Checking Business Process Evolution

Gwen Salaün Université Grenoble Alpes, LIG, Inria, France

joint work with Ajay Krishna and Pascal Poizat

Introduction (1/2)

- A business process is a set of structured, related activities or tasks designed to produce a specific output for a customer or market
- BPMN 2.0 (Business Process Modelling Notation) was published as an ISO/IEC standard in 2013

 Modern software exhibits a high degree of dynamicity and is subject to continuous evolution

Introduction (2/2)

- Given two BPMN business processes, we want to support the process designer in the evolution activity with automated verification techniques
- Formal modelling and analysis is important and required to ensure correctness, efficiency, and quality of the whole process execution
- Our contributions:
 - An LTS (Labelled Transition System) semantics for a subset of BPMN obtained via process algebra encoding
 - A set of evolution notions based on LTS equivalences / preorders that one can use to compare two processes
 - A tool support for fully automating the evolution checks that can be accessed via a Web application

- 1. BPMN
- 2. From BPMN to LTS
- 3. Process Comparison
- 4. Tool Support
- 5. Concluding Remarks

BPMN

Several modelling and development frameworks: Activiti, Bonita BPMN, jBPM, ...

Control Flows and Gateways

Semantics

Exclusive gateway (similar for Event-based gateway): split (left) and merge (right)

Parallel gateway : split (left) and merge (right)

Inclusive gateway : split (left) and merge (right)

7

Example of BPMN Process

Bank account opening process

1. BPMN

2. From BPMN to LTS

- 3. Process Comparison
- 4. Tool Support
- 5. Concluding Remarks

LTS Models

10

LNT

- LOTOS NT (LNT) is a value-passing process algebra with userfriendly syntax and operational semantics
- LNT is an imperative-like language where you can specify data types, functions (pattern matching and recursion), and processes
- Excerpt of the LNT process grammar:

В	::=	stop G(!E, ?X) where E' if E then B1 else B2 end if
	I	x:=E hide G in B end hide P [G1,,Gm] (E1,,En)
		select B1 [] [] Bn end select B1 ; B2
		par G in B1 … Bn end par

Compilation to LTS and verification using the CADP toolbox

LNT Encoding (1/2)

BPMN construct	BPMN notation	LNT encoding		
Initial event	O→	begin ; outf		
End event	→O	incf ; finish		
Sequence flow	\longrightarrow	loop begin ; finish end loop		
Task	task outf	loop incf ; task ; outf end loop		
Parallel gateway (split)	incf outf2 outf2 outf3	incf ; par outf1 outf2 outf3 end par		
Parallel gateway (merge)	incf2 incf2 incf3	par incf1 incf2 incf3 end par ; outf		
Exclusive gateway (split)	incf outf2 outf2 outf3	incf; select outf1 [] outf2 [] outf3 end select		
Exclusive gateway (merge)	incf2 incf2 incf3	select incf1 [] incf2 [] incf3 end select ; outf		
Inclusive gateway (split)	incf outf1	<pre>incf ; select (* si if one matching merge *) outf1 ; s1 [] outf2 ; s2 [] par outf1 outf2 end par ; s3 end select</pre>		
Inclusive gateway (merge)	incf1 incf2	<pre>select (* si if one matching split *) s1; incf1 [] s2; incf2 [] s3; par incf1 incf2 end par end select; outf</pre>		

LNT Encoding (2/2)

```
process main [processApplication:any, reply:any, createProfile:any, ...] is
 hide begin:any, finish:any, flow1_begin:any, flow1_finish:any, ... in
   par flow1_begin, flow1_finish, flow2_begin, flow2_finish, ... in
    par
      flow [flow1_begin, flow1_finish] ||...|| flow [flow29_begin, flow29_finish]
    end par
    par
      init [begin,flow1_begin]
    || final [flow21_finish, finish] || final [flow27_finish, finish]
    || task [flow1_finish, processApplication, flow2_begin] || task [...] || ...
    || xorsplit [flow2_finish, flow3_begin, flow4_begin]
    || xormerge [flow6_finish, flow7_finish, flow29_begin]
    end par
   end par
 end hide
end process
```

- 1. BPMN
- 2. From BPMN to LTS
- 3. Process Comparison
- 4. Tool Support
- 5. Concluding Remarks

Evolution

Given two BPMN processes P_1 and P_2 , we can define several notions of comparison using concurrency theory

- Conservative evolution: both processes exhibit exactly the same behaviour $LTS(P_1) =_{br} LTS(P_2)$
- Inclusive / exclusive evolution: one process simulated by the other $LTS(P_1) <_{br} LTS(P_2)$ (LTS(P_1) >_{br} LTS(P_2), resp.)
- Up-to-alphabet / up-to-renaming evolution: checking former relations hiding or renaming parts of the alphabet
 LTS'(P₁) = LTS'(P₂) where LTS'(P_i) = hide A in LTS(P_i)
- Property preserving evolution: both processes satisfy a same temporal property P

 $LTS(P_1) \models P \text{ and } LTS(P_2) \models P$

Example (V2)

Conservative evolution X Inclusive evolution V

Exclusive evolution X

Property preserving evolution « any process execution eventually terminates by a rejection notification or by an account activation » X

- 1. BPMN
- 2. From BPMN to LTS
- 3. Process Comparison
- 4. Tool Support
- 5. Concluding Remarks

The VBPMN Platform

https://pascalpoizat.github.io/vbpmn/

Process Intermediate Format

Web Interface

VBPMN: BPMN Model Comparison

Service for comparison and analysis of BPMN 2.0 models

ile input 1			
Choose File PublishingSystemV3.bpmn			
IPMN 2.0 model xml file input			
ile input 2			
Choose File PublishingSystemV2.bpmn			
IPMIN 2.0 model xml file input			
#ode			
conservative		•	
Options			
None 💮 Hide 🗇 Rename			
Submit			

Experiments

BPMN	Size			LTS (states/trans	sitions)	Evol.
Proc.	Tasks	Flows	Gateways	Raw	Minimized	\equiv < >
1	6	11	2	29/29	8/9	$\times \sqrt{\times}$
1'	7	15		78/118	11/14	15s
2	4	7	10	70/105	7/9	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$
2'	8	14	2	36/38	10/12	15s
3	7	14	2 + 2 + 2	62/87	10/11	$\times \times \times$
3'	8	16	40	1,786/5,346	28/56	15s
4	15	29	3 + 2 + 2	469/1,002	24/34	$\times \sqrt{\times}$
4'	16	33	5 + 2 + 2	479/1,013	26/37	15s
5	12	24	60	742,234/3,937,158	148/574	$\times \times $
5'	12	24	$4\mathbf{O} + 2\mathbf{X}$	6,394/21,762	60/152	31s
6	20	43	6 + 6 +	4,488,843/26,533,828	$347/1,\!450$	$\times \sqrt{\times}$
6'	20	39	80	4,504,775/26,586,197	348/1,481	9m31s

- 1. BPMN
- 2. From BPMN to LTS
- 3. Process Comparison
- 4. Tool Support
- 5. Concluding Remarks

Concluding Remarks

- We have presented an approach for automatically checking the evolution of BPMN processes
- We have defined a BPMN to LNT translation, which allows to provide an LTS semantics for BPMN
- We have proposed several notions of evolution taking inspiration in concurrency theory
- We have implemented our approach in a tool, VBPMN, which can be used via a Web application

 Perspectives: support of unbalanced workflows, extending the BPMN subset considered, quantitative analysis, ...