Reference Manual of the LNT to LOTOS Translator

(Formerly: Reference Manual of the LOTOS NT to LOTOS Translator)
(Version 7.3)

David Champelovier, Xavier Clerc, Hubert Garavel, Yves Guerte, Frédéric Lang, Christine McKinty, Vincent Powazny, Wendelin Serwe, and Gideon Smeding

INRIA/VASY - INRIA/CONVECS

January 12, 2024

(C) INRIA 2005-2024- All rights reserved - Tous droits réservés

Note: this PDF document contains hyperlinks written in grey, whereas the normal text is in black.

Abstract

This document defines the Lnt language (version 7.3), which is a simplified variant of E-Lotos (International Standard ISO-15437:2001). In a nutshell, LnT provides the same expressiveness as Lotos, but has more user-friendly and regular notations borrowed from imperative and functional programming languages. In particular, unlike Lotos, the data type and process parts of Lnt share many similar constructs, leading to a more uniform and easy-to-learn language than Lotos. This document defines the syntax, static semantics, and dynamic semantics of LNT, and presents its associated tools: the Lpp preprocessor, the Lnt2Lotos translator, and the Lnt. Open script that interfaces with the Open/CÆSAR framework so as to enable Lnt specifications to be analyzed using the Cadp toolbox.

Contents

1 Introduction 11
1.1 Goals 11
1.1.1 A brief history of Lotos and E-Lotos 11
1.1.2 The Lotos NT language 11
1.1.3 The Lnt language 12
1.1.4 LnT-to-Lotos translation 12
1.2 Document structure 13
2 Overview of the translation from LNT to LOTOS 15
2.1 Modules and principal module 15
2.2 Root process 15
2.3 Tools for translation of LnT into Lotos 15
2.4 File types and extensions 16
2.5 Including external C code 16
2.6 LNT modularity and file separation 17
2.7 Naming translation rules 18
2.8 Environment variables 18
2.9 Semantic checks 19
3 Notations and lexical elements 21
3.1 Meta-language 21
3.2 Comments 21
3.3 Keywords 21
3.4 Identifiers 22
3.5 Rich Term Syntax 23
3.6 Natural numbers 24
3.7 Integer numbers 24
3.8 Real numbers 25
3.9 Characters 25
3.10 Strings 26
3.11 Prefix and infix calls of constructors and functions 27
4 Module definitions in LNT 29
4.1 Notations 29
4.2 Syntax 29
4.3 Module definitions 31
4.4 Module pragmas 31
4.5 Constructors, functions, procedures, and processes 33
5 Type definitions in LNT 35
5.1 Notations 35
5.2 Syntax 35
5.3 Type definitions 37
5.4 Type expressions 37
5.5 Constructor definitions 38
5.6 Type pragmas and constructor pragmas 39
5.7 Predefined function declarations 41
5.8 Predefined function pragmas 47
5.9 Module "with" clauses 47
6 Channel definitions in LnT 49
6.1 Notations 49
6.2 Syntax 49
6.3 Channels 50
6.4 Channel profiles 50
6.5 Gate and exception events 50
6.6 Predefined events 51
6.7 Compatible events 52
7 Function definitions in Lnt 53
7.1 Notations 53
7.2 Syntax 53
7.3 Resolution of syntactic ambiguities 57
7.4 Variables 59
7.5 Function definitions 59
7.6 Function pragmas 60
7.7 Lists of formal events 62
7.8 Lists of formal parameters 62
7.9 Modes of formal parameters 63
7.10 Preconditions and postconditions 64
7.11 Statements 65
7.11.1 Null statement 65
7.11.2 Sequential composition 66
7.11.3 Return statement 66
7.11.4 Exception raise 66
7.11.5 Assertion 66
7.11.6 Array element assignment 66
7.11.7 Procedure call 67
7.11.8 Variable declaration 69
7.11.9 Case statement 70
7.11.10 If statement 71
7.11.11 Breakable loop statement 72
7.11.12 Unbreakable loop statement 72
7.11.13 Breakable while statement 72
7.11.14 Unbreakable while statement 72
7.11.15 Breakable for statement 73
7.11.16 Unbreakable for statement 73
7.11.17 Break statement 73
7.11.18 Use statement 73
7.11.19 Access statement 74
7.12 Patterns 74
7.12.1 Variable binding 74
7.12.2 Pattern matching 75
7.12.3 List patterns 75
7.13 Value expressions 76
7.13.1 Variable 76
7.13.2 Result 76
7.13.3 Constructor call 76
7.13.4 Function call 77
7.13.5 Field selection 77
7.13.6 Field update 77
7.13.7 Array element access 78
7.13.8 Type coercion 78
7.13.9 List expressions 78
8 Process definitions in Lnt 81
8.1 Notations 81
8.2 Syntax 81
8.3 Resolution of syntactic ambiguities 83
8.4 Process definition 84
8.5 Process pragmas 84
8.6 Lists of formal events 85
8.7 Lists of formal parameters 86
8.8 Behaviours 86
8.8.1 Stop 87
8.8.2 Procedure call 87
8.8.3 Only-if statement 87
8.8.4 Nondeterministic assignment 88
8.8.5 Exception raise 88
8.8.6 Assertion 88
8.8.7 Process call 88
8.8.8 Communication 92
8.8.9 Nondeterministic choice 93
8.8.10 Parallel composition 93
8.8.11 Hiding 94
8.8.12 Disruption 95
A Syntax summary of the Lnt language (version 7.3) 97
A. 1 Extended BNF notation used in this appendix 97
A. 2 Identifiers 97
A. 3 Modules 98
A. 4 Types 99
A. 5 Channels 100
A. 6 Functions 101
A. 7 Instructions and statements 102
A. 8 Patterns 103
A. 9 Value expressions 104
A. 10 Processes 104
A. 11 Behaviours 104
B Formal semantics of the Lnt language (version 7.3) 107
B. 1 Preliminaries 107
B.1.1 SOS rules 107
B.1.2 Values and stores 108
B. 2 Dynamic semantics of expressions 109
B.2.1 Definitions 109
B.2.2 Variable 109
B.2.3 Constructor call 109
B.2.4 Built-in function call 110
B.2.5 User-defined function call 110
B. 3 Dynamic semantics of patterns 110
B.3.1 Definitions 110
B.3.2 Variable 111
B.3.3 Wildcard 111
B.3.4 Aliasing 111
B.3.5 Constructed pattern 112
B.3.6 Constant pattern 112
B.3.7 Conditional pattern 112
B.3.8 Alternative 113
B. 4 Dynamic semantics of offers 113
B.4.1 Definitions 113
B.4.2 Send offer 114
B.4.3 Receive offer 114
B. 5 Dynamic semantics of statements 114
B.5.1 Definitions 114
B.5.2 Null 115
B.5.3 Sequential composition 115
B.5.4 Return 116
B.5.5 Assignment 116
B.5. 6 Procedure call that returns a value 116
B.5.7 Procedure call that does not return a value 117
B.5.8 Case statement 117
B.5.9 Loop break 117
B.5.10 Breakable loop 118
B. 6 Dynamic semantics of behaviours 118
B.6.1 Definitions 118
B.6.2 Stop 119
B.6.3 Null 120
B.6.4 Sequential composition 120
B.6.5 Deterministic assignment 120
B.6.6 Nondeterministic assignment 121
B.6.7 Procedure call that returns a value 121
B.6.8 Procedure that does not return a value 121
B.6.9 Case behaviour 121
B.6.10 Loop break 122
B.6.11 Breakable loop 122
B.6.12 Process call 123
B.6.13 Communication 124
B.6.14 Nondeterministic choice 124
B.6.15 Parallel composition 124
B.6.16 Hiding 125
B.6.17 Disrupting 126
B. 7 Discussion on the dynamics semantics 126
C Predefined functions 129
C. 1 Functions on Booleans 129
C. 2 Functions on natural numbers 130
C. 3 Functions on integer numbers 130
C. 4 Functions on real numbers 130
C. 5 Functions on characters 131
C. 6 Functions on strings 131
D Examples 133
D. 1 Lnt types 133
D.1.1 Enumerated type 133
D.1.2 Record type 134
D.1.3 List type 134
D.1.4 Array types 135
D. 2 Lnt functions 136
D.2.1 Manipulating record fields 136
D.2.2 The factorial function 136
D. 3 Lnt processes 138
D.3.1 Hello World program 138
D.3.2 Pattern matching in a rendezvous 138
D.3.3 Array types 139
D.3.4 The Alternating Bit protocol 140
E Differences between Lnt (Lnt2Lotos) and Lotos NT (Traian) 143
E. 1 Lnt vs Lotos NT 143
E. 2 Keywords 143
E. 3 Module definitions 144
E. 4 Type definitions 144
E. 5 Function definitions 144
E. 6 Process definitions 145
F LPP translation schemes 147
F. 1 Translation of LNT natural numbers to Lotos 147
F. 2 Translation of Lnt integer numbers to Lotos 148
F. 3 Translation of Lnt real numbers to Lotos 149
F. 4 Translation of Lnt characters to Lotos 150
F. 5 Translation of Lnt strings to Lotos 150
G Change history 153
Bibliography 155

Chapter 1

Introduction

1.1 Goals

This document defines the LNT language for specifying safety-critical systems.

1.1.1 A brief history of Lotos and E-Lotos

The Lotos language [ISO89] was designed by experts in FDT (Formal Description Techniques) at Iso during the years 1981-1988. The objective was to design an expressive, well-defined, well-structured, and abstract language.
Lotos has been used to describe numerous complex systems formally. A number of tools have been developed for Lotos, covering user needs in the areas of simulation, compilation, test generation, and formal verification.

However, Lotos actually has certain limitations, notably that the data types do not meet users' needs and the inability to specify real-time constraints.
For these reasons, Iso/IEC undertook in 1993 a revision of the Lotos standard. This revision completed in 2001 with a new International Standard [ISO01]. The revised language is called E-Lotos (for Extended-Lotos). The enhancements of Lotos are intended to remove known limitations of the language concerning expressiveness, abstraction and structuring capabilities, and user friendliness.

1.1.2 The Lotos NT language

Lotos NT $\left[\mathrm{SCC}^{+} 23\right]$ is a language that follows the main concepts of E-Lotos and offers other features, in order to provide versatility, as well as compilation and verification efficiency.
Lotos NT syntax and semantics are described in the Lotos NT User Manual [SCC^{+}23], which exposes the main differences between Lotos NT and E-Lotos.
One major advantage of the Lotos NT language is that the style is fully imperative in syntax and semantics, unlike E-Lotos which has functional semantics.
Moreover, the purpose of Lotos NT is to be both a really concise language for small specifications (the so-called programming in the small level) and a well-suited language for large specifications, with the ability to structure a project for team work (the so-called programming in the large level). While

E-Lotos is good only at the second point, Lotos NT tries to address both needs.
A compiler named Traian ${ }^{1}$ has been developed by the Vasy and Convecs teams. It takes as input a Lotos NT specification as defined in $\left[\mathrm{SCC}^{+} 23\right]$ and produces C code. The current version of Traian only compiles the data part of the Lotos NT language, and not the module or behaviour parts.

