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Abstract

We propose efficient techniques for detecting isomorphism between nets, i.e.,
for identifying, in large collections of (safe) Petri nets or Nested-Unit Petri
Nets, all the nets that are identical modulo a permutation of places, a permu-
tation of transitions, and/or a permutation of units. Our approach relies upon
the successive application of diverse algorithms of increasing complexities: net
signatures, net canonizations, and characterization of isomorphic nets in terms
of isomorphic graphs. We implemented this approach in a complete tool chain
that we successfully assessed on four collections, the largest of which comprises
241,000+ nets with many duplicates.

1 Introduction

The present work deals with large collections of Petri nets developed for non-
regression testing or software competitions. Building and properly maintaining
on the long run such collections, which gather hundreds or thousands of nets,
requires a substantial amount of work. A common problem is the presence of
duplicates, i.e., multiple occurrences of nets that are identical or very similar.
Duplicates may be present for three reasons: (i) the collection consists of nets
sent by different contributors; (ii) the collection is managed by several persons,
who may insert the same net independently; (iii) duplicates may arise from
transformations applied to existing models, e.g., conversion of colored Petri nets
to P/T nets, removal of dead places or dead transitions [3], etc.

In practice, duplicates are undesirable for at least four reasons: (i) they waste
disk space and backup storage, especially when nets are encoded in XML-based
formats (such as the standard PNML format [11]), which are particularly ver-
bose; (ii) they waste processor time in redundant calculations, which may be
expensive due to state-space explosion issues; (iii) they may introduce biases in
benchmarking experiments and software competitions by increasing the weight
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of certain nets unduly; (iv) their presence often raises time-consuming questions
and debates between users and administrators of net collections.

The present article addresses this problem by proposing methods and tools to
detect duplicates that may be present in existing net collections, and to prevent
duplicates from being created when new nets are inserted in collections under
construction.

The classes of nets considered are one-safe P/T nets and NUPNs (Nested-Units
Petri Nets) [7], an extension of Petri nets with the concept of units, which provide
for modularity and hierarchy. Non-safe P/T nets are also partially supported in
the sense that, for such nets, our approach produces over-approximated results,
i.e., reports a superset of duplicates, possibly including false positives.

To formalize the problem, we consider that two nets are duplicates if there
exist a bijective mapping between their places, their transitions and, in the
case of NUPNs, their units. This mapping should preserve the arcs, the initial
markings, and, in the case of NUPNs, the root units, the nesting of units, and
the location of places in units. Such a definition extends the classical notion of
graph isomorphism to Petri nets and NUPNs, keeping in mind that Petri nets
are directed bipartite graphs, which NUPNs extend with a tree of units.

The detection of duplicates therefore amounts to the efficient partition of a set of
nets according to such a net isomorphism relation. To the best of our knowledge,
there is little prior work on this problem, probably because the construction of
large net collections is a recent phenomenon.

The present article is organized as follows. Section 2 gives preliminary defi-
nitions. The next sections introduce the various approaches we developed for
detecting duplicates: Section 3 exposes how the problem can be reduced to
graph isomorphism; Section 4 presents the concept of net signatures; and Sec-
tion 5 discusses the idea of net canonization. Section 6 presents the integration
of all these approaches in a coherent tool chain. Section 7 gives experimental
results obtained on four collections of Petri nets and NUPNs. Finally, Section 8
gives a few concluding remarks.

2 Definitions

2.1 Petri Nets and Nested-Unit Petri Nets

We briefly recall the usual definitions of Petri nets and refer the reader to classical
surveys, e.g., [13], for a more detailed presentation of Petri nets.

Definition 1 A (marked) Petri Net is a 4-tuple (P, T, F,M0) where:

1. P is a finite, non-empty set; the elements of P are called places.
2. T is a finite set such that P ∩T = ∅; the elements of T are called transitions.
3. F is a subset of (P × T ) ∪ (T × P ); the elements of F are called arcs.
4. M0 is a non-empty subset of P ; M0 is called the initial marking.
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Notice that the above definition only covers ordinary nets (i.e., it assumes all
arc weights are equal to one). Also, it only considers safe nets (i.e., each place
contains at most one token), which enables the initial marking to be defined as a
subset of P , rather than a function P → N as in the usual definition of P/T nets.
We now recall the basic definition of a NUPN, referring the interested reader to
[7] for a complete presentation of this model of computation.

Definition 2 A (marked) Nested-Unit Petri Net (acronym: NUPN) is a 8-tuple
(P, T, F,M0, U, u0,v, unit ) where (P, T, F,M0) is a Petri net, and where:

5. U is a finite, non-empty set such that U ∩ T = U ∩ P = ∅; the elements of
U are called units.

6. u0 is an element of U ; u0 is called the root unit.
7. v is a binary relation over U such that (U,w) is a tree with a single root

u0, where (∀u1, u2 ∈ U) u1 w u2
def
= u2 v u1; intuitively1, u1 v u2 expresses

that unit u1 is transitively nested in or equal to unit u2.
8. unit is a function P → U such that (∀u ∈ U \ {u0}) (∃p ∈ P ) unit (p) = u;

intuitively, unit (p) = u expresses that unit u directly contains place p.

We now recall a few usual definitions for ordinary safe nets.

Definition 3 Let (P, T, F,M0) be a Petri Net.

� A marking M is defined as a set of places (M ⊆ P ). Each place belonging
to a marking M is said to be marked or, also, to possess a token.

� The pre-set of a transition t is the set of places •t
def
= {p ∈ P | (p, t) ∈ F}.

� The post-set of a transition t is the set of places t•
def
= {p ∈ P | (t, p) ∈ F}.

� The pre-set of a place p is the set of transitions •p
def
= {t ∈ T | (t, p) ∈ F}.

� The post-set of a place p is the set of transitions p•
def
= {t ∈ T | (p, t) ∈ F}.

Because NUPNs merely extend Petri nets by grouping places into units, Petri-
net properties (including the standard firing rules for transitions) are preserved
when NUPN information is added. Thus, all the concepts of Def. 3 for Petri
nets also apply to NUPNs. The next definition provides useful notations used
throughout this article.

Definition 4 Let N = (P, T, F,M0, U, u0,v, unit ) be a NUPN.

� u1 @ u2
def
= (u1 v u2) & (u1 6= u2) is the strict nesting partial order.

� disjoint (u1, u2)
def
= (u1 6v u2) & (u2 6v u1) characterizes pairs of units

neither equal nor nested one in the other.

� places (u)
def
= {p ∈ P | unit (p) = u} gives all places directly contained in u;

these are called the local places (or proper places) of u.

1 v is reflexive, antisymmetric, transitive, and u0 is the greatest element of U for v.
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� places∗(u)
def
= {p ∈ P | (∃u′ ∈ U) (u′ v u) & (unit (p) = u′)} gives all places

transitively contained in u or its sub-units.

� subunits (u)
def
= {u′ ∈ U | (u′ @ u) & (@u′′ ∈ U) (u′ @ u′′) & (u′′ @ u)}

gives all units directly nested in u.

� subunits∗(u)
def
= {u′ ∈ U | (u′ @ u)} gives all units transitively nested in u.

