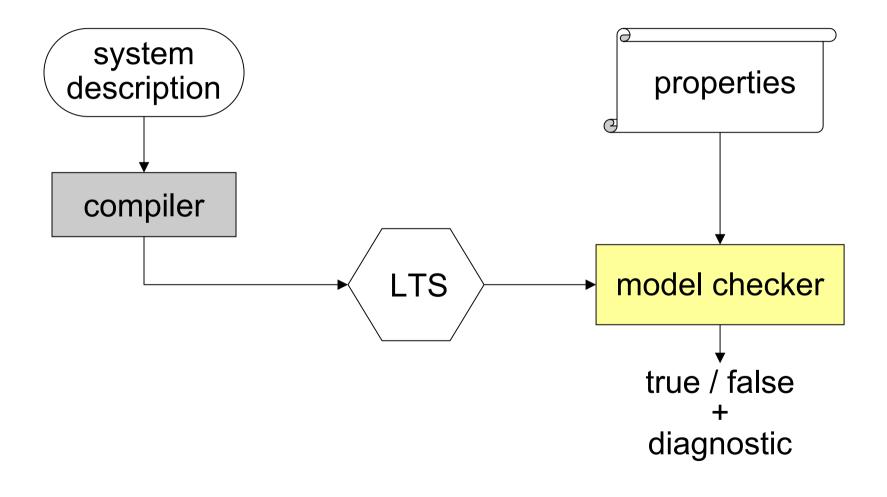
• Strong equivalence: $s_1 \approx s_2$ iff $X_{s1,s2}$ is true

- Weak equivalences:
 - Similar scheme, with transitive closure over τ -transitions
 - Branching, observational, τ^* .a, safety, delay, ...
 - Translation allows to build the LTS on-the-fly

Equivalence checking: Summary

- *General* boolean graph:
 - All equivalences and their preorders
 - Algorithms A1 and A2 (counterexample depth $\downarrow)$
- Acyclic boolean graph:
 - Strong equivalence: one of the LTS acyclic
 - $\tau^*.a$ and safety: one LTS acyclic (τ -circuits allowed)
 - Branching and observational: both LTS acyclic
 - Algorithm A3 (memory \downarrow)
- Conjunctive boolean graph:
 - All equivalences: one of the LTS deterministic
 - Algorithm A4 (memory \downarrow)

Model checking



From temporal logics to BESs

- Alternation-free μ -calculus: $s \mid = \varphi$ iff φ_s is true
- Potential reachability of an action *a*:

$$\mu X \cdot \phi \lor \langle a \rangle X$$

$$\left\{X_{s}=_{\mu}\phi_{s}\vee\bigvee_{s\to a\,s},\,X_{s}\right\}$$

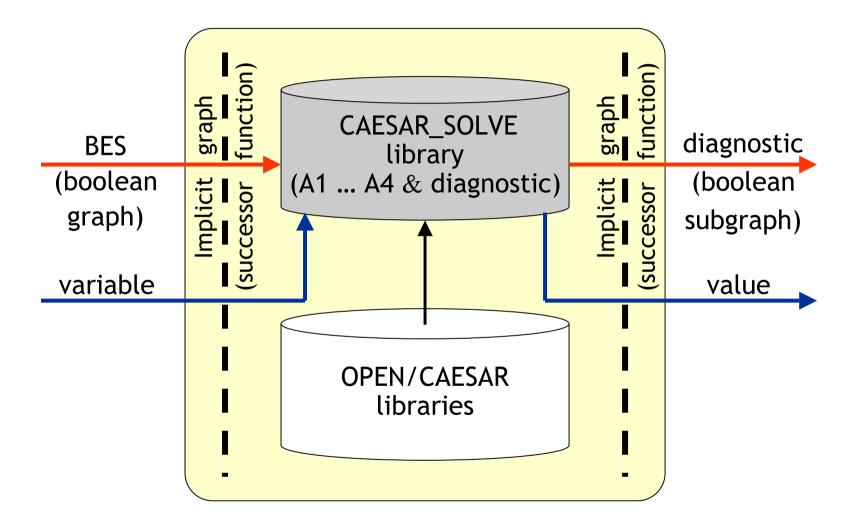
- Other temporal logics:
 - Similar scheme (via translation to μ -calculus)
 - CTL, ACTL (Action CTL), PDL