1.1.3 The Lnt language

In 2005, the VASY team undertook, as Bull's request, the development of a translator from Lotos NT to Lotos. This translator enabled one to reuse the Lotos-to-C compilers (namely, CÆSAR.adt and Cesar) available in the CADP toolbox ${ }^{2}$, and was therefore radically different from Traian, which directly translated Lotos NT into C. The development of this translator progressively expanded in the framework of the FormalFame ${ }^{3}$ and Multival ${ }^{4}$ industrial projects.
When the development of Lpp and Lnt2Lotos started in 2005, the initial goal was to reuse the same language as Traian. However, while developing the tools and gaining industrial feedback from Bull, extensions and restrictions have been brought to the Lotos NT language of [$\mathrm{SCC}^{+} 23$].
Between 2005 and 2014, the name "Lotos NT" has been used for both languages supported by Traian and the new translator to Lotos. Progressively, the name "LnT" has also been used (as a shorthand for Lotos NT) to designate the language accepted by the new translator. However, this happened to be confusing for new users.
Between 2014 and October 2023, "Lotos NT" was exclusively used to refer to the input language of Traian, whereas "Lnt" became the unique official name of the input language of Lnt2Lotos.
As of October 2023, after making a significant effort to reduce the differences between Lotos NT and Lnt, "Lnt" is used to designate both versions of the language, except when spotting the few remaining differences (in particular in Appendix E).
A retrospective overview of the evolution of LOTOS and its descendents E-Lotos, Lotos NT, and Lnt can be found in [GLS17].
The rationale for the semantic foundations of LNT are discussed in the four following publications: [Gar95] (gate typing), [GS96] (exceptions), [GS99] (parallel composition), and [Gar15] (sequential composition).

1.1.4 LNT-to-LOTOS translation

This document describes the LnT language as accepted by the LNT-to-Lotos translation tools Lnt. Open, Lnt2Lotos, and Lpp.

The role of the Lnt. Open, Lnt2Lotos, and Lpp tools that are presented in this document is:

- to translate specifications written in the Lnt language into Lotos code that can be taken as input by the CADP tools
- to allow Lotos specifications to benefit from the new extended notations, called "Rich Term Syntax", introduced in LNT

[^0]The Lpp tool, where Lpp stands for "Lnt PreProcessor", helps translating into Lotos the Lnt notations for numbers, lists, etc., which are notoriously difficult to write in standard Lotos.

1.2 Document structure

This document first explains how to use the translation tools Lnt. Open, Lnt2Lotos, and Lpp to apply the CADP verification toolbox to LNT specifications (Chapter 2).
Then, it focuses on the Lpp tool, which enables the use of extended notations in Lotos and Lnt (Chapter 3).

Chapters 3 to 8 describe the syntax and semantics of the Lnt language: its basic features (lexical structure, reserved keywords, etc.), the definition of modules (Chapter 4), the definition of data types (Chapter 5), the definition of functions (Chapter 7), and last, but not least, the definition of channels, behaviours, and processes (Chapter 8).
Appendix A contains a summary of the Lnt syntax. by Lnt2Lotos.
Appendix B provides a formal semantics for Lnt.
Appendix C contains a list of all the predefined functions.
A set of examples is given in Appendix D. They show how to define and use different kinds of LnT types, and explain how to use Lnt types in Lotos specifications, and Lotos sorts in Lnt programs. They also show how to define Lnt functions.
Appendix E contains a summary of the differences between the Lnt language accepted by Lnt. Open, Lnt2Lotos, and Lpp, and the Lotos NT language accepted by Traian.

Appendix F provides detailed examples showing how Lnt constants are translated to Lotos by the LPP preprocessor.
Appendix G gives the history of versions and changes for the LnT language and the associated tools.

Chapter 2

Overview of the translation from Lnt to Lotos

This chapter presents the translation of Lnt into Lotos and the related tools. For a detailed description of the tools, their options and usage, please refer to their manual pages.

2.1 Modules and principal module

A typical LnT specification consists of some LnT modules written in files with extension ". lnt". LnT modules can import other LnT modules, as explained in subsection 2.6. The module that transitively imports all other modules of the specification is called the principal module.

2.2 Root process

One of the modules must contain the root process, i.e., a process that is in general named "MAIN" unless the name of this process is specified on the command line using the "-root" option.
The root process is usually located in the principal module, but this is not mandatory.

2.3 Tools for translation of Lnt into Lotos

For details of how to use these tools, see their manual pages.

- Lnt. Open is a script providing a connection between Lnt2Lotos and the Open/Cesar environment. The script automates the conversion of Lnt programs to Lotos code, by automatically calling Traian Lpp, Lnt2Lotos, Cesar.adt, Lnt_check, and finally Cesar. Open. See the Lnt. Open manual page for details of its features, including, notably, multi-module compilation.
Lnt. Open takes as input the principal module of an Lnt specification and an Open/CÆsAR application program. Lnt. Open first translates the complete Lnt specification (i.e., the principal module and all included modules) into Lotos, compiles the generated Lotos specification,
and finally calls the Open/CÆSAR application program. Thus Lnt. Open tries to automate and hide the translation steps as much as possible.
Lnt. Open is the recommended tool for using Lnt specifications in conjunction with Cadp.
- Traian is a compiler from Lnt to C, whose front-end is used to perform advanced semantic analyses of the input LnT specification, providing useful error and warning messages. The C code generation is deactivated when Traian is called from Lnt. Open.
- Lpp expands the Rich Term Syntax notations in an Lnt source file into normal Lnt notation that can be handled by Lnt2Lotos.

The Rich Term Syntax extensions are defined in Chapter 3.
The input file contains user-written LnT code, possibly with some extended notations.
The output file contains the resulting code translated from the input file.

- Lnt2Lotos translates the Lnt program (pre-processed by Lpp) into Lotos.

The input file must be a valid LnT program according to the specifications given in Chapters $3,4,5,7$, and 8 .
The output file contains the resulting Lotos code translated from the input file.

2.4 File types and extensions

Each LnT module is translated into three output files:

- A Lotos library (written in a file with extension ". lib") or, in case of the principal module, a Lotos specification (written in a file with extension ".lotos")
- A".f" file
- A".t" file

The Lnt. Open tool automates the translation of an Lnt specification into Lotos and the connection to the Open/Cesar interface of CADP.
An example of a project using the CADP verification tools to analyze a set of LNT modules is shown in Figure 2.1.

2.5 Including external C code

Optional external C code can be provided to Lnt2Lotos in a ".fnt" file for functions or a ".tnt" file for data type definitions (these files play for Lnt2Lotos the same role as the ".f" and ".t" files for CÆsAR and CÆSAR.adt). The ".fnt" file must contain the line

$$
\text { \#define LNT2LOTOS_EXPERT_FNT } 7.3
$$

The ".tnt" file must contain the line
\#define LNT2LOTOS_EXPERT_TNT 7.3

Figure 2.1: Using Lnt. Open to apply an Open/CeSAR application to an Lnt specification

These files are read by Lnt2Lotos and the contents are included in the generated ".f" or ".t" files. The names of all the files that define a module (the ". lnt" file and its optional ".tnt" and ".fnt" files) must be written in exactly the same way, including matching in case.

The version number tag, 7.3, is checked by Lnt2Lotos in the ".fnt" and ".tnt" files and by Cesar.adt in the ".f" and ".t" files.

2.6 LNT modularity and file separation

Lnt is more modular than Lotos: each Lnt file contains exactly one module definition, and both the file and the module must have the same name. Letter case is not significant: a module example can indifferently be defined in a file named Example.lnt, example.lnt or EXAMPLE.lnt.

However, any import of the module must use the precise name of the file containing the module (respecting lower and upper case exactly).
A module M can import other modules MO, ..., Mn as follows:

```
module M (MO, ..., Mn) is
    -- module expression
    . . .
end module
```

In such a module M, all definitions of MO, M1, ... and Mn are visible and can be used in the definitions in M.

Lnt2Lotos handles nested includes by importing all the modules directly into the auxiliary file of the principal module. For example, if principal module "X.lnt" directly imports modules "Y.lnt", the auxiliary file "X.f" will include the file "Y.f". The auxiliary ".t" file is generated using the same method as the ".f" file. It also automatically includes "LNT_V1.h", so this must not be included in the hand-written ".fnt" or ".tnt" files. Lnt2Lotos detects and avoids multiple inclusions of the
same code.
The included modules are searched first in the directory of the principal module, and then in the directory "\$LNT_LOCATION/lib". This allows the existence of a collection of predefined LNT libraries. Current examples of such libraries can be found in "\$CADP/lib/BIT.lnt" and "\$CADP/lib/OCTET.lnt".
In future releases, modules will import interfaces, which are the visible parts of
modules. In the current release, no distinction is made between interfaces and
modules: all definitions of a module (types, functions, channels, and processes)
are considered visible.

2.7 Naming translation rules

Lnt2Lotos respects the following rules when translating Lnt to Lotos:

1. An Lnt file or file.lnt is translated into a Lotos FILE whose name is obtained by uppercasing the source file name and changing its extension to ".lib" (or ".lotos" for the principal module).
2. An Lnt module is translated into a Lotos type with the same name.
3. An Lnt type is translated into a Lotos sort with the same name.
4. An Lnt type constructor is translated into an LNT constructor operation with the same name.
5. An Lnt function that returns a value and has neither "out" nor "in out" parameters, or that returns no value and has at most one "out" or "in out" parameter is translated into a Lotos function with the same name. Otherwise, the LNT function is translated into several Lotos functions, whose names are unspecified.

Moreover, if a type or function name would result in a clash with a Lotos keyword, then the name is prefixed with respectively "TYPE__" or "FUNC__".

2.8 Environment variables

The \$LNT_LOCATION shell environment variable should refer to the LNT2LOTOS installation directory. If this variable is not defined, the value of \$CADP is used.
The environment variable \$PATH should be modified in order to include the directories \$LNT_LOCATION/bin. '\$CADP/com/arch' and \$LNT_LOCATION/com.

The files generated by Lnt2Lotos and Lpp are stored in a separate directory, so that there is no confusion between the source code written by the user and the generated code.
The \$LNTGEN environment variable should specify the path to this directory. Note that, if this path is relative to the source code directory, the same environment variable can be used for several projects.
If \$LNTGEN is undefined in the current environment, "./LNTGEN" is used instead.
If the resulting path does not point to an existing directory, Lnt2Lotos and Lpp try to create it. If the creation fails, they issue an error message and stop.

2.9 Semantic checks

In the static semantic rules given in Chapters $4,5,6,7$, and 8 , the following notations are used:

- [checked by Lnt2Lotos] means that an error message can be raised at translation time by Lnt2Lotos.
- [checked by CesAR/CesAR.ADT] means that an error message can be raised by CÆsar/Cesar.adt when compiling the Lotos code generated by Lnt2Lotos.
- [checked at runtime] means that an error message may be raised when the generated Lotos code is executed.

Chapter 3

Notations and lexical elements

This chapter describes the lexical structure of the Lnt language.