� leaf (u)
def
= (subunits (u) = ∅) characterizes the units having no nested sub-

unit, i.e., the minimal elements of (U,v).
� depth (u) is the length of the longest chain u @ ... @ u0 of nested units from
u to the root unit u0. In particular, depth (u0) = 0.

� height (u) is the length, plus one, of the longest chain un @ ... @ u of nested
units from any leaf unit un to u. In particular, leaf (u)⇔ height (u) = 1.

� width (u) is the number of leaf units contained in {u} ∪ subunits∗(u).
� A trivial NUPN is such that width (u0) equals the number of places card (P ),

meaning that the net carries no more NUPN information than a Petri net;
in a trivial NUPN, each unit has a single local place, except the root unit u0,
which has either zero or one.

Finally, a NUPN N is said to be unit safe [7] iff its underlying Petri net
(P, T, F,M0) is one-safe and, in any reachable marking M , all the places of
M are contained in disjoint units.

2.2 Graph and Net Isomorphisms

We first recall the classical definitions of graph and graph isomorphism.

Definition 5 A vertex-colored directed graph (or colored graph for short) is a
3-tuple (V,E, c) such that: V is a set of vertices, E ⊆ V ×V is a set of (directed)
edges, and c : V → N is a function associating for each vertex a natural number
representing a color. If the relation E is symmetric, then the graph is said to be
undirected.

Definition 6 Two colored graphs G = (V,E, c) and G′ = (V ′, E′, c′) are iso-
morphic iff there exists a bijection πv : V → V ′ such that:

� (∀v1, v2 ∈ V ) (v1, v2) ∈ E ⇔ (πv(v1), πv(v2)) ∈ E′.
� (∀v ∈ V ) c(v) = c′(πv(v)).

We then define the concept of net isomorphism used throughout this article.

Definition 7 Let N = (P, T, F,M0, U, u0,v, unit ) and N ′ = (P ′, T ′, F ′,M ′0,
U ′, u′0,v′, unit ′) be two NUPNs. N and N ′ are said to be isomorphic iff there
exist three bijections πp : P → P ′, πt : T → T ′, and πu : U → U ′ such that:

� (∀(p, t) ∈ P × T ) (p, t) ∈ F ⇔ (πp(p), πt(t)) ∈ F ′.
� (∀(t, p) ∈ T × P ) (t, p) ∈ F ⇔ (πt(t), πp(p)) ∈ F ′.
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� (∀p ∈ P ) p ∈M0 ⇔ πp(p) ∈M ′0.
� u′0 = πu(u0).
� (∀u1, u2 ∈ U) u1 v u2 ⇔ πu(u1) v′ πu(u2) — or, expressed in an equivalent

way: (∀u1, u2 ∈ U) u1 ∈ subunits (u2)⇔ πu(u1) ∈ subunits ′(πu(u2)).
� (∀p ∈ P ) unit ′(πp(p)) = πu(unit (p)).

Alternative definitions of net isomorphism can be found in the literature. The
definition given in [10] takes into account places, place labels, transitions, tran-
sition labels, and arc weights, but not the initial marking. In [6, 5] and [8], a less
general definition of net isomorphism is given, in which only places are consid-
ered: two isomorphic Petri nets may have their places permuted but must have
identical transitions. In [4], [1], and [2], two nets are said to be isomorphic iff
their marking graphs are isomorphic; notice that the left-to-right implication of
this behavioural definition is also ensured by our purely structural Definition 7.

Finally, we recall the notion of disjoint union on sets and functions.

Definition 8 Let S and S′ be two disjoint sets. Let f and f ′ be two functions
respectively defined on S and S′.

� S ] S′ denotes the set union S ∪ S′, knowing that S ∩ S′ = ∅.
� f ] f ′ denotes the function union of f and f ′, i.e., the function defined on
S]S′ such that (f ]f ′)(x) = f(x) if x ∈ S and (f ]f ′)(x) = f ′(x) if x ∈ S′.

3 Net Isomorphism in Terms of Graph Isomorphism

Our first approach expresses net isomorphism in terms of graph isomorphism, a
problem for which software tools are available [9].

3.1 Theoretical Aspects

Definition 9 Let N = (P, T, F,M0, U, u0,v, unit ) be a NUPN. We associate to
N a colored directed graph GN = (V,E, c) such that:

� V
def
= P ] T ] U .

� E
def
= F]{(p, u) ∈ P×U | u = unit (p)}]{(u, u′) ∈ U×U | u ∈ subunits (u′)}.

� (∀v ∈ V ) c(v)
def
= 0 if v ∈ P \M0, 1 if v ∈M0, 2 if v ∈ T, or 3 if v ∈ U .

The function N → GN is an injection, but not a surjection (as not every graph
corresponds to a NUPN). The following definition computes the inverse function.

Definition 10 Let G = (V,E, c) be the colored directed graph associated to some

NUPN via Def. 9. Let NG
def
= (P, T, F,M0, U, u0,v, unit ) be defined as follows:

� P
def
= {v ∈ V | c(v) ≤ 1}.
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� T
def
= {v ∈ V | c(v) = 2}.

� F
def
= E ∩ ((P × T ) ∪ (T × P )).

� M0
def
= {v ∈ V | c(v) = 1}.

� U
def
= {v ∈ V | c(v) = 3}.

� u0 is the unique element such that (u0 ∈ U) & (E ∩ ({u0} × U) = ∅).
� v is the reflexive transitive closure of the relation E ∩ (U × U).
� unit is the function p 7→ u such that (p, u) ∈ E ∩ (P × U).

It is easy to see that NG is a NUPN, i.e., that: P , T , and U are pairwise disjoint;
M0 is not empty and contained in P ; and v is a tree with a single root u0.

Proposition 1 Two NUPNs N and N ′ are isomorphic iff their corresponding
graphs GN and GN ′ are isomorphic.

Proof. Let G
def
= GN = (V,E, c) and let G′

def
= GN ′ = (V ′, E′, c′). By double im-

plication. Direct: Let N = (P, T, F,M0, U, u0,v, unit ) and let N ′ = (P ′, T ′, F ′,
M ′0, U

′, u′0,v′, unit ′). If N and N ′ are isomorphic, there exist three bijections

πp, πt, and πu satisfying the conditions of Def. 7. The function πv
def
= πp]πt]πu

is a bijection from V to V ′ and satisfies both conditions of Def. 6: it preserves
the edges (proven by disjunction of cases, depending whether each edge of E
belongs to P × T , T × P , U × P , or U × U) and preserves the colors (also
proven by disjunction of cases, depending whether each vertex of V belongs to
P \M0, M0, T , or U). Converse: Let NG = (P, T, F,M0, U, u0,v, unit ) and let
NG′ = (P ′, T ′, F ′,M ′0, U

′, u′0,v′, unit ′). If G and G′ are isomorphic, there exists
a bijection πv : V → V ′ satisfying the two conditions of Def. 6. The second
condition, the bijective nature of πv, and the definitions of c and c′ in Def. 9
imply that card (P ) = card (P ′), card (T ) = card (T ′), card (M0) = card (M0),

and card (U) = card (U ′). Let πp
def
= πv|P , πt

def
= πv|T , and πu

def
= πv|U be the

restrictions of πv to P , T , and U , respectively. Because πv is a bijection, πp
is an injection from P to P ′, and even a bijection since card (P ) = card (P ′);
similarly, πt is a bijection from T to T ′ and πu a bijection from U to U ′. The six
conditions of Def. 7 then follow from the combined assumptions of Def. 6 and
Def. 9.