Translation allows to build the LTS on-the-fly

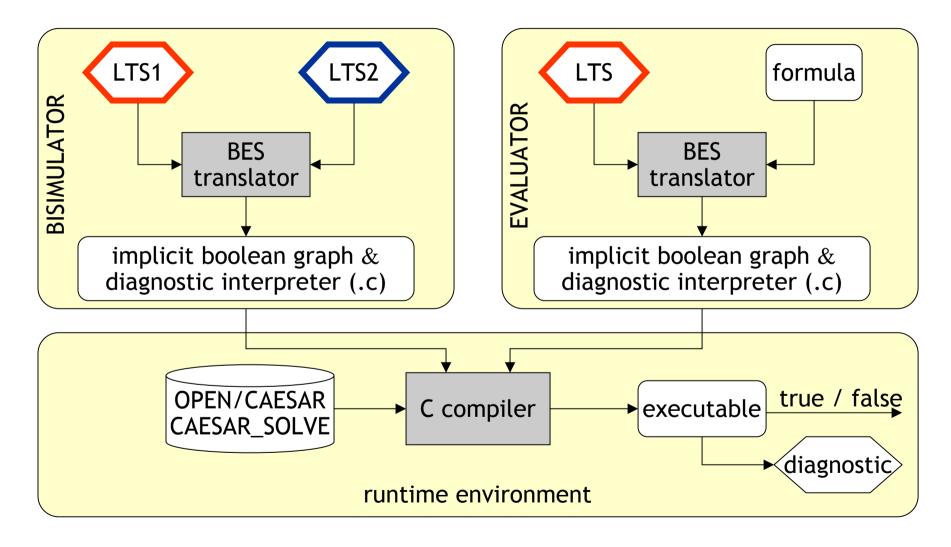
Model checking: Summary

- *General* boolean graph:
 - Any LTS and any alternation-free $\mu\text{-calculus}$ formula
 - Algorithms A1 and A2 (diagnostic depth \downarrow)
- Acyclic boolean graph:
 - Acyclic LTS and guarded formula (CTL, ACTL)
 - Acyclic LTS and μ -calculus formula (via reduction)
 - Algorithm A3 (memory \downarrow)
- *Disjunctive/conjunctive* boolean graph:
 - Any LTS and any formula of CTL, ACTL, PDL
 - Algorithm A4 (memory \downarrow)

CAESAR_SOLVE library



BISIMULATOR and EVALUATOR



Performance measures

- A2 versus A1:
 - Compare LTS erroneous LTS (strong equivalence)
 - Check invalid properties on the LTS
 - → Reductions 75 % 99 % in diagnostic depth
- A3 versus A1:
 - Inclusion of sequences (100,000 transitions) in the LTS
 - Check valid properties on sequences
 - → Reductions 15 % 27 % in memory
- A4 versus A1:
 - Compare LTS service LTS ($\tau^*.a$ equivalence)
 - Check valid properties (ACTL + PDL) on the LTS
 - → Reductions 12 % 63 % in memory

Future work

- New algorithms within CAESAR_SOLVE
 - Single-scan & low-memory algorithms for trace-based verification (low-depth acyclic boolean graphs)
 - Further resolution strategies (combined DFS-BFS, random exploration, ...)
- New applications of CAESAR_SOLVE
 - Detection of τ -confluent transitions [CAV 2003]
 - Test generation Jusing diagnostic generation
 - Discrete controller synthesis
- **Distributed** resolution algorithms
 - ➔ Distributed equivalence checking and model checking