3.1 Meta-language

In this manual, to specify the concrete syntax of Lnt, we use BNF (Backus-Naur Form) grammars extended with the following notations:

- ε denotes the empty string
- [...] is the optional operator (0 or 1 instance)
- $y_{0} \ldots y_{n}$ is the concatenation of one or more y characters
- $y_{1} \ldots y_{n}$ is the concatenation of zero or more y characters
- y_{0}, \ldots, y_{n} is the concatenation of one or more y characters separated by commas
- y_{1}, \ldots, y_{n} is the concatenation of zero or more y characters separated by commas

3.2 Comments

In addition to Lotos-like block comments of the form "(* text *)", single-line comments of the form "-- text" can be used in Lnt. For the latter, all the text from the characters "--" to the end of the line is ignored.
Lnt2Lotos removes first the block comments, then the line comments, allowing line comments to be used within block comments.

3.3 Keywords

All LNT keywords must be written using lowercase letters. The list of LnT keywords is the following:

access	alt	and	any	array	as	assert
break	by	case	channel	disrupt	div	else
elsif	end	ensure	eval	for	function	hide
if	in	is	list	loop	mod	module
null	of	only	or	out	par	process
raise	range	rem	require	result	return	select
set	sorted	stop	then	trap	type	use
var	where	while	with	xor		

The identifiers of types, functions without "out" and "in out" parameters, processes, and gates present in the source LnT program are kept unchanged in the generated Lotos program. Therefore, if such identifiers are Lotos keywords, then Lnt2Lotos prints an error message rather than generating syntactically incorrect code. As a reminder, the list of Lotos keywords is the following (those written in italic font are also keywords of LNT):

accept	actualizedby	any	behavior	behaviour	choice
endlib	endproc	endspec	endtype	eqns	exit
for	forall	formaleqns	formalopns	formalsorts	hide
i	in	is	let	library	noexit
of	ofsort	opnnames	opns	par	process
renamedby	sortnames	sorts	specification	stop	type
using	where				

Note: In standard Lotos, the token "i", which represents the internal gate (see Section 6.6), is a reserved keyword; it is thus impossible for the user to declare any identifier named "i", even if this identifier does not represent an event. In Lnt, "i" is not a reserved keyword, but a predefined event identifier: it can thus be used without any restriction for naming LNT modules, types, constructors, channels, functions, variables, etc. However, "i" retains its special meaning when used as an event: thus, it is forbidden to declare an event named " i ", to pass " i " as an actual event parameter in a process call, or to require synchronization on " i " in a parallel composition.

3.4 Identifiers

There are three types of identifiers:

- A "normal-identifier" consists of a letter optionally followed by any number of letters, digits, or underscores. It cannot start or end with an underscore, and cannot contain consecutive underscores. Examples of normal-identifier names are: "Main", "timer_27", "x_6_p".
- A "special-identifier-1" consists of a digit optionally followed by any number of letters or digits. Examples of special-identifier-1 names are: "99catchall", "0start".

An identifier denoting a natural or integer constant, e.g., "123" or "0b11" (see Sections 3.6 and 3.7) is considered as such (rather than as a special-identifier-1) and expanded by LpP.

- A "special-identifier-2" consists of a sequence of one or more of the following characters: "\#", "\%", "\&", "*", "+", "-", "/", ">", "=", "<","@","", " "", "~". Examples of special-identifier-2 names are: ">=", "<>", "**".
The sequence "! =" is also considered a special-identifier-2, even though the "!" is not normally permitted.

Identifiers are not case-sensitive. For instance, "my_idf", "My_Idf", and "MY_IDF" denote the same module, type, type constructor, function, variable, loop label, channel, event, or process. Note however that:

- Keywords are reserved, meaning that they cannot be used as identifiers, except "and", "div", "mod", "or", "rem", and "xor", which can be used as constructor or function identifiers.
- Identifiers obtained by turning some lowercase letter to uppercase are valid identifiers. For instance, "END" and "Var" are valid identifiers whereas "end" and "var" are keywords.

As a general rule, when using a module, a type, a type constructor, a function, a variable, a loop label, a channel, an event, or a process identifier, it is recommended to use the same letter case as its definition whenever possible.

Constructor and function identifiers can be any identifier-type, whereas other identifiers are normalidentifier type, as shown below:

Identifier	Meaning	Identifier type
M	module	normal-identifier
T	type	normal-identifier
C	type constructor	normal-identifier or special-identifier-1 or special-identifier-2
X	variable	normal-identifier
F	function	normal-identifier or special-identifier-1 or special-identifier-2
L	loop label	normal-identifier
Γ	channel	normal-identifier
E	event	normal-identifier
Π	process	normal-identifier

The use of Lotos keywords as identifiers should be avoided (see Section 3.3 above).

3.5 Rich Term Syntax

The use of Lotos abstract data types is sometimes painful when one needs to write terms more complicated than simple integers.
The problem appears with ordinary data such as natural numbers. The Lotos NATURAL library only provides notations for integers from 0 to 9 . If one needs greater numbers, it is necessary to define new Lotos operations by using the Succ notation. For example: Succ (Succ (Succ (Succ (9)))). This way writing numbers is neither easily readable, nor easily writable, since the number of parentheses has to be counted. There is a similar lack of standard notation for lists, sets, characters, character strings, etc.
LnT solves this problem by providing notations ("Rich Term Syntax") for these types. These notations are expanded to standard Lotos by Lpp and Lnt2Lotos. The LNT_V1 library contains definitions that extend the standard notation. It defines an LntExtensions type that contains all the types defined in the X_ACTION, X_BOOLEAN, X_NATURAL, X_INTEGER, X_REAL, X_CHARACTER, and X_STRING libraries and defines the minimal set of operators that support the translation into Lotos of the LnT notations.
The following sections introduce the Rich Term Syntax notations available for the basic types of Lnt.

3.6 Natural numbers

With LNT, natural number notations can be used as in any programming language. The notations are those of the Microsoft's F \# language. They were preferred to those of C, C++ and Java. Firstly, these last three languages lack a notation for binary numbers. Secondly, there is a risk of confusion between decimal and octal notations: a number notation which only contains digits can either be decimal (756) or octal (0756).
LNT supports four notations:

bindigit	$=$	0\|1	binary digit																				
octdigit	:: $=$	$0\|1\| 2\|3\| 4\|5\| 6 \mid 7$	octal digit																				
decdigit	::=	0\|1	2	3	4	5	6	7	8	9	decimal digit												
hexdigit	::=	O\|1	2	3	4	5	6	7	8	9	a	A	b	B	c	C	d	D	e	E	f	F	hexadecimal digit
nat	::=	decdigit+	decimal constant, e.g., 34																				
		0xhexdigit+	hexadecimal constant e.g., 0xf2																				
		Oooctdigit+	octal constant e.g., 0042																				
		Obbindigit+	binary constant e.g., Ob10010																				

In addition, leading zeros are forbidden in decimal numbers, so that the only syntactically valid decimal number starting with a zero is 0 .
For readability, the "_" character can be used to separate groups of digits, as in Ada or VHDL; it is just a convenient syntactic notation for writing numbers, without semantic meaning. The "_" character is accepted anywhere in natural number notations except before the first digit or after the last digit. Consecutive "_" characters are not allowed. Some examples of correct expressions are: 19_785, 0xAFF_BCDE, 0o3_377, Ob110_0110_0111.
By default, natural numbers in LnT are assumed to be in the range $0 . .255$. This is explained by the fact one wants to avoid large numbers that increase complexity in explicit state model checking. If an Lnt specification handles larger numbers than 255 , an overflow error is likely to occur at run-time. However, the domain of natural numbers can easily be enlarged using either the "!nat_bits", the "!num_bits", the "!num_card", or the "!nat_inf/!nat_sup" pragmas (see Section 4.4 for details).

3.7 Integer numbers

Integer numbers can be either positive, negative or zero.
By default, integer numbers in Lnt are assumed to be in the range $-128 . .127$. This is explained by the fact one wants to avoid large numbers that increase complexity in explicit state model checking. If an LNT specification handles larger numbers, an underflow or overflow error is likely to occur at runtime. However, the domain of integer numbers can easily be enlarged using either the "!int_bits" or the "!int_inf/!int_sup" pragmas (see Section 4.4 for details).
All the notations available for natural numbers are also available for integer numbers. Here are some examples of integer numbers: $0,123,-123,0 x 4,-0 x F D,-0076,-0 b 1011$, etc.
Explicit type casts can be used to resolve typing ambiguities that may arise between natural numbers and integer numbers: for instance, one can distinguish between 12 of Nat and 12 of Int. Note
that explicit type casts "of Int" are superfluous for integer number with a unary operation "+" or "-", because the expansion by LPP generates unambiguously typable expressions (see Appendix F. 2 for details).
As with natural numbers, the "_" character can be used to separate groups of digits.
Note: integer numbers preceded by a unary "-" without parentheses are considered as negative integer constants rather than applications of the unary operator "-" to a positive integer constant. This has the advantage of allowing to write the constant -2^{k-1}, even when integers are represented using k bits. Notice that writing " $-\left(2^{k-1}\right)$ " yields an integer overflow, because " 2^{k-1} " is not an admissible integer value when integers are represented using k bits.

3.8 Real numbers

Reals (i.e., floating-point numbers) can be written as in classical programming languages. The LnT syntax is inspired from the floating-point numbers of the C programming language, with a few restrictions and an extension.

A floating-point number is a non-empty sequence of digits optionally containing a decimal point, followed by an optional exponent part. At least one of the two optional parts (decimal point or exponent) must be present. If the decimal point is present, it must be preceded and followed by at least one digit. A floating-point number cannot have a leading zero unless the zero is immediately followed by the decimal point or by the exponent. Leading zeros are accepted in the exponent.
As natural in numbers, the "_" character can be used to separate groups of digits; The "_" character is accepted anywhere in between two digits. Consecutive "_" characters are not allowed.
Here are some examples of floating-point numbers: 0.1, 0.2, 3.0e-1, 7.49E-005, 5_521.49_61E-0_0_5, 4.0e0, 5.0, 0E0, etc.
The following notations (some of which are available in the C programming language) are not available in LNT: 3._14, 0_.1, .1, 02.87e-10, 3.e-1, 5., 7.4_, 00E0, _6.21, etc.

3.9 Characters

Characters of type Char are C-like (unsigned) characters enclosed into single quotes:

- Any ASCII character: "a", "é", "|", "0", etc.
- C escape sequence shortcuts for non-printing characters (carriage return, tabulation, etc.):

ASCII Name	Description	C escape sequence
nul	null byte	$\backslash 0$
bel	bell character	$\backslash \mathrm{a}$
bs	backspace	$\backslash \mathrm{b}$
np	formfeed	$\backslash \mathrm{f}$
nl	newline	$\backslash \mathrm{n}$
cr	carriage return	$\backslash \mathrm{r}$
ht	horizontal tab	$\backslash \mathrm{t}$
vt	vertical tab	$\backslash \mathrm{v}$

- C standard escape sequences:

Printable character	C escape sequence
$"$	$\backslash "$
$\\) & \(\backslash \backslash$	
,	$\backslash ?$
$?$	$\backslash ?$

- Restricted C-like octal or hexadecimal escape sequences:
- An octal escape sequence \ooo with exactly three octal digits $o(o \in[0 . .7])$ where the ooo octal value is less than or equal to $\backslash 377$. Escape sequences with less than or more than three digits, like $\backslash 1, \backslash 01$ or $\backslash 0001$, are rejected.
- A hexadecimal escape sequence $\backslash x h h$ with exactly two hexadecimal digits $h(h \in$ $[0 . .9, A . . F])$. Escape sequences with less than or more than two digits, like $\backslash \mathrm{x} 1$ or $\backslash \mathrm{x} 001$, are rejected.