3.2 Practical Aspects

To assess on concrete examples the efficiency of the approach presented in
Sect. 3.1, we selected the two reference tools dedicated to graph isomorphism,
nauty and Traces2 [12] because of their high reputation of efficiency. These
tools, which provide both an API and a command-line interface, can put a graph
under canonical form or decide whether two graphs are isomorphic (i.e., iff their
respective canonical graphs are identical).

2 https://pallini.di.uniroma1.it
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As for benchmark, we selected the 1387 (non-colored) Petri Nets and NUPNs
used for the 2022 edition of the Model Checking Contest, knowing that duplicates
are present in this collection. Using a Python script implementing Def. 9, each
net was translated to a graph in nauty/Traces input format. We ran our
experiments in parallel on the French Grid’5000 testbed3, allocating to each
model a dedicated server with 96 GB RAM and one hour of wallclock time.

The results were disappointing: nauty managed to put 310 graphs under canon-
ical form (success rate: 22.4%) but failed on all other models, either due to lack
of memory (on 8 graphs) or by hitting the one-hour timeout (on 1069 graphs).
Furthermore, no duplicate was detected.

To improve these results, we did additional attempts in two directions: (i) de-
vising alternative translations to the one of Def. 9, taking advantage of the
specificities of nauty to get as much performance as possible, and (ii) experi-
menting also with Traces, which is more recent and slightly faster (by a few
percents, as we observed) than nauty.

Rather than assigning to vertices four colors only (i.e., {0...3} in Def. 9), one
may increase the number of colors to better distinguish between the various
vertices vp associated to all places p ∈ P . For instance, one may choose

c(vp)
def
= depth (unit (p)), together with c(v)

def
= height (u0) if v ∈ T and

c(v)
def
= height (u0) + 1 if v ∈ U — keeping in mind that, for each u ∈ U ,

depth (u) < height (u0). With such colors, the information that a place p belongs
to the initial marking M0 can be expressed differently, e.g., by adding a looping
arc (vp, vp) to E (noticing that E contains no arcs from P to P ) or by adding a
special vertex v0 with a unique color and an arc (vp, v0).

Another idea is to reduce the number of vertices by no longer associating a vertex

to each unit (i.e., V
def
= {v0} ] P ] T ). In this approach, the root unit u0, the

function unit , and the relation v can be encoded by extra arcs, e.g., by adding
an arc (v0, vp) for each place p ∈ places (u0), and by adding an arc (vp, vp′) for
each pair of places p and p′ such that unit (p) ∈ subunits (unit (p′)).

Because Traces does not support directed graphs, we adapt the translation
of Def. 9 by associating two unique vertices vp and v′p to each place p ∈ P ,

assigning distinctive colors to vp and v′p (e.g., c(vp)
def
= 2 × depth (unit (p)) and

c(v′p)
def
= c(vp) + 1), and adding an edge {vp, v′p} to express that both vertices

are related to the same place. As before, a unique vertex vt is associated to each
transition t ∈ T . Then, each arc (t, p) ∈ F is represented by an edge {vt, vp}
and each arc (p, t) ∈ F is represented by an edge {v′p, vt}.
We implemented these ideas in five different translations, which we assessed on
the aforementioned benchmark (2022 edition of the Model Checking Contest). In
the most effective approach, nauty managed to put 498 graphs under canonical
form (success rate: 35.9%) but failed due to lack of memory (on 15 graphs) or by

3 https://www.grid5000.fr
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hitting the one-hour timeout (on 874 graphs). Again, no duplicate was detected.

Thus, even if net isomorphism can theoretically be expressed in terms of graph
isomorphism, this does not seem to be a practical solution. We now present
alternative approaches specifically tailored for Petri nets and NUPNs.

4 Net Signatures

Our second approach is based on the idea of net signature, which borrows from
the concepts of hash and checksum functions.

Definition 11 A net signature (or signature for short) is a function sig defined
on Petri nets or NUPNs, such that, for any two nets N and N ′, if N and N ′

are isomorphic, then sig(N) = sig(N ′).

In practice, one uses the contraposition of this implication: two nets having
different signatures are not isomorphic. The reverse implication is not required:
two nets having the same signature are not necessarily isomorphic (there is a
risk of collision between their signatures).

Proposition 2 If sig is a signature, then for any net N and any permutation
π of places, transitions, and/or units, sig(π(N)) = sig(N).

To discriminate as many nets as possible, a signature should be extensive enough
to contain all information that is invariant by permutations, but it should also
be fast to compute. We now introduce a few definitions upon which an effective
signature can be built.

4.1 Multiset Hashing

Multisets are an extension of sets and may contain several instances of each
element. We note multisets {| ... |} to distinguish them from (normal) sets, noted
{...}. Given a NUPN N = (P, T, F,M0, U, u0,v, unit ), two examples of multisets
are {| card (•t) | t ∈ T |} and {| height (u) | u ∈ U |}. To check the equality
of such multisets, the lengths of which can be fixed or variable, we adopt a
hash-based approach that converts each multiset into a (fixed-size) digest, such
that the equality of two multisets implies the equality of the two corresponding
digests. Thus, the chosen hash function is not assumed to be perfect (hash
collisions may exist among digests). Yet, it is desirable that this function returns
a result independent from the order of elements (multisets are not lists). A simple
solution would be to sort the elements of a multiset and concatenate them to
form a bit string on which some standard (cryptographic or not) hash function
would be applied. However, this approach is slow (due to sorting, at least)
and produces hash results that are not meaningful to humans. We thus adopt
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an alternative approach based on the following hash function, which does not
require sorting and returns a tuple, many fields of which can be easily checked
by inspection.

Definition 12 Let a digest be a 5-tuple of natural numbers.

� Let D def
= N5 denote the set of digests.

� For d ∈ D, let d.card, d.min, d.max, d.sum, and d.prod denote, respectively,
each of the five components of d.

� Let 5H : (multiset of N) → D be the hash function defined as follows:
5H(∅)

def
= (0, 0, 0, 0, 1) and, for any natural n ≥ 1, 5H({|x1, ..., xn |})

def
=

(n,min(x1, ..., xn),max (x1, ..., xn), x1 + ...+xn, (2x1 +r)× ...× (2xn +r)/2),
where r is the constant 2, 654, 435, 769.

� Let 5M : (multiset of D) → D be the “hash-merge” function defined as

follows: 5M(∅)
def
= (0, 0, 0, 0, 1) and, for any n ≥ 1, 5M({| d1, ..., dn |})

def
= (d1.card + ... + dn.card,min(d1.min, ..., dn.min),max (d1.max, ..., dn.max),
d1.sum + ...+ dn.sum, (2× d1.prod + 1)× ...× (2× dn.prod + 1)/2).