Note: The same character can be written using different notations in Lnt. For instance, the null character can be written either " $\backslash 0$ ", or " $\backslash 000$ ", or " $\backslash 00$ "; the newline character can be written either " n ", or " $\backslash 12$ ", or " $\backslash 012$ "; and so on.
Character values will be displayed surrounded by single quotes. All printable characters will be displayed as such, e.g., 'a', 'b', 'c', etc. All non-printable characters (e.g., control characters) will be displayed using three-byte octal notation ' $\backslash o o o$ ', where o is an octal digit. The single quote and backslash characters are displayed as '\'' and ' $\backslash \backslash$ ', respectively.

3.10 Strings

The String constants are C-like strings: they consist of character sequences enclosed in double quotes. The characters supported are the same as for the Char type. There can also be any ASCII character, C escape sequence shortcuts for non-printing characters (carriage return, tabulation, etc.), C standard escape sequences, and restricted C-like octal or hexadecimal escape sequences, for example:

```
""
"éêè"
"2\nlines"
"\""
")"
"\'"
"\\"
"AZERTY"
"A\x5AERTY"
"A\132ERTY"
```

String values will be displayed surrounded by double quotes. All printable characters will be displayed as such in strings, e.g., " . . abc. . ". All non-printable characters (e.g., control characters) will be displayed using three-byte octal notation " . . \ooo . . " , where o is an octal digit. The double quote and backslash characters are displayed as "...\"..." and "...
...", respectively.

3.11 Prefix and infix calls of constructors and functions

In general, a call to any constructor or function identifier, whatever its number of arguments $(0,1,2, \ldots n)$, can be done in prefix notation followed by parentheses: e.g. "@()", "f (1)", "g (x, y)", or "+ (1, 2)".
Note, however, that if an identifier is a special-identifier-1 that denotes a number notation in Rich Term Syntax, such as 0,123 , or $0 x 2 F F 2$, (see Section 3.5), it is recommended not to use parentheses, to avoid conflicts with the Rich Term Syntax expansion performed by Lpp.
For convenience, the following extensions are provided:

- A call to a nullary constructor or function identifier that is a normal-identifier or special-identifier-1 can be done without parentheses. For example: "pi" instead of "pi()", "2F3A" instead of "2F3A()".
Note: A nullary that is special-identifier-2 must be called with parentheses, e.g., "@()" instead of "@".
Note: If a variable and a constructor or function have the same names, putting parentheses after the constructor avoids ambiguity and distinguishes between them. If no parentheses are used, the variable masks the constructor.
- A call to a unary constructor or function identifier that is a special-identifier-2 can be done without parentheses: e.g. " $-n$ " or " $-(n)$ " are syntactically correct, but are semantically different if $n=2^{k}$ and integer numbers are represented using k bits, as explained in Section 3.7 for details.
Note: Sequences of unary constructors or functions without parentheses are not recommended, because the proper handling of negative integer numbers is only ensured for sequences of odd length. For instance, if k bits are used to represent values of type Int and function @ is defined as

```
function @ (X: Int) : Int is
    return (X % 2)
end function
```

"@ $-2^{k-1 "}$ " yields an overflow, whereas " $\left(-2^{k-1}\right)$ " does not.
Note: A call to a unary constructor or function identifier that is a normal-identifier or special-identifier-1 must be done with parentheses: e.g. " $f(x)$ " and not " f ".

- A call to a binary operator that is a normal-identifier or special-identifier-2 can also be done in an infixed way, e.g. :" 1 div $2 ", " 1 \bmod 2 ", " 1+2 "(i n ~ a d d i t i o n ~ t o ~ " d i v ~(1, ~ 2) ", ~$ $" m o d(1,2) "$, and "+ (1, 2)").
Note: A binary operator that is a special-identifier-1 must be used in prefix mode, i.e., "000 (x, y)" and not "x 000 y".

Chapter 4

Module definitions in LnT

4.1 Notations

This chapter uses the BNF notations defined in Section 3.1.
The following additional convention is used:

- $\quad M$ is a module identifier

4.2 Syntax

```
lnt_file ::= module M[(M M , .., Mm)]
                                    module
    [with predefined_function }\mp@subsup{0}{0}{},\ldots,\mp@subsup{\mathrm{ predefined_function }}{n}{}]\mathrm{ is
    module_pragma _..module_pragma 
    definition }\mp@subsup{0}{0}{}..\mp@subsup{\mathrm{ definition }}{q}{
    end module
```


empty	emptyness test
first	first element
get	field selection
head	first element
insert	insertion
inter	intersection
last	last element
\| length	list length
\| member	membership test
ord	ordinal
remove	element removal
reverse	reversal
\| set	field update
subset	subset test
tail	next elements
union	union
val	value

module_pragma ::=	!nat_bits nat	number of bits for type Nat
	!nat_inf nat	lowest value of type Nat
	!nat_sup nat	highest value of type Nat
	!nat_check bit	check for Nat overflows/underflows
	!int_bits nat	number of bits for type Int
	!int_inf int	lowest value of type Int
	!int_sup int	highest value of type Int
	!int_check bit	check for Int overflows/underflows
	!num_bits nat	number of bits for numeral types
	! num_card nat	maximal cardinality for numeral types
	!string_card nat	maximal cardinality for type String
	! update string	update tag
	!version string	version tag

where nat denotes a natural number constant (in decimal notation without underscores), int denotes an integer number constant (in decimal notation without underscores), and bit denotes 0 or 1.

| definition | $:=$ | type_definition |
| ---: | :--- | :--- |\quad type definition

(C) INRIA 2005-2024 - All rights reserved - Tous droits réservés

Type definitions are covered in Chapter 5. Chapter 7 describes function definitions. Process definitions are discussed in Chapter 8.

4.3 Module definitions

(MD1) The name of each file containing an LNT module must have the ". lnt" extension. The characters used in such a file name can only be letters, digits, and underscore ("-") - in addition to the dot occurring in the extension. [checked by LPP and LnT2Lotos]
(MD2) Module M must have the same name as the file in which it is defined (without extension). Letter case is significant. For instance, a module "MyModule" has to be defined in a file named MyModule.lnt. Other names such as mymodule.lnt or MYMODULE.lnt are not allowed.
However, in the particular case where the module name is "TEST" (or "Test", "test", etc.), having a different file name only triggers a warning, whereas in all other cases a fatal error is issued if the module name and file name do not match. This particular case is intended to ease debugging and rapid prototyping. [checked by Lnt2Lotos]
(MD3) The identifiers M_{0}, \ldots, M_{m} must refer to different modules, and must be different from M. [checked by Lnt2Lotos]
(MD4) The "with" clause of a module requests the corresponding predefined functions to be present for all the types declared inside the module (if these functions exist for these types). Each predefined function must be declared only once in the "with" clause of a given module. [checked by Lnt2Lotos]

Additional information about the semantics of predefined functions can be found in Section 5.7.

4.4 Module pragmas

Module pragmas can be used to modify the default settings related to the implementation of the predefined types Nat, Int, and String.
(MP1) All module pragmas but ! version and !update must only appear in the principal module (see Section 2.1). Otherwise a warning will be emitted. [checked by LnT2Lotos]
(MP2) Each pragma but !version and !update must appear at most once. [checked by Lnt2Lotos]
(MP3) Pragmas !version and !update must appear at most once in each module. [checked by Lnt2Lotos]
(MP4) The module pragmas "!num_bits" and "!num_card" are mutually exclusive. [checked by Lnt2Lotos]
(MP5) The value nat of the pragmas "!num_bits" and "!num_card" must be natural numbers. [checked by Lnt2Lotos]
(MP6) The value nat of a pragma "!num_bits" should be different from 0; even if value zero might be tolerated in some cases, its precise effect is undocumented. [checked by CÆSAR/CÆSAR.ADT]
(MP7) The value nat of a pragma "!num_card" should be different from 0 and 1 ; even if these two values are tolerated in some cases, their precise effect is undocumented. [checked by CÆSAR/CÆSAR.ADT]

The module pragmas have the following effect:

- !nat_bits N (resp. !int_bits $N)$ specifies the number of bits $(N>0)$ with which a value of type Nat (resp. Int) will be represented. By default, $N=8$.
- !nat_inf N^{\prime} and !nat_sup $N^{\prime \prime}$ respectively denote the lowest and highest values to be used when iterating on the Nat domain. By default, $N^{\prime}=0$ and $N^{\prime \prime}=2^{N}-1$, where N is the number of bits for type Nat.
- !int_inf I^{\prime} and !int_sup $I^{\prime \prime}$ respectively denote the lowest and highest values to be used when iterating on the Int domain. By default, $I^{\prime}=-2^{N-1}$ and $I^{\prime \prime}=2^{N-1}-1$, where N is the number of bits for type Int.
- !nat_check B (resp. !int_check B) specifies whether numeric overflows/underflows have to be checked ($B=1$ means checked, $B=0$ means unchecked) for type Nat (resp. Int). By default, $B=1$, meaning that checks must be disabled explictly by setting $B=0$.
Note: The implementation of predefined libraries (in \$CADP/incl/X_NATURAL.h and \$CADP/incl/X_INTEGER.h) does its best to detect overflows and underflows, especially by performing computations on naturals/integers that are twice as large (in number of bits) than what is needed to store values of types Nat and Int. This can be slightly more CPU-intensive, but this is probably the price to pay for gaining increased confidence in an LNT specification. However, because of the limitations of the C language, some overflows or underflows may remain detected (e.g., if types Nat and Int have the maximum number of bits allowed on the machine, or if involved arithmetic operations are used).
- ! string_card N stores all character strings in a hash table with N entries at most. Technically, this is achieved by setting the macro "CAESAR_ADT_HASH_ADT_STRING" to N in the C code generated by Lnt2Lotos.
- !update can be used to declare that the module takes into account updates introduced in LNT up to the given CADP version.
Currently, "!update "2021-b"" is the only update tag allowed. It means that the module takes into account the priorities of infix operators introduced in CADP 2021-b (February 2021) and described in Section 7.3. It allows to avoid warnings indicating that expressions are parsed differently due to this change.
Beware that due to a current limitation of modules, the scope of update tags extends to all modules of the LNT program.
- ! version can be used to label the module with a version tag. This pragma has no effect in the generated code so far.
- "!num_bits N " specifies a maximal value 2^{N} for the number of elements of all numeral types T, meaning that each of these elements will be implemented in C using at most N bits. A numeral
type is any type isomorphic to "type T is Zero, Succ ($X: T$) end type", where T, Zero, Succ, and X can be arbitrary identifiers (the nat type is a particular case of numeral type). By default, numeral types are implemented by Lnt2Lotos and CÆSAR.adt using one single byte; the "!num_bits" pragma can be used to change this default setting to a number of bits different from eight.
The module pragmas "!nat_bits" and "!nat_sup", and the type pragmas "!bits" and "!card" (see Section 5.6) have precedence over "!num_bits". This means that, if both pragmas "!num_bits" and "!nat_bits" (or "!nat_sup") are present, natural numbers are encoded using the number of bits specified by "!nat_bits" (or "!nat_sup"), while the elements of any other numeral type T are encoded using the number of bits specified by "!num_bits", unless the definition of T has a "!bits" (or "!card") pragma, in which case the number of bits specified by this type pragma will be used for implementing T.
Note: This pragma is implemented by inserting a macro "ADT_PRAGMA_NUMERAL $-N$ " in the generated C code.
- '!num_card N " specifies a maximal value N for the number of elements of all numeral types (see previous item), whose values are thus in the range $0, \ldots, N-1$. The module pragmas "!nat_bits" and "!nat_sup", and the type pragmas "!bits" and "!card" have precedence over "!num_card".
Note: This pragma is implemented by inserting a macro "ADT_PRAGMA_NUMERAL N " in the generated C code.