Function 5H handles multisets of natural numbers, whereas function 5M, at a
higher level (“hash of hashes”), handles multisets of digests. Both functions
can be computed by induction on the size n of their input multisets: there is
no need for preliminary sorting, as all the operations involved in 5H and 5M are
commutative and associative. In practice, the fields of D are implemented using
machine integers, so that all arithmetical calculations are done modulo, e.g., 232

or 264. All components of D, but prod, are readable by humans and express
meaningful properties of the corresponding multiset. Instead, prod uses a form
of multiplicative hashing4 that seeks to enhance dispersion for large multisets.
Notice that, all factors of prod being odd, their product never becomes zero, even
under modular arithmetic; the final division of this product by two eliminates
the least significant bit, which is always equal to one.

4.2 Signature Function

We can propose a particular sig function defined on NUPNs; this function sup-
ports ordinary, safe Petri nets as a particular case (i.e., trivial NUPNs).

Definition 13 Let N = (P, T, F,M0, U, u0,v, unit ) be a NUPN. We define
sig(N) to be a fixed-size tuple, each component of which is a natural number
or a digest computed from N . The components are divided into three parts, re-
spectively based on the places, transitions, and units of N . These parts, noted
(h1, ...), (k1, ...), and (l1, ...), are defined below (see Def. 18, 19, and 20).

4 https://stackoverflow.com/questions/1536393/good-hash-function-for-permutations
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4.3 Attributes for Places and Transitions

The definition of our signature function relies on various attributes computed
for each place and transition of the net. These attributes contain information
that helps differentiating the various places (resp. transitions). At first sight, all
places are seemingly alike (except those of the initial marking), but they can be
distinguished using local information (e.g., the number of arcs and transitions
connected to them) as well as global information (e.g., their distance to other
remarkable places of the net: initial places, sink places, etc.).

Definition 14 Let N = (P, T, F,M0) be a Petri net. A set of places p0, ..., pn
and a set of transitions t1, ..., tn are said to be a chain of length n from p0 to pn
iff (∀i ∈ {1, ..., n}) (pi−1, ti) ∈ F & (ti, pi) ∈ F . Given two places p and p′, the
distance from p to p′ is defined as the length of the shortest chain from p to p′;
if no such chain exists, this distance is equal to card (P ) + 1.

Definition 15 To each place p, one associates three attributes:

� distance1(p) is defined as the minimal distance from p to any place of the
initial marking M0.

� distance2(p) is defined as the minimal distance from any place of the initial
marking to p.

� distance3(p) is defined as the minimal distance from p to any sink place (i.e.,
any place p′ such that p′• = ∅).

Definition 16 To each transition t, one associates three Boolean attributes and
six attributes of type D:

� decreasing(t)
def
= (card (•t) > card (t•))

� conservative(t)
def
= (card (•t) = card (t•))

� increasing(t)
def
= (card (•t) < card (t•))

� for i ∈ {1, 2, 3}, input distance i(t) def
= 5H({| distance i(p) | p ∈ •t |})

� for i ∈ {1, 2, 3}, output distance i(t) def
= 5H({| distance i(p) | p ∈ t• |})

Definition 17 To each place p, one associates seven natural-number attributes
and sixteen attributes of type D:

� nb loops(p)
def
= card (•p ∩ p•)

� nb decreasing input transitions(p)
def
= card ({t ∈ •p | decreasing(t)})

� nb conservative input transitions(p)
def
= card ({t ∈ •p | conservative(t)})

� nb increasing input transitions(p)
def
= card ({t ∈ •p | increasing(t)})

� nb decreasing output transitions(p)
def
= card ({t ∈ p• | decreasing(t)})

� nb conservative output transitions(p)
def
= card ({t ∈ p• | conservative(t)})

� nb increasing output transitions(p)
def
= card ({t ∈ p• | increasing(t)})

10
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� pred nb input places(p)
def
= 5H({| card (•t) | t ∈ •p |})

� pred nb output places(p)
def
= 5H({| card (t•) | t ∈ •p |})

� succ nb input places(p)
def
= 5H({| card (•t) | t ∈ p• |})

� succ nb output places(p)
def
= 5H({| card (t•) | t ∈ p• |})

� for i ∈ {1, 2, 3}, pred input distance i(p)
def
= 5M({| input distance i(t) | t ∈ •p |})

and pred output distance i(p)
def
= 5M({| output distance i(t) | t ∈ •p |})

� for i ∈ {1, 2, 3}, succ input distance i(p)
def
= 5M({| input distance i(t) | t ∈ p• |})

and succ output distance i(p)
def
= 5M({| output distance i(t) | t ∈ p• |})

4.4 Signature Part Based on Places

The first part of our signature function is defined as follows.

Definition 18 Let N = (P, T, F,M0) be a Petri net. The place-based part of
the sig(N) function of Def. 13 is a tuple (h1, ..., h16) of natural numbers or values
of type D. The components of this tuple are the following:

� h1
def
= card (P ), i.e., the number of places.

� h2
def
= 5H({| distance1(p) | p ∈ P |}).

� h3
def
= 5H({| distance2(p) | p ∈ P |}).

� h4
def
= 5H({| distance3(p) | p ∈ P |}).

� h5
def
= 5H({| nb loops(p) | p ∈ P |}).

� h6
def
= 5H({| nb decreasing input transitions(p) | p ∈ P |}).

� h7
def
= 5H({| nb conservative input transitions(p) | p ∈ P |}).

� h8
def
= 5H({| nb increasing input transitions(p) | p ∈ P |}).

� h9
def
= 5H({| nb decreasing output transitions(p) | p ∈ P |}).

� h10
def
= 5H({| nb conservative output transitions(p) | p ∈ P |}).

� h11
def
= 5H({| nb increasing output transitions(p) | p ∈ P |}).

� h12
def
= 5H({| pair(card (•p), card (p•)) | p ∈ P |}), where pair : N× N → N is a

pairing function that maps two natural numbers to a single one.

� h13
def
= 5M({| pred nb input places(p) | p ∈ P |}).

� h14
def
= 5M({| pred nb output places(p) | p ∈ P |}).

� h15
def
= 5M({| succ nb input places(p) | p ∈ P |}).

� h16
def
= 5M({| succ nb output places(p) | p ∈ P |}).

The following components are excluded from the place-based part of the signature:
h2.card, h3.card, ..., h12.card (because they are all equal to h1); h14.card (which
is equal to h13.card); h16.card (which is equal to h15.card); and h12.sum (which
a linear combination of h6.sum, ..., h11.sum).

11
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4.5 Signature Part Based on Transitions

The second part of our signature function is defined as follows.

Definition 19 Let N = (P, T, F,M0) be a Petri net. The transition-based part
of the sig(N) function of Def. 13 is a tuple (k1, ..., k3) of natural numbers or
values of type D. The components of this tuple are the following:

� k1
def
= card (T ), i.e., the number of transitions.

� k2
def
= 5H({| card (•t) | t ∈ T |}).

� k3
def
= 5H({| card (t•) | t ∈ T |}).

The following components are excluded from the transition-based part of the sig-
nature: k2.card and k3.card (because they are equal to k1); k2.sum (which is equal
to h9.sum+h10.sum+h11.sum); and k3.sum (which is equal to h6.sum+h7.sum+
h8.sum).