4.5 Constructors, functions, procedures, and processes

The Lnt language has four different kinds of routines:

- A "constructor" (see Chapter 5) is a routine that has zero, one, or more arguments and that returns a single result. A constructor has only formal parameters of mode "in". A constructor is defined as part of the definition of the type of its result. The body of a constructor is never defined explicitly.
- A "function" ${ }^{1}$ (see Chapter 7) is a routine that has zero, one, or more arguments and that returns a single result. A function has only formal parameters of mode "in" and/or "in var". Functions can be predefined, externally defined (i.e., written in Lotos or in C), or defined by the user in Lnt. The body of a user-defined function is an Lnt statement (see Section 7.2), the simplest form being a "return" statement.
- A "procedure" (see Chapter 7) is a routine that has zero, one, or more arguments and that may return a result. A procedure can have formal parameters of mode "in", "in var", "out", "out var", or "in out". Procedures can be externally defined (i.e., written in C) or defined by the user in Lnt. The body of a user-defined procedure is an Lnt statement (see Section 7.2), which may or not contain a "return" statement.
- A "process" (see Chapter 8) is a routine that resembles a procedure, but has a greater expressiveness, as it can perform actions (i.e., inputs, outputs, communications, synchronizations, internal actions, etc.), nondeterministic choices, parallel composition, etc. Processes can be externally defined (i.e., written in Lotos) or defined by the user in Lnt. The body of a

[^1]user-defined process is an Lnt behaviour (see Section 8.2). Unlike processes, functions and procedures do not perform actions; they are deterministic and atomic (i.e., they execute in zero time). Conversely, a process does not return a result (i.e., it has no "return" statement).

Contrary to ALGOL-like languages (including Pascal, Ada) and like C-like languages (including C++ and Java), Lnt does not make a syntactic distinction between functions and procedures. Both are declared using the same keyword "function" and, sometimes, the word function is used to designate either a function or a procedure. However, there are semantic differences between functions and procedures; for instance, only functions (but not procedures) can be used in expressions.

Chapter 5

Type definitions in Lnt

5.1 Notations

This chapter uses the BNF notations defined in Section 3.1.
The following additional conventions are used:

- T is a type identifier
- C is a type constructor identifier
- X is a variable identifier
- $\quad V$ is a value expression (see Section 7.13)
- m and n are integer numbers in decimal notation without underscores ("-").

5.2 Syntax

```
type_definition ::= type T is type_pragma _..type_pragma }n\mathrm{ type
    type_expression
    [with predefined_function_declaration }\mp@subsup{0}{0}{},\ldots,\mathrm{ predefined_function_declaration m
    end type
type_expression ::= constructor_definition }\mp@subsup{0}{0}{},\ldots,\mp@subsup{\mathrm{ constructor_definition }}{n}{}\quad\mathrm{ constructed type
    | set of T set
    | list of T list
    | sorted list of T sorted list
    | array [m.n] of T array
    | range m..n of T'_ range
```

| $X: T^{\prime}$ where $V \quad$ predicate

```
constructor_definition :}=C=C[\mp@subsup{\mathrm{ constructor_parameters }}{1}{},\ldots,\mp@subsup{\mathrm{ constructor_parameters }}{n}{})
                constructor_pragma _..constructor_pragma m
```

type_pragma ::=	!external	external type
	!implementedby "[C:]name"	C type name
	! comparedby "[C:]name"	C equality function
	!printedby "[C:]name"	C printing function
	!list	print as list
	!iteratedby "[C:]name ${ }^{\text {" }}$, "[C:]name ${ }^{\text {" }}$	C iterator functions
	! pointer	C pointer implementation
	!nopointer	C unboxed implementation
	! bits nat	number of bits for the C type
	! card nat	mal cardinality for the C type

```
predefined_function_declaration \(::=\) predefined_function
    [predefined_function_pragma \(1_{1} \ldots\) predefined_function_pragma \({ }_{n}\) ]
```

where predefined_function is defined in Section 4.2.

```
predefined_function_pragma ::= !external external function
        !implementedby "[(C | LOTOS):]name" C/LOTOS name scheme
constructor_parameters ::= X , .., X 隹:T constructor parameters
constructor_pragma ::= !implementedby "[C:]name" C operator name
```


5.3 Type definitions

(TD1) All types T defined in module M must have different identifiers. [checked by Lnt2Lotos]
(TD2) All types T defined in module M and in the imported modules M_{0}, \ldots, M_{n} must have different identifiers. [checked by CÆSAR/CÆSAR.ADT]
(TD3) In the list type_pragma ${ }_{1} \ldots$ type_pragma $_{n}$ of each type definition, there should be at most one pragma of each kind (i.e., there cannot be two "!external" pragmas, nor two "!implementedby "...""/"!implementedby "C:..."" pragmas, etc.) [checked by Lnt2Lotos]
(TD4) Each predefined function must be declared only once in the "with" clause of a given type. [checked by Lnt2Lotos]

5.4 Type expressions

(TE1) T must be the identifier of a type defined in the current module or in an imported module. [checked by CÆSAR/CÆSAR.ADT]
(TE2) When a type expression defines a sorted list of T or a set of T, a comparison operator < must be defined for type T and for all the types that are used to define T. Such an operator is automatically generated by Lnt2Lotos when clause with < is specified. [checked by CÆSAR/CÆSAR.ADT]
(TE3) When a comparison operator is requested (using a with clause) for a type T, a comparison operator < must be defined for each type appearing in the definition of T. [checked by CÆSAR/CÆSAR.ADT]
(TE4) When a type expression defines an array, the bounds m and n must be natural numbers such that $m \leq n$. [checked by LnT2Lotos]
(TE5) When a type expression defines a range, the type T^{\prime} must be Char, Int, or Nat. [checked by Lnt2Lotos]
(TE6) When a type expression defines a range of Char, the bounds m and n must be character constants such that $m<=n$. In this case, m and n are expressed using the ASCII code of the characters. [checked by Lnt2Lotos]
(TE7) When a type expression defines a range of Int, the bounds m and n must be integer numbers such that $m<=n$. [checked by LnT2Lotos]
(TE8) When a type expression defines a range of $\mathbf{N a t}$, the bounds m and n must be natural numbers such that $m<=n$. [checked by LnT2Lotos]
(TE9) A type definition using set, list, or sorted list should not be directly recursive. For instance, it is forbidden to write "type T is list of T end type" (such a definition is misleading, since T does not correspond to a list, but to a binary tree). Notice that indirect (i.e., transitive) recursion by means of one or more auxiliary types is allowed. [checked by CÆSAR/CesAR.ADT, which emits warnings about incorrect "!list" pragmas (such pragmas are automatically added, but the type constructors do not have the right profiles)]
(TE10) A type expression can be empty only if the pragma "!external" is present. [checked by Lnt2Lotos]

The following array type definition:

```
type T is
    array [m..n] of T'
end type
```

is equivalent to defining a type T with one constructor T and $n-m+1$ parameters of type T^{\prime}.
Note: Array bounds are required to be natural numbers. This implies that they must be representable using 32 bits.
Note: Lnt2Lotos allocates memory for creating the Lotos files. Defining a large array can lead to errors if there is insufficient memory for compilation. For example, an LnT specification containing the definition:

```
type T is
    array [1..1000000000] of Int
end type
```

when compiled, may cause a stack overflow.
To initialize variables of type T, LnT2Lotos provides a more convenient way than calling constructor T with $n-m+1$ parameters. Constructor T is overloaded with an operation T which takes one parameter V of type T^{\prime} and builds an array that contains $n-m+1$ times the same value V.
Moreover, the syntax defined in chapter 7 allows one to assign a value to an array element, and to use an array element in an expression.
A range type must be written with spaces before and after m and n. For example, a definition containing
range -3..-2 of Int
will be rejected with an error message. It should instead be written as

```
range -3 .. -2 of Int
```


5.5 Constructor definitions

Note: Each list of constructor parameters " $X_{0}, \ldots, X_{n}: T$ " is flattened into a list " $X_{0}: T, \ldots, X_{n}: T$ ".
(CD1) Two or more constructors may have the same name (may be overloaded) if their profiles (the list of the types of fields) differ. [checked by Lnt2Lotos]
(CD2) All the constructor parameters X_{0}, \ldots, X_{n} must have different identifiers. [checked by Lnt2Lotos]
(CD3) For the set of constructors of a given type, fields having the same name should have the same type. [checked by Lnt2Lotos]
(CD4) Each type T_{0}, \ldots, T_{n} must refer to a type defined in the current module or in an imported module. [checked by CÆSAR/CÆSAR.ADT]
(CD5) In the list constructor_pragma $1_{1} \ldots$ constructor_pragma ${ }_{n}$ of each constructor definition, there should be at most one pragma of each kind (i.e., there cannot be two "!implementedby "...""/"!implementedby "C:..."" pragmas). [checked by LnT2Lotos]
(CD6) Type declarations may be mutually recursive. However, each type must be productive, i.e. it must have at least one value. Formally, a type is productive if and only if: (a) it has a constructor with arity 0 or (b) all the parameters of its constructors have productive types. [checked by CÆSAR/CÆSAR.ADT]
(CD7) A constructor C with two parameters can be used both in infix or prefix forms (i.e., both " $x C y$ " or " $C(x, y)$ ").