4.6 Signature Part Based on Units

The third part of our signature function is defined as follows.

Definition 20 Let N = (P, T, F,M0, U, u0,v, unit ) be a NUPN. The unit-based
part of the sig(N) function of Def. 13 is a tuple (l1, ..., l13) of natural numbers
or values of type D. The components of this tuple are the following:

� l1
def
= card (U), i.e., the number of units.

� l2
def
= 5H({| card (subunits (u)) | u ∈ U |}).

� l3
def
= 5H({| card (subunits∗(u)) | u ∈ U |}).

� l4
def
= 5H({| card (places (u)) | u ∈ U |}).

� l5
def
= 5H({| card (places∗(u)) | u ∈ U |}).

� l6
def
= 5H({| card (places (u) ∩M0) | u ∈ U |}).

� l7
def
= 5H({| card (places∗(u) ∩M0) | u ∈ U |}).

� l8
def
= 5H({| depth (u) | u ∈ U |}).

� l9
def
= 5H({| height (u) | u ∈ U |}).

� l10
def
= 5H({|width (u) | u ∈ U |}),

� l11
def
= 5H({| in(u) | u ∈ U |}), where in(u)

def
=

∑
t∈T card (•t ∩ places (u)).

� l12
def
= 5H({| out(u) | u ∈ U |}), where out(u)

def
=

∑
t∈T card (t• ∩ places (u)).

� l13
def
= 5H({|mix(card (subunits (u)), card (subunits∗(u)), card (places (u)),

card (places∗(u)), card (places (u) ∩ M0), card (places∗(u) ∩ M0), depth (u),
height (u),width (u), in(u), out(u) |}, where mix : N11 → N is a generalized
pairing function.

The following components are excluded from the unit-based part of the signature
because their presence would be redundant: l2.card = l1, l2.min = 0, l2.sum =

12
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l1 − 1, l3.card = l1, l3.min = 0, l4.card = l1, l4.sum = card (P ), l5.card = l1,
l6.card = l1, l6.min ≤ 1 and l6.max ≤ 1 if N is unit safe, l7.card = l1, l7.min ≤ 1
if N is unit safe, l7.max = card (M0), l8.card = l1, l8.min = 0, l9.card = l1,
l9.min = 1, l9.max = l8.max + 1, l10.card = l1, l10.min = 1, l11.card = l1,
l12.card = l1, and l13.card = l1.

5 Net Canonization

Our third approach relies on an idea derived from the concept of normal form.

Definition 21 A net canonization (or canonization for short) is a function can
defined on Petri nets or NUPNs, such that, for any two nets N and N ′, if
can(N) = can(N ′), then N and N ′ are isomorphic.

The reverse implication is not required: two isomorphic nets do not have neces-
sarily the same image by canonization. In the sequel, we propose a particular can
function defined as the composition of three successive permutations of units,
places, and transitions. Units are permuted first, because in a non-trivial NUPN,
there are less units than places (in a trivial NUPN, card (U) ≤ card (P ) + 1);
transitions are permuted last, because there are usually more transitions than
places in a net.

Definition 22 Let N = (P, T, F,M0, U, u0,v, unit ) be a NUPN. We assume
in this section that P (resp. T , U) is the natural range {1, ..., card (P )} (resp.
{1, ..., card (T )}, {1, ..., card (U)}) and that each place p (resp. each transition t,
each unit u) is represented by a unique number noted #p (resp. #t, #u).

� Let πu[N ] : U → U denote a permutation of the units of N ; the definition we
chose for πu[N ] is given below in Sect. 5.1.

� Let πp[N ] : P → P denote a permutation of the places of N ; the definition
we chose for πp[N ] is given below in Sect. 5.2.

� Let πt[N ] : T → T denote a permutation of the transitions of N ; the definition
we chose for πt[N ] is given below in Sect. 5.3.

� Let N1 be the NUPN obtained by permuting the units of N with πu[N ].
� Let N2 be the NUPN obtained by permuting the places of N1 with πp[N1].
� Let N3 be the NUPN obtained by permuting the transitions of N2 with πt[N2].

Finally, we define can to be the function that maps N to N3.

5.1 Unit Sorting

The unit-permutation function πu[N ] mentioned in Def.22 is defined as follows.

Definition 23 Let N = (P, T, F,M0, U, u0,v, unit ) be a NUPN. For each unit

u, one builds a tuple m(u)
def
= (m1(u), ...,m35(u)) of natural numbers or values

of type D. The components of this tuple are the following:

13
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� m1(u)
def
= depth (u).

� m2(u)
def
= card (subunits (u)).

� m3(u)
def
= card (places (u)).

� m4(u)
def
= card (places (u) ∩M0).

� m5(u)
def
= card (subunits∗(u)).

� m6(u)
def
= card (places∗(u)).

� m7(u)
def
= card (places∗(u) ∩M0).

� m8(u)
def
= height (u).

� m9(u)
def
= width (u).

� m10(u)
def
= 5H({| distance1(p) | p ∈ places (u) |}).

� m11(u)
def
= 5H({| distance2(p) | p ∈ places (u) |}).

� m12(u)
def
= 5H({| distance3(p) | p ∈ places (u) |}).

� m13(u)
def
= 5H({| nb loops(p) | p ∈ places (u) |}).

� m14(u)
def
= 5H({| nb decreasing input transitions(p) | p ∈ places (u) |}).

� m15(u)
def
= 5H({| nb conservative input transitions(p) | p ∈ places (u) |}).

� m16(u)
def
= 5H({| nb increasing input transitions(p) | p ∈ places (u) |}).

� m17(u)
def
= 5H({| nb decreasing output transitions(p) | p ∈ places (u) |}).

� m18(u)
def
= 5H({| nb conservative output transitions(p) | p ∈ places (u) |}).

� m19(u)
def
= 5H({| nb increasing output transitions(p) | p ∈ places (u) |}).

� m20(u)
def
= 5M({| pred nb input places(p) | p ∈ places (u) |}).

� m21(u)
def
= 5M({| pred nb output places(p) | p ∈ places (u) |}).

� m22(u)
def
= 5M({| succ nb input places(p) | p ∈ places (u) |}).

� m23(u)
def
= 5M({| succ nb output places(p) | p ∈ places (u) |}).

� m24(u)
def
= 5M({| pred input distance1(p) | p ∈ places (u) |}).

� m25(u)
def
= 5M({| pred output distance1(p) | p ∈ places (u) |}).

� m26(u)
def
= 5M({| succ input distance1(p) | p ∈ places (u) |}).

� m27(u)
def
= 5M({| succ output distance1(p) | p ∈ places (u) |}).

� m28(u)
def
= 5M({| pred input distance2(p) | p ∈ places (u) |}).

� m29(u)
def
= 5M({| pred output distance2(p) | p ∈ places (u) |}).

� m30(u)
def
= 5M({| succ input distance2(p) | p ∈ places (u) |}).

� m31(u)
def
= 5M({| succ output distance2(p) | p ∈ places (u) |}).

� m32(u)
def
= 5M({| pred input distance3(p) | p ∈ places (u) |}).

� m33(u)
def
= 5M({| pred output distance3(p) | p ∈ places (u) |}).

� m34(u)
def
= 5M({| succ input distance3(p) | p ∈ places (u) |}).