5.6 Type pragmas and constructor pragmas

(TCP1) In pragmas of the form "!implementedby "[C:]name"", "!comparedby "[C:]name"", and "!printedby "[C:]name"", name must be valid C function identifier. It must neither be a reserved keyword of the C language nor an identifier predefined in the standard libraries of the C language (e.g., "true", "false", "bool"). [checked by CÆSAR/CÆSAR.ADT]
(TCP2) In pragmas of the form "!iteratedby "[C:]name ${ }_{1}$ ", "[C:]name ${ }_{2} "$ ", name e_{1} and name $_{2}$ must be valid C macro identifiers corresponding to CÆsAR.ADT iteration macros. They must neither be reserved keywords of the C language nor identifiers predefined in the standard libraries of the C language (e.g., "true", "false", "bool"). [checked by CÆsar/CÆsAR.adt]
(TCP3) The pragma "!external" must not be given for set, list, sorted list, array, range, or predicate types. Otherwise, a warning message is issued and the pragma is ignored. [checked by Lnt2Lotos]
(TCP4) The pragma "!list" should be given only to a type T having a list-like structure, i.e., T should have exactly two constructors, a first one, usually called "nil", without parameters and a second one, usually called "cons", with two parameters, exactly one of which is of type T (see Section 5.7). [checked by Cesar/Cestar.ADT]
(TCP5) For list, sorted list, and set types, the type pragma !list is automatically added if it is not specified already.
(TCP6) The type pragmas "!pointer","!nopointer","!bits", and "!card" are mutually exclusive. [checked by Lnt2Lotos]
(TCP7) The value nat of the pragmas "!bits" and "!card" must be natural numbers. [checked by Lnt2Lotos]
(TCP8) The value nat of a pragma "!bits" should be different from 0 . [checked by CÆSAR/CÆSAR.ADT]
(TCP9) The value nat of a pragma "!card" should be different from 0 and 1 . [checked by Cestar/Cesar.adt]
(TCP10) The type pragmas "!pointer","!nopointer", "!bits", and "!card" should not be given for enumerated types (including singleton types, which are enumerated types with a single value). [checked by CÆSAR/CÆSAR.ADT]
(TCP11) The type pragmas "!pointer" and "!nopointer" should not be given for numeral types, i.e., types that have two constructors, one having no field and the other one having a single field of this same type (recursively). [checked by CÆSAR.ADT]

The pragmas attached to types and/or constructors have the following effects:

- The pragma "!external" indicates that the type (respectively, constructor) is defined by an external C type (respectively, C function); this pragma is translated into a special comment in the generated LOTOS code. For a type declared "!external", LNT2Lotos automatically associates the "!external" pragma to all its constructors.
- If a type has the pragma "!external", then all constructors of this type (if any) and all functions declared in the "with" clause of this type (if any) are also external, i.e., an external definition of these constructors and functions must be provided in C code.
- The pragma "!implementedby "C:name"" (or simply "!implementedby "name"") indicates that the type (respectively, constructor) should be implemented by the C type (respectively, C function) named name; this pragma is translated into a special comment in the generated LOTOS code.
- The pragma "!comparedby "C: name"" (or simply "!comparedby "name"") indicates that the C function implementing the comparison of two elements of the type should be named name; this pragma is translated into a special comment in the generated LOTOS code.
- The pragma "!printedby "C:name"" (or simply "!printedby "name"") indicates that the C function printing elements of the type should be named name; this pragma is translated into a special comment in the generated LOTOS code.
- The pragma "!list" indicates that the type should be printed as a list, i.e., using the notation " $\left\{V_{1}, \ldots, V_{n}\right\}$ "; this pragma is translated into a special comment in the generated LOTOS code.
- The pragma "!iteratedby "C:name ${ }_{1}$, "C:name ${ }_{2}$ " (or simply "!iteratedby "name ${ }_{1}$ ", "name ${ }_{2} "$ ") indicates that the two C macros implementing the iterator for the type should be named name 1 and $n a m e_{2}$; this pragma is translated into a special comment in the generated LOTOS code.
- The pragma "!pointer" specifies that type T must be implemented by a pointer in C.
- The pragma "!nopointer" specifies that type T must not be implemented by a pointer in C, i.e., it must have an unboxed implementation.
- The pragma "!bits nat" specifies a maximal value $2^{n a t}$ for the number of elements of type T, meaning that each of these elements will be implemented in C using at most nat bits.
Note: This pragma is implemented by inserting a macro "CAESAR_ADT_HASH_T" -nat" in the generated C code, where T^{\prime} is the name of the C type implementing type T. For details, see entries \#623 and \#1250 of file "\$CADP/HISTORY".
- The pragma "!card nat" specifies a maximal value nat for the number of elements of type T. Note: This pragma is implemented by inserting a macro "CAESAR_ADT_HASH_T' nat" in the generated C code, where T^{\prime} is the name of the C type implementing type T. For details, see entries \#623 and \#1250 of file "\$CADP/HISTORY".

In pragmas "!implementedby "C:..."", "!implementedby "LOTOS:..."","!comparedby "C:..."", "!iteratedby "C:...", "C:..."", and "!printedby "C:..."", the prefixes "C:" and "LOTOS:" are case-sensitive. Other forms, such as "c:" and "Lotos:" are rejected.

5.7 Predefined function declarations

For the basic data types (Boolean, natural number, integer, real number, character, string), a number of predefined functions are automatically available. See Annex C for the list of these predefined functions.
For the non-basic data types, predefined functions are generated according to the specified "with" clauses. We split non-basic data types into various sub-categories:

- Singleton types, consisting of a single constructor, either without parameters or whose parameters are all of singleton types.
- Enumerated types, consisting of several constructors, either without parameters or whose parameters are all of singleton types:

$$
\begin{aligned}
& \text { type } T \text { is } \\
& \quad C_{0}, \ldots, C_{n} \\
& \text { end type }
\end{aligned}
$$

- Cascade types, consisting of several constructors, at least one of which has parameters, but only of singleton and/or enumerated types.
- Numeral types, consisting of several constructors, one of which has a parameter of this numeral type; The constructors may have additional parameters, provided they are all of singleton types.
- Set types T declared as:
type T is
set of T^{\prime}
end type
- List and sorted list types T declared as:
type T is
[sorted] list of T^{\prime}
end type
- Array types T declared as:
type T is
array $[m . . n]$ of T^{\prime}
end type
- Range types T declared as:
type T is
range $m . n$ of T^{\prime}
end type
- Predicate types T :

type T is

$X: T^{\prime}$ where value expression
end type

- All other non-basic types T, including record-like types, union-like types, etc.

The following table shows the LnT predefined constructors and functions that can be created for nonbasic data types. The functions marked by a star are generated automatically. The other functions are optional and must be generated by specifying the relevant "with" clause in the data type declaration.

Function	Profile	Supported data types T
$==,=$	$T, T \rightarrow$ Bool	all types
$<>$, !	$T, T \rightarrow$ Bool	all types
<, <=, >, >=	$T, T \rightarrow$ Bool	all types
ord	$T \rightarrow$ Nat	all types
val	Nat $\rightarrow T$	singleton, enumerated, range
first	$\rightarrow T$	singleton, enumerated, cascade, range
last	$\rightarrow T$	singleton, enumerated, cascade, range
succ	$T \rightarrow T$	enumerated, cascade, numeral, range
pred	$T \rightarrow T$	enumerated, cascade, numeral, range
get functions	$T \rightarrow U$	all types but singleton, enumerated and ranges
set functions	$U, T \rightarrow T$	all types but singleton, enumerated and ranges
nil*	$\rightarrow T$	set, list, sorted list
cons*	$T^{\prime}, T \rightarrow T$	set, list, sorted list
insert*	$T^{\prime}, T \rightarrow T$	set, list, sorted list
empty	$T \rightarrow \mathrm{Bool}$	set, list, sorted list
length	$T \rightarrow$ Nat	set, list, sorted list
member	$T^{\prime}, T \rightarrow \mathrm{Bool}$	set, list, sorted list
element	T, Nat $\rightarrow T^{\prime}$	set, list, sorted list
delete	$T^{\prime}, T \rightarrow T$	set, list, sorted list
remove	$T^{\prime}, T \rightarrow T$	set, list, sorted list
head	$T \rightarrow T^{\prime}$	set, list, sorted list
tail	$T \rightarrow T$	set, list, sorted list
union	$T, T \rightarrow T$	set, list, sorted list
inter	$T, T \rightarrow T$	set, sorted list
diff	$T, T \rightarrow T$	set, sorted list
reverse	$T \rightarrow T$	(unsorted) list
append	$T^{\prime}, T \rightarrow T$	(unsorted) list
subset	$T, T \rightarrow$ Bool	set
T (array constructor)*	$T^{\prime} \rightarrow T$	array
T (array constructor)*	$T^{\prime}, \ldots, T^{\prime} \rightarrow T$	array
T (conversion to subtype)*	$T^{\prime} \rightarrow T$ (partial function)	range, predicate
T (identity)*	$T \rightarrow T$	range, predicate
T^{\prime} (conversion to parent type)*	$T \rightarrow T^{\prime}$	range, predicate

These predefined functions over non-basic types are defined as follows:

- Comparison operators can be generated for all types T. All these operators have the same profile: T, T-> BOOL.

Equality relations correspond to structural equivalence between values of type T.
Order relations correspond to the underlying lexicographic order (which is a total order) over values of type T considered as algebraic terms (constructors are ordered by their occurrence of declaration in the Lnt type definition - in the case of sets, lists, and sorted lists, the nil constructor is considered to be smaller than the cons constructor). Note therefore that, in the case of lists or sets, these comparison operators do not correspond to (list or set) inclusions (which are partial orders).
The inequality operator " $!=$ " is translated into a Lotos operator "/=" since the character "!" cannot be used in Lotos special identifiers.

- The function "ord : $T \rightarrow$ NAT" can be generated for all types T.

If T is not a range type, ord (X) returns, for each element X of type T, the order number of the constructor of X, the first constructor being numbered 0 and the last constructor being numbered $n-1$ where n is the number of constructors of T.
If T is a range type of the form "range $m . . n$ ", ord (X) returns the order number of X in that range, the lower bound m being numbered 0 and the upper bound n being numbered $n-m$.

- The function "val : NAT $\rightarrow T$ " can be generated only when "ord" is injective, i.e., only when T is an enumerated type or a range type.
For each value X of type T, val (ord (X)) $=\mathrm{X}$.
- The functions "first : -> T " and "last : -> T " can be generated only when T is an enumerated type, a cascade type, or a range type.
These functions return, respectively, the smallest and greatest values of type T. For enumerated and range types, first $=\operatorname{val}(\operatorname{ord}(0))$ and last $=\operatorname{val}(\operatorname{ord}(n-1))$, where n is the number of constructors of T.
- The functions "succ : $T \rightarrow T$ " and "pred : $T \rightarrow T$ " can be generated only when T is an enumerated type, a cascade type, or a range type.
These functions return, respectively, the successor and the predecessor of a value of type T. Note that the greatest (resp. smallest) element of T is its own successor (resp. predecessor).
- For all types T except enumerated and range types, when "get" appears in the list of requested functions given in the "with" clause of type T, one or several Lotos functions (named "get" functions) will be generated, which will enable the use of field selection notations for values of type T (see the syntax of expressions in Section 7.2).
For each constructor C of T, for each argument f (of type U) of constructor C, a (partially defined) Lotos function named "GET_f : $T \rightarrow U$ " will be generated. For each value X of type T, if X has the form $C(\ldots)$, where C is a constructor with an argument named f, then GET_ $f(X)$ returns the value of f, otherwise it is undefined.
- For all types T except enumerated and range types, when "set" appears in the list of requested functions given in the "with" clause of type T, one or several Lotos functions (named "set" functions) will be generated, which will enable the use of field update notations for values of type T (see the syntax of expressions in Section 7.2).
For each constructor C of T, for each argument f (of type U) of constructor C, a (partially defined) Lotos function named "SET_f : $U, T \rightarrow U$ " will be generated. For each value X of type T and each value Y of type U, if X has the form $C(\ldots)$, where C is a constructor with an argument named f, then $\operatorname{SET}_{-} f(Y, X)$ returns the value of X in which argument f has been replace by Y, otherwise it is undefined.
- The list, sorted list, and set types are very similar: the three of them have two constructors, "nil" and "cons" and an operation "insert". In list, insert is a synonym of cons, but is not a constructor. In sorted list, insert enables one to add an element to a list, still preserving the invariant that list elements are sorted. In set, insert enables one to add an element to a set, still preserving the invariant that set elements are sorted and each element of a set has at most one occurrence. insert can be used in expressions, but cannot be used in patterns since it is not a type constructor.