� m35(u)
def
= 5M({| succ output distance3(p) | p ∈ places (u) |}).

The following components are excluded from m(u): m10(u).card, m11(u).card,

14
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..., m18(u).card (because they are all equal to m3(u)); m21(u).card (which is
equal to m20(u).card); m23(u).card (which is equal to m22(u).card); m24(u).card,
m28(u).card, and m32(u).card (which are all equal to m20(u).sum); m25(u).card,
m29(u).card, and m33(u).card (which are all equal to m21(u).sum); m26(u).card,
m30(u).card, and m34(u).card (which are all equal to m22(u).sum); and
m27(u).card, m31(u).card, and m35(u).card (which are all equal to m23(u).sum).

Definition 24 Let N = (P, T, F,M0, U, u0,v, unit ) be a NUPN. The function
πu[N ] mentioned in Def.22 is defined to be any permutation π : U → U such that
(∀u, u′ ∈ U) #u ≤ #u′ ⇒ m(π(u)) � m(π(u′)), where � is the lexicographic
order over tuples; thus, π sorts all units u by increasing values of m(u).

In practice, one can obtain a unique permutation π by extending the tuple m(u)

with an extra component m36(u)
def
= #u. Doing so guarantees that π is a stable

sort, i.e., does not permute indistinguishable units needlessly.

5.2 Place Sorting

The place-permutation function πp[N ] mentioned in Def.22 is defined as follows.

Definition 25 Let N = (P, T, F,M0, U, u0,v, unit ) be a NUPN. For each place

u, one builds a tuple n(p)
def
= (n1(p), ..., n27(p)) of natural numbers or values of

type D. The components of this tuple are the following:

� n1(p)
def
= #(unit (p)).

� n2(p)
def
= distance1(p).

� n3(p)
def
= distance2(p).

� n4(p)
def
= distance3(p).

� n5(p)
def
= nb loops(p).

� n6(p)
def
= nb decreasing input transitions(p).

� n7(p)
def
= nb conservative input transitions(p).

� n8(p)
def
= nb increasing input transitions(p).

� n9(p)
def
= nb decreasing output transitions(p).

� n10(p)
def
= nb conservative output transitions(p).

� n11(p)
def
= nb increasing output transitions(p).

� n12(p)
def
= pred nb input places(p).

� n13(p)
def
= pred nb input places(p).

� n14(p)
def
= succ nb input places(p).

� n15(p)
def
= succ nb input places(p).

� n16(p)
def
= pred input distance1(p).

� n17(p)
def
= pred output distance1(p).
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� n18(p)
def
= succ input distance1(p).

� n19(p)
def
= succ output distance1(p).

� n20(p)
def
= pred input distance2(p).

� n21(p)
def
= pred output distance2(p).

� n22(p)
def
= succ input distance2(p).

� n23(p)
def
= succ output distance2(p).

� n24(p)
def
= pred input distance3(p).

� n25(p)
def
= pred output distance3(p).

� n26(p)
def
= succ input distance3(p).

� n27(p)
def
= succ output distance3(p).

The following components are excluded from n(p): n12(p).card and n13(p).card
(because they are equal to n6(p) + n7(p) + n8(p)); n14(p).card and n15(p).card
(because they are equal to n9(p)+n10(p)+n11(p)); n16(p).card, n20(p).card, and
n24(p).card (which are all equal to n12(p).sum); n17(p).card, n21(p).card, and
n25(p).card (which are all equal to n13(p).sum); n18(p).card, n22(p).card, and
n26(p).card (which are all equal to n14(p).sum); and n19(p).card, n23(p).card,
and n27(p).card (which are all equal to n15(p).sum).

Definition 26 Let N = (P, T, F,M0, U, u0,v, unit ) be a NUPN. The function
πp[N ] mentioned in Def.22 is defined to be any permutation π : P → P such that
(∀p, p′ ∈ P ) #p ≤ #p′ ⇒ n(π(p)) � n(π(p′)), where � is the lexicographic order
over tuples; thus, π sorts all places p by increasing values of n(p).

In practice, an extra component n28(p)
def
= #p can be added to tuple n(p) to

obtain a unique permutation π that is also a stable sort.

5.3 Transition Sorting

The transition-permutation function πt[N ] of Def.22 is defined as follows.

Definition 27 Let N = (P, T, F,M0, U, u0,v, unit ) be a NUPN. For each tran-

sition t, one builds an tuple o(t)
def
= (o1(t), o2(t)) of natural numbers or values of

type D. The components of this tuple are the following:

� o1(t)
def
= 5H({|#p | p ∈ •t |}), noticing that o1(t).card = card (•t).

� o2(t)
def
= 5H({|#p | p ∈ t• |}), noticing that o2(t).card = card (t•).

Definition 28 Let N = (P, T, F,M0, U, u0,v, unit ) be a NUPN. The function
πt[N ] mentioned in Def.22 is defined to be any permutation π : T → T such that
(∀t, t′ ∈ T ) #t ≤ #t′ ⇒ o(π(t)) � o(π(t′)), where � is the lexicographic order
over tuples; thus, π sorts all transitions t by increasing values of o(t).
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In practice, an extra component o3(t)
def
= #t can be added to tuple o(t) to obtain

a unique permutation π that is also a stable sort.

5.4 Unique Sorting

As mentioned above, the reverse implication of Def. 21 is not guaranteed: the
canonization function can, applied to two isomorphic nets, may return different
results. This is especially the case when the nets contain fragments that are lo-
cally symmetric (e.g., circular rings, complete subgraphs, etc.), for which several
permutations exist. In other cases, however, the reverse implication may hold.

Proposition 3 Let N and N ′ be two NUPNs. If each of the three permutations
πu[N ], πp[N1], and πt[N2] mentioned in Def.22 to compute can(N) is unique i.e., if
lexicographic order � over the tuples m, n, and o (see Def. 24, 26, and 28) defines
three total order relations, then N and N ′ are isomorphic iff can(N) = can(N ′).

Proof. Let N = (P, T, F,M0, U, u0,v, unit ) and N ′ = (P ′, T ′, F ′,M ′0, U
′, u′0,v′,

unit ′) be two isomorphic NUPNs. Let (πp, πt, πu) be the three bijections of Def. 7
relating N and N ′. First: for each u ∈ U and i ∈ {1, ..., 35}, one can prove that
mi(u) = m′i(πu(u)) by combining Def 7 and Def. 23; if πu[N ] is unique, then
πu[N ′] is unique too, and the two NUPNs N1 and N ′1 obtained from N and
N ′ by applying πu[N ] and πu[N ′], respectively, are isomorphic and related by
the three bijections (πp, πt, id), where id is the identity function on N. Second:
for each p ∈ P and i ∈ {1, ..., 27}, one can prove that ni(p) = n′i(πp(p)) by
combining Def 7 and Def. 25; similarly, the two NUPNs N2 and N ′2 obtained
from N1 and N ′1 by applying πp[N1] and πp[N ′1], respectively, are isomorphic and
related by the three bijections (id , πt, id). Third: for each t ∈ T and i ∈ {1, 2},
one can prove that oi(t) = o′i(πt(t)) by combining Def 7 and Def. 27; similarly,
the two NUPNs N3 and N ′3 obtained from N2 and N ′2 by applying πt[N2] and
πt[N

′
2], respectively, are related by the three bijections (id , id , id). Therefore,

can(N) = can(N ′).