Those four types also differ in the sets of predefined functions that can be generated using the "with" clause (see items below).

- The function "empty : $T \rightarrow$ BOOL" can be generated for all types T of the form "set of $T^{\prime \prime}$ ", "list of $T^{\prime \prime}$, or "sorted list of $T^{\prime \prime}$.

For each value X of type T, empty (X) returns true if X is empty.

- The function "card : $T \rightarrow$ NAT" can be generated for all types T of the form "set of T^{\prime} ". For each value X of type T, card (X) returns the number of elements in X.
- The function "length : $T \rightarrow$ NAT" can be generated for all types T of the form "list of $T^{\prime \prime}$ ", or "sorted list of $T^{\prime \prime}$ ".
For each value X of type T, length (X) returns the number of elements in X.
- The function "member : $\quad T^{\prime}, T \rightarrow$ BOOL" can be generated for all types T of the form "set of $T^{\prime \prime}$, "list of $T^{\prime \prime}$, or "sorted list of $T^{\prime \prime}$.
For each value X of type T^{\prime} and Y of type T, member (X, Y) returns true if X occurs in Y.
- The function "element : T, NAT $\rightarrow T^{\prime \prime}$ " can be generated for all types T of the form "set of $T^{\prime \prime}$, "list of $T^{\prime \prime}$, or "sorted list of $T^{\prime \prime}$.
For each value X of type T and N of type NAT, element (X, N) returns the N-th element of X. An error occurs if N is zero or greater than length (X) (for list and sorted list types) or card (X) (for set types).
- The function "delete : $T^{\prime}, T \rightarrow T$ " can be generated for all types T of the form "set of $T^{\prime \prime}$, "list of $T^{\prime \prime}$, or "sorted list of $T^{\prime \prime}$ ".

For each value X of type T^{\prime} and Y of type T, delete (X, Y) returns a copy of Y from which the first occurrence of X (if any) has been suppressed. If Y does not contain any occurrence of X, then delete (X, Y) returns Y unchanged.

- The function "remove : $T^{\prime}, T \rightarrow T$ " can be generated for all types T of the form "set of $T^{\prime \prime}$, "list of $T^{\prime \prime}$, or "sorted list of $T^{\prime \prime}$.
For each value X of type T^{\prime} and Y of type T, remove (X, Y) returns a copy of Y from which all occurrences of X (if any) have been suppressed. If Y does not contain any occurrence of X, then remove (X, Y) returns Y unchanged. Note that if T is a set type, the functions delete and remove coincide since each element of type T^{\prime} has at most one occurrence in Y.
- The function "head : $T \rightarrow T^{\prime \prime}$ " can be generated for all types T of the form "set of $T^{\prime \prime}$ ", "list of $T^{\prime \prime}$, or "sorted list of $T^{\prime \prime}$.
For each value X of type T, head (X) returns the first element of X. An error occurs if $X=$ nil.
- The function "tail : $T \rightarrow T$ " can be generated for all types T of the form "set of $T^{\prime \prime}$, "list of $T^{\prime \prime}$, or "sorted list of $T^{\prime \prime}$.
For each value X of type T, tail (X) returns a copy of X from which the first element has been removed. An error occurs if $X=$ nil.
- The function "union : $T, T \rightarrow T$ " can be generated for all types T of the form "set of $T^{\prime \prime}$, "list of $T^{\prime \prime}$, or "sorted list of $T^{\prime \prime}$ ".
For each values X and Y of type T, union (X, Y) (or "X union Y" in infix notation) returns: if T is a set type, the set union $X \cup Y$; if T is an unsorted list type, the concatenation of lists X and Y; if T is a sorted list type, the sorted merge of X and Y.
- The function "inter : $T, T \rightarrow T$ " can be generated for all types T of the form "set of $T^{\prime \prime}$ " or "sorted list of $T^{\prime \prime}$ ".
For each values X and Y of type T, inter (X, Y) (or "X inter Y" in infix notation) returns: if T is a set type, the set intersection $X \cap Y$; if T is a sorted list type, the multiset-like sorted intersection of X and Y (namely, if X and Y contain respectively n and m occurrences of some element z, then inter (X, Y) contains exactly $\min (n, m)$ occurrences of z).
- The function "diff : $T, T \rightarrow T$ " can be generated for all types T of the form "set of T^{\prime} " or "sorted list of $T^{\prime \prime}$ ".
For each values X and Y of type T, diff (X, Y) (or "X diff Y " in infix notation) returns: if T is a set type, the set difference $X-Y$; if T is a sorted list type, the multiset-like sorted difference between X and Y (namely, if X and Y contain respectively n and m occurrences of some element z, then $\operatorname{diff}(\mathrm{X}, \mathrm{Y})$ contains exactly $\max (0, n-m)$ occurrences of z).
- The function "reverse : $T \rightarrow T$ " can be generated for all types T of the form "list of T ". For each value X of type T, reverse (X) returns a copy of X in which the elements occur in reverse order.
- The function "append : $T^{\prime}, T \rightarrow T$ " can be generated for all types T of the form "list of $T^{\prime \prime \prime}$.
For each value X of type T^{\prime} and Y of type T, append (X, Y) returns a copy of Y in which element X has been added in the last position.
- The function "subset : $T, T \rightarrow$ BOOL" can be generated for all types T of the form "set of $T^{\prime \prime \prime}$.
For each values X and Y of type T, subset (X, Y) (or "X subset Y " in infix notation) returns true if all members of X are members of Y.
- The function " $T: T^{\prime} \rightarrow T$ " is generated for all types T of the form "array [m . . n] of $T^{\prime \prime \prime}$. It enables to construct an array whose items are all set to the same value of type T^{\prime} passed as argument.
- The function " $T: T^{\prime}, \ldots, T^{\prime} \rightarrow T$ " is generated for all types T of the form "array [m .. n] of $T^{\prime \prime \prime}$. It enables to construct an array whose i th item is defined by the i th of the $n-m+1$ arguments of type T^{\prime}.
- Note: The definition of a range or predicate type T will generate Lotos functions that implement conversion to subtype, identity, and conversion to parent type. Indentity functions are only generated for type checking reasons (namely, to easily produce a Lotos program that will type check correctly) and are not intended to be directly invoked from LnT.
- Note: The definition of an array type T will generate Lotos functions that implement access and modification of array elements: the accessor function "ARRAY_GET : T, NAT $\rightarrow T^{\prime \prime}$ and the modifier function "ARRAY_SET : T, NAT, $T^{\prime} \rightarrow T$ ", where T^{\prime} is the type of the array elements. These functions should not be invoked directly from Lnt.

We summarize here the constraints that apply to predefined functions over non-basic types:
(PF1) This constraint was removed in January 2023; see item \#XXXX in the \$CADP/HISTORY file.
(PF2) The function "val" can be generated only for enumerated types and range types. [checked by Lnt2Lotos]
(PF3) The functions "first" and "last" can be generated for enumerated types and range types only. [checked by Lnt2Lotos]
(PF4) The functions "get" and "set" can be generated for all but enumerated types and range types. [checked by Lnt2Lotos]
(PF5) The functions "empty", "member", "element", "delete", "remove", "head", "tail", and "union" can be generated for set types, list types, and sorted list types. Function "union" can be used in both prefix and infix notation. [checked by Lnt2Lotos]
(PF6) The functions "inter" and "diff" can be generated for set types and sorted list types. Both functions can be used in both prefix and infix notation. [checked by LnT2Lotos]
(PF7) The functions "reverse" and "append" can be generated for (unsorted) list types only.
(PF8) The functions "card" and "subset" can be generated for set types only. Function "subset" can be used in both prefix and infix notation. [checked by Lnt2Lotos]
(PF9) The function "length" can be generated for list types and sorted list types only. [checked by Lnt2Lotos]

Users are allowed to define operations with same names and types as the above, preventing the use of the corresponding "with" clauses. Beware however that some operations present in "with" clause may depend on others, which are then generated implicitly by Lnt2Lotos. For instance, if a set type T has a "with subset" clause, then an operation "member" will also be generated for T, thus preventing users from defining their own version of "member".
Some operations should ensure properties, which cannot be checked automatically but are key for program correctness. In particular:

- Obviously, all operations named $==$ or $=$ of profile " $T, T \rightarrow$ Bool" should be equivalence relations (i.e., they should be transitive, reflexive, and symmetric). All operations named != or <> of profile $T, T \rightarrow$ Bool" should implement the negation of $==$ or $=$.
- Operations named < of profile " $T, T \rightarrow$ Bool" should be total orders (i.e., for every every two values v_{1} and v_{2} of type $T, v_{1}<v_{2}$ iff not $v_{2}<v_{1}$) if they are used for set or sorted list types. Otherwise, for instance, if "<: $T, T \rightarrow$ Bool" is not a total order and a type T^{\prime} is defined as "set of T with $==$ ", then the operation $==$ defined by Lnt2Lotos (which returns true only if its operands are structurally identical) will not be an equivalence relation, because the representation of the elements of T^{\prime} is not canonical (i.e., identical elements may have structurally different representations).

If all user-defined operations named $==,=,!=,\langle>,<,<=,>$, and $>=$ of profile " $T, T \rightarrow$ Bool" satisfy the above properties, then those generated by LnT2Lotos also ensure the above properties.

5.8 Predefined function pragmas

The LnT syntax enables function pragmas to be attached to predefined functions in the "with" clauses:
(PFP1) In the list predefined_function_pragma $a_{1} \ldots$ predefined_function_pragma ${ }_{n}$ of each predefined function declaration, there should be at most one pragma of each kind (i.e., there cannot be two "!external" pragmas, nor two "!implementedby "...""/"!implementedby "C:..."" pragmas, nor two "!implementedby "LOTOS:..."" pragmas, etc.) [checked by Lnt2Lotos]
(PFP2) This constraint was removed in September 2022; see item \#2822 in the \$CADP/HISTORY file.
(PFP3) This constraint was removed in September 2022; see item \#2822 in the \$CADP/HISTORY file.

The pragmas "!implementedby "..."", "!implementedby "C:..."" and "implementedby "LOTOS:..."" for the predefined functions "get" and "set" enable one to control the names of the C functions and Lotos operations following the same rules as for standard functions (see Section 7.6).

Predefined functions support a pragma !external. In that case, the code of the corresponding function is not generated automatically, and its definition must be provided as external code, as explained in chapter 7 for general functions.
In pragmas "!implementedby "C:..."" and "!implementedby "LOTOS :..."", the prefixes C and LOTOS are case-insensitive and can alternatively be written using any combination of upper- and lower-case characters, such as c, lotos, Lotos, etc.