6 Implementation

We implemented these ideas in a software tool chain that combines: (i) tools
specifically developed for the purpose of the present article; (ii) tools already
developed at Inria Grenoble, which we extended for the same purpose; and (iii)
third-party tools that we reused without modification.

Our tool chain takes as input a collection of nets and determines which ones
are isomorphic. It accepts Petri nets and NUPNs given in the standard PNML
format [11] or in the “.nupn” format5 (conversion from PNML to “.nupn” format
can be done using the Pnml2nupn translator6). Our tool chain implements all

5 https://cadp.inria.fr/man/nupn.html
6 http://pnml.lip6.fr/pnml2nupn
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the approaches presented in Sections 3–5, ordered by increasing complexities; the
tool chain stops as soon has all the duplicates in a collection have been found.
All steps of the tool chain have been carefully validated using miscellaneous
techniques that cannot be presented here by lack of space.

6.1 File Deduplication

The first and simplest way to search for duplicates in a collection of nets is to
search for identical files. Among the many tools for this purpose, we selected
Fdupes7 which is a fast, reliable Unix command-line tool; the alternative (seem-
ingly faster) tool Jdupes8 is also a good option.

Obviously, this approach is very limited. For instance, inserting an extra space
in a PNML file may prevent two isomorphic nets from being detected this way.
There is thus a clear trade-off between the flexibility of a net format and the abil-
ity to detect duplicates using mere file comparison. In this respect, the “.nupn”
format is preferable to PNML because it is more stringent: places, transitions,
and units are named using natural numbers instead of alphanumeric identifiers;
lexical tokens must be separated using exactly one space; blank lines are for-
bidden, as well as trailing spaces before end of lines, etc. For this reason, our
toolchain employs the “.nupn” format rather than PNML. In practice, trans-
lation from PNML to “.nupn”, followed by an invocation of Fdupes, is often
sufficient to detect duplicates that do not involve permutations.

6.2 Pre-canonization

Even if the “.nupn” format is more stringent than PNML, it still offers a degree
of flexibility that allows a given net to be expressed under different forms, even in
absence of any permutation of places, transitions, or units. To address this prob-
lem, the Nupn Info tool9 has been extended with a “-precanonical-nupn”
option that takes as input a net in “.nupn” format and produces as output the
same net in which: (i) all places (resp. transitions and units) are renumbered
starting from zero; (ii) all lists of places (resp. transitions and units) are sorted
by increasing numbers; (iii) all labels of places (resp. transitions and units) are
deleted; and (iv) all pragmas are removed. After putting all nets under such
pre-canonical form, Fdupes is invoked to detect duplicate files.

6.3 Signatures

We extended the Cæsar.bdd tool10 with a “-signature” option that computes
the signature (as defined in Sect. 4) of a net given in “.nupn” format. Written

7 https://github.com/adrianlopezroche/fdupes
8 https://github.com/jbruchon/jdupes
9 https://cadp.inria.fr/man/nupn_info.html
10 https://cadp.inria.fr/man/caesar.bdd.html
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in C, the computation is fast (0.12 second per net on average) and always suc-
ceeds. A shell script identifies classes of nets with the same signatures.

To check the correctness of signatures, we developed a Python script that,
given a NUPN N = (P, T, F,M0, U, u0,v, unit ), generates random permutations
πp : P → P , πt : T → T , and πu : U → U . Since the “.nupn” format requires
that places of the same unit have contiguous numbers in a range, each gener-
ated function πp only permutes places within their units, i.e., for each p ∈ P ,
unit (πp(p)) = unit (p), without loss of generality. The Nupn Info tool (with
options “-place-permute”, “-transition-permute”, and “-unit-permute”)
is then invoked on N to produce as output a permuted NUPN; when applying
πp, πt and πu to permute P , T , and U , Nupn Info updates F , M0, u0, v,
and unit to enforce the constraints of Def. 7. Finally, we validated Prop. 2 by
checking, on tenths of thousands of NUPNs and tenths of millions of random
permutations, that the signatures of the original and permuted nets are identical.

6.4 Canonization

We further extended the Cæsar.bdd tool with three new options
(“-unit-order”, “-place-order”, and “-transition-order”) that compute,
for a net given in “.nupn” format, all the tuples m(u), n(p), and o(t) defined
in Sect. 5. Cæsar.bdd then invokes the Unix “sort” command to sort these
tuples lexicographically and performs, for the “-unit-order” option only, fur-
ther calculations that may help distinguishing units having the same m(u) value.
An Awk script is then invoked to transform these results into permutations of
units, places, or transitions, and report whether such permutations are unique
or not. The input net and the three permutations are then given to Nupn Info,
which produces as output a canonized net. A new option “-canonical-nupn”
that automates all these steps, including the three invocations to Cæsar.bdd,
was added to Nupn Info. Written in C and Awk, canonization is generally
fast (8 seconds per net on average) but took, in the two worst cases, 8 minutes
and 90 minutes on two nets of the Model Checking Contest having the largest
number of places (143,908 and 537,708 places respectively). Finally, Fdupes is
invoked to detect file duplicates in the set of canonized nets.

To increase confidence in our implementation of canonization, we checked on
each net that canonization is idempotent, meaning that two successive invo-
cations of Nupn Info with its “-canonical-nupn” option produce the same
output as one single invocation. Also, for tenths of thousands of NUPNs
N = (P, T, F,M0, U, u0,v, unit ), we generated tenths of millions of random per-
mutations πp, πt, and πu, and verified that: (i) for each i ∈ {1, ..., 35}, for each
u ∈ U , mi(u) = m′i(πu(u)), where m′ is the tuple of Def. 23 computed on the
net obtained from N by applying πu, πp, and πt; (ii) for each i ∈ {1, ..., 27}, for
each p ∈ P , ni(p) = n′i(πp(p)), where n′ is the tuple of Def. 25 computed on
the net obtained from N by applying πp and πt; and (iii) for each i ∈ {1, 2}, for
each t ∈ T , oi(t) = o′i(πt(t)), where n′ is the tuple of Def. 27 computed on the
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net obtained from N by applying πt; the nets are permuted using Nupn Info
and the tuples m, m′, n, n′, o, and o′ are computed using Cæsar.bdd.

6.5 Graph Isomorphism

As mentioned in Sect. 3.2, we selected the Traces software, which is deemed
to be a reference tool for graph isomorphism. We developed a Python script
that converts a net in “.nupn” format to a colored graph (see Sect. 3), and
then invokes Traces to put this graph under canonical form. To process a
collection, our script is first invoked on each net of the collection; Fdupes is
then used to detect duplicate files among the canonized graphs. This detection
may be incomplete since Traces sometimes aborts or times out on large graphs.

We validated our implementation as follows: when two nets N and N ′ have been
found isomorphic via their associated graphs GN and GN ′ , Traces produces two
bijections π and π′ that map the vertices of GN and GN ′ to the vertices of their

respective canonical graphs (which are identical). Let πv
def
= π′−1 ◦ π; from πv,

we compute three bijections πp, πt, and πu as explained in the proof of Prop. 1,
easily adapted to our optimized translation mentioned in Sect. 3.2; we finally
check that (πt ◦ πp ◦ πu)(N) = N ′. We also cross-checked the results of the
net-canonization approach with those of the graph-isomorphism approach by
validating Def. 21, i.e., if two NUPNs N and N ′ satisfy can(N) = can(N ′), then
their associated graphs GN and GN ′ should be found isomorphic by Traces
(when this tool can handle them).

6.6 Tool Chain

The five approaches of Sects. 6.1 to 6.5 are successively applied, in this order.
Each approach only considers the problems not solved by prior approaches, and
one stops as soon as all problems have been solved. Figure 1 depicts the appli-
cation of our tool chain to a collection of 10 nets named from ‘a’ to ‘j’. Some ap-
proaches (identical files, pre-canonization, canonization, and graph isomorphism)
detect certain nets that are isomorphic: we represent this information using solid
boxes that gather isomorphic nets. Other approaches (signatures, canonization
when the assumptions of Prop. 3 hold, and graph isomorphism) detect certain
nets that are not isomorphic: we represent this information by partitioning the
collection into dashed boxes (using the partition-refinement idea), such that all
nets belonging to distinct dashed boxes are pairwise non-isomorphic.

7 Experiments

We assessed our tool chain on four collections of nets listed in Table 1 below:
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Figure 1: Pipelined application of our 5 approaches to a collection of 10 nets

collection 1 collection 2 collection 3 collection 4
avg. max. avg. max. avg. max. avg. max.

#places 15.4 200 2,801.5 537,708 345.8 131,216 740.8 131,216

#trans. 11.8 51 10,798 1,070,836 7,998.1 16,967,720 15,645 16,967,720

#arcs 34.2 400 83,384 25,615,632 71,217.9 146,528,584 113,102.9 146,528,584

#units — — 1,970 537,709 123.4 78,644 270.4 78,644

height — — 15.4 2,891 4.3 2,891 6.3 2,891

width — — 1,959.1 537,708 117.6 78,643 259.9 78,643

Table 1: Numerical statistics about the four net collections used in experiments

� Collection 1 : 244 Petri nets (without NUPN structure) made available by
the University of Zielona Góra11;

� Collection 2 : 1387 Petri nets obtained by taking all the (non-colored) models
used for the 2022 edition of the Model Checking Contest12; 44% of these nets
have initial places with more than one tokens and/or arcs with multiplicity
greater than one, whereas 50% of these nets are non-trivial unit-safe NUPNs;

� Collection 3 : 16,200 unit-safe NUPNs from diverse origins, containing few
duplicates, gathered at Inria Grenoble to be used in scientific experiments;

� Collection 4 : 241,657 unit-safe NUPNs (135 GB of disk space) produced at
Inria Grenoble by removing, using Fdupes, all identical files from a larger
set of 840,838 NUPNs that was obtained after extending collection 3 with
additional NUPNs and applying numerous permutations to all these nets;
therefore, collection 4 contains many duplicates (i.e., isomorphic NUPNs).

As mentioned above, our experiments were performed on the Grid’5000 testbed,
each server having an Intel Xeon Gold 5220 (2.2 GHz) processor, 96 GB RAM,
and running Linux Debian 11 with a shared NFS filesystem. To reduce the
variability in results, each server was executing only one experiment at a time.

11 http://www.hippo.iie.uz.zgora.pl (retrieved on January 23, 2023)
12 http://mcc.lip6.fr
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collection 1 collection 2 collection 3 collection 4
dupl. uniq. unkn. dupl. uniq. unkn. dupl. uniq. unkn. dupl. uniq. unkn.
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

identical files 4.10 0.00 95.90 0.00 0.00 100.0 0.00 0.00 100.0 0.00 0.00 100.0

pre-canonizat. 4.10 0.00 95.90 — — — 0.17 0.00 99.83 22.35 0.00 77.65

signatures 4.10 86.88 9.02 0.00 98.56 1.44 0.17 92.87 6.96 22.35 0.12 77.53

canonization 5.74 91.39 2.87 0.58 98.84 0.58 2.26 94.87 2.87 79.44 4.74 15.82

graph isomor. 6.97 93.03 0.00 0.58 99.42 0.00 2.79 97.20 0.01 90.05 9.01 0.94

Table 2: Results obtained by our tool chain on the four net collections

The results of applying our tool chain to these four collections are displayed in
Table 2 below. After each step of the tool chain, we give three figures: dupl. is
the percentage of nets that can be removed, since they were found isomorphic to
other nets that will be kept in the collection; uniq. is the percentage of nets found
to be unique in the collection after removing all duplicates; unkn. is the remaining
percentage of nets whose status is not yet determined13. Notice that the values
of dupl. and uniq. in Table 2 increase from top to bottom, as each line builds
upon the cumulated successes reported in upper lines; thus, the contribution of
each approach can be obtained as the difference between the percentage given
on the corresponding line and the percentage given on the previous line.

The main finding is that our tool chain was conclusive for 99%–100% of each
collection. More detailed remarks can be made:

� The simple application of Fdupes detected 10 duplicate files in collection 1.
� Pre-canonization detected 54,018 duplicates in collection 4; pre-canonization

was not applied to collection 2 in order to preserve those “.nupn”-format
pragmas giving information about multiple arcs and multiple initial tokens.

� Signatures massively identified unique nets in collections 1–3, but had no
impact on collection 4, in which each net has at least one duplicate.

� Canonization was effective, both in identifying duplicate and unique nets.
� Use of graph isomorphism (with a one-hour timeout) clarified the case of

most nets whose status remained unknown after canonization.
� Interestingly, our tool chain detected 17 duplicates in collection 1 and eight

duplicates in collection 2; for the latter, one duplicate is certain (the corre-
sponding nets are one-safe) and seven are uncertain, but very likely.

8 Conclusion

Starting from the concrete problem of finding duplicate models in large collec-
tions of Petri nets or NUPNs, we devised three approaches for the detection
of isomorphic nets: reduction to graph isomorphism, net signatures (an over-

13 Our success statistics could be slightly improved by considering that, among each set of
n > 0 nets with undetermined status, there is at least one unique net.
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approximation), and net canonization (an under-approximation).

These approaches, which draw on the careful examination of thousands of con-
crete benchmarks, have been fully implemented in an efficient tool chain, the
successive steps of which are ordered by increasing complexity. To process large
collections of nets, the calculations can easily be distributed on computer clus-
ters or grids, as most steps deal with individual nets. Only the detection of
identical files is not easy to parallelize, but did not cause bottlenecks, since the
tool we selected is fast enough.

We assessed our tool chain on four collections ranging from 244 to 241,657 nets
and containing either few or many duplicates. We observed a success rate of
99%–100% in the detection of isomorphic nets.

The present work could be pursued in, at least, two directions: (i) one could
try shortening the component lists used in signatures and canonization to retain
only those components that are most effective in practice; (ii) one could extend
the proposed approaches to support wider classes of nets, such as non-safe Petri
nets (these are currently handled using over-approximations) and colored nets.
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