5.9 Module "with" clauses

A "with" clause in a module M provides a list of predefined functions to be declared automatically in each type definition of M (see Section 4.2); this list, given at the module level, is subsequently enriched by the list declared in the "with" clause of each type definition in M.
Notice that the declarations of predefined functions in the "with" clause of a module do not allow pragmas, since this could create problems. For instance, a pragma "!implementedby "C:..."" for a predefined function declared by the "with" clause of a module M leads to name conflicts for the generated C functions if M contains several type definitions.

Chapter 6

Channel definitions in Lnt

6.1 Notations

This chapter uses the BNF notations defined in Section 3.1 and the non-terminals defined in Chapter 5. The following additional conventions are used:

- $\quad \Gamma$ is a channel identifier
- T is a type identifier
- X is a variable identifier

6.2 Syntax

```
channel_definition ::= channel }\Gamma\mathrm{ is channel definition
    channel_profile }\mp@subsup{}{0}{}\mathrm{ ,
    ...,
    channel_profilen
    end channel
```

channel_profile $::=$ (profile_parameters $_{1}, \ldots$, profile_parameters $_{n}$) channel profile
profile_parameters $::=X_{0}, \ldots, X_{n}: T \quad$ profile parameter list

6.3 Channels

A channel defines a set of channel profiles. If a channel has more than one profile, it is called overloaded.
(CH1) The channel names must be pairwise distinct. [checked by LnT2Lotos]
(CH2) The profiles in a channel definition must be pairwise distinct. [checked by Lnt2Lotos]
(CH3) There exists a predefined channel identifier (noted "none") that is implicitly declared at the top level and is visible in each Lnt module. This channel is defined as

channel none is () end channel

and thus can be used to declare events that are used either as gates to perform pure synchronization or as exceptions without parameters. This channel must not be redeclared explicitly. [checked by Lnt2Lotos]
(CH4) To avoid confusion with the keyword "any" (always written in lower case), user-defined channel names should be distinct from "ANY", "Any", or any identifier that is identical to "any" modulo case-insensitive string comparison. [checked by Lnt2Lotos]

6.4 Channel profiles

A channel profile is a possibly empty list of named parameters.
(CP1) The types T occurring in channel profiles must have been declared, unless they are predefined types. [checked by CÆSAR/CÆSAR.ADT]
(CP2) The variable identifiers in a channel profile must be pairwise distinct. [checked by Lnt2Lotos]
(CP3) In the same channel definition, profile parameters declared with the same variable identifier should have the same type. [checked by Lnt2Lotos]

6.5 Gate and exception events

LnT has a concept of "event", which serves for two purposes:

- Events can be used to model gates. As in LOTOS, gates can be used for input/output communication or synchronization. This can only occur in Lnt processes, since LnT constructors, functions, and procedures perform only local calculations and are not allowed to engage in communication or synchronization.
- Events can also be used to model exceptions. This can occur in Lnt functions, procedures, and processes, all of which can trigger exceptions using the "raise" construct. Constructors are not allowed to raise exceptions, as these operations are assumed to be total. Thus, all the events present in LNT functions and procedures represent exceptions.

LNT supports the concept of exceptions in the following way:

- In the current version of Lnt2Lotos, exceptions cannot carry value parameters. Thus, every exception must be declared with channel "none". This constraint may be relaxed in the future.
- In the current version of Lnt2Lotos, exceptions are uncatchable: when an exception is raised at runtime, the executed program prints a message and stops. Thus, so far, Lnt exceptions can only be used to model unwanted conditions that provoke a fatal termination of the entire system.
- Lnt follows the checked exception paradigm, meaning that the exceptions raised in a routine are not global objects, but must be declared as formal parameters of this routine. Syntactically, such parameters are declared between square brackets.
- When a function, a procedure, or a process that raises exceptions is called, its formal exception parameters must be instantiated with actual exceptions, in the same way as passing arguments to a function call, but still using square brackets. This is done by inserting a bracketed list of actual exceptions right after the routine identifier, e.g., "next_element [end_of_list] (x)", "sum [overflow, underflow] (x, y)", etc., and "x sum [overflow, underflow] y" in the particular case of an infix function.
- The two latter items merely and straightforwardly extend the rules that exist for gates in Lotos and LNT processes: each process must be declared with formal event parameters, which have to be instantiated with actual events when the process is called.
- In the current version of Lnt2Lotos, it is not allowed to freely mix both types of events: an exception cannot be used where a gate is expected, and vice-versa.
- However, Lnt2Lotos does not statically detect the case where, in a process call, a formal exception parameter is instantiated with an actual gate. In such case, Lnt2Lotos will emit no warning and generate Lotos code that compiles properly. Unfortunately, at run-time, the parameter substitution will not take place. Such an issue does not occur in function and procedure calls.

6.6 Predefined events

In addition to user-defined events, there are three special events in LNT:

- The internal (or invisible) event is noted "i" in Lnt and Lotos. This event corresponds to the notion of invisible action noted τ in concurrency-theory textbooks. It is a gate (i.e., not an exception), but it cannot be actually used for communication or synchronization. The channel of this event is "none".
- The continuation (or successful termination) event is noted " δ ". This event does not appear explicitly in the syntax of Lotos and Lnt, but appears in the dynamic semantics of Lotos and LnT processes. This event appears each time a behaviour terminates, yielding the control to another behaviour to be executed in sequence. For example, the "null" behaviour of LnT generates an action on the event " δ ". The channel of this event is "any".
- The anonymous event is noted "unexpected" in the concrete LnT syntax (notice that this is not a reserved keyword, but a predefined event identifier) and ξ in the semantics of Lnt. This event is an exception declared implicitly at the top level and thus should never occur in event declarations. The channel of this event is "none".

6.7 Compatible events

In LNT routines, formal event parameters can be typed by a channel (following the ideas of [Gar95]) or declared as untyped (like Lotos gates) using the "any" keyword.
We therefore define a compatibility relation between events, so as to determine when a formal event parameter E_{1} can be instantiated by an actual event E_{2}.
Two events E_{1} and E_{2} are compatible if and only if:

- E_{1} and E_{2} are both declared as exceptions or are both declared as gates, and
- E_{1} and E_{2} are both untyped (i.e., declared with "any") or are both declared with the same channel Γ.

The former rule expresses that a formal event declared as an exception (resp. as a gate) must be instantiated by an actual event declared as an exception (resp. as a gate). Consequently, the actual event parameters used in a function call must be exceptions.
The latter rule is based upon "name equivalence" for channels, which simplifies the static semantics and fits smoothly into the philosophy of Lotos; the motivation for this choice is given more explicitly in [Gar95].

Chapter 7

Function definitions in LNT

7.1 Notations

This chapter uses the BNF notations defined in Section 3.1 and the non-terminals defined in Chapters 5 and 6 .
The following additional conventions are used:

- F is a function identifier
- X is a variable identifier
- I is a statement
- V is an expression
- P is a pattern
- L is a loop label
- E is an event identifier (which may denote either a gate or an exception)

The present chapter gives syntactic and semantic definitions for functions and procedures. Many of these definitions are reused later for processes in Chapter 8, since processes are a superset of procedures. For conciseness, the definitions of the present chapter are generalized to the case of processes whenever appropriate.

7.2 Syntax

```
function_definition ::= function F[[formal_events}\mp@subsup{\mp@code{O}}{0}{},\ldots,\mp@subsup{\mathrm{ formal_events }}{m}{}]
    [(formal_parameters },\ldots,..,\mp@subsup{\mathrm{ formal_parameters }}{n}{})][:T] i
    function_pragma _...function_pragma l
    precondition}\mp@subsup{n}{1}{}\ldots\mp@subsup{\mathrm{ precondition }}{j}{
    postcondition _...postcondition}
```



```
    I
    return [ V ]
    raise E [()]
    assert V[raise E [()]] assertion
    X := V assignment
    X[V}]:=\mp@subsup{V}{1}{}\quad\mathrm{ array element assignment
    [ eval ][X := ] F [[actual_events] ] (actual_parameter 
        actual_parametern
    var var_declaration }\mp@subsup{|}{0}{\prime},\ldots,\mp@subsup{\mathrm{ var_declaration }}{n}{}\mathrm{ in variable declaration
        I
    end var
    case V},\mp@code{,\ldots,V}\mp@subsup{V}{\ell}{
        [ var var_declaration }\mp@subsup{0}{0}{},\ldots,\mp@subsup{var_declaration}{n}{}]\mathrm{ in
        match_clause }\mp@subsup{0}{0}{ -> I
        | ...
        | match_clause m -> Im
    end case
    if V}\mp@subsup{V}{0}{}\mathrm{ then }\mp@subsup{I}{0}{}\quad\mathrm{ conditional statement
        [ elsif V then I
        elsif }\mp@subsup{V}{n}{}\mathrm{ then }\mp@subsup{I}{n}{}
        [ else }\mp@subsup{I}{n+1}{}\mathrm{ ]
        end if
        loop forever loop
        I
    end loop
    loop L in breakable loop
        I
    end loop
    while V loop while loop
        I
    end loop
    while V loop L in breakable while loop
        I
    end loop
for }\mp@subsup{I}{0}{}\mathrm{ while V by I}\mp@subsup{I}{1}{}\mathrm{ loop for loop
    I
    end loop
for I}\mp@subsup{I}{0}{}\mathrm{ while V by I}\mp@subsup{I}{1}{}\mathrm{ loop L in breakable for loop
    I
```


end loop

break L loop break
use $X_{0}, \ldots, X_{n} \quad$ variable use
access $E_{0}, \ldots, E_{n} \quad$ event access
var_declaration $::=X_{0}, \ldots, X_{n}: T \quad$ variable list

actual_events $::=$	E_{1}, \ldots, E_{n}
	\mid
$E_{\text {formal }, 1} \rightarrow E_{\text {actual }, 1}, \ldots, E_{\text {formal }, n} \rightarrow E_{\text {actual }, n}[, \ldots] \quad$positional style named style	

actual_parameter $::=$	V	actual parameter "in"
	\mid	$? X$
	$\mid ? X$	actual parameter "out"
		actual parameter "in out"

$V::=$	X	
	\mid	X. in
	variable	
	result	input parameter value (in postcondition only)
	output parameter value (in postcondition only)	
	function result (in postcondition only)	

© INRIA 2005-2024 - All rights reserved - Tous droits réservés

$C\left[\left(V_{1}, \ldots, V_{n}\right)\right]$	constructor call
$V_{1} C V_{2}$	infix constructor call
$F[[$ actual_events $]]\left[\left(V_{1}, \ldots, V_{n}\right)\right]$	function call
$V_{1} F[[$ actual_events $]] V_{2}$	infix function call
$V .[[E]]$ field	field selection
$V .[[E]]\left\{\right.$ field $_{0}->V_{0}, \ldots$, field $\left._{n}->V_{n}\right\}$	field update
$V_{0}\left[V_{1}\right]$	array element access
V of T	type coercion
(V)	parenthesized expression
(V)	list expression

7.3 Resolution of syntactic ambiguities

Ambiguity 1

In a statement I having the form " $X:=Z[$ [actual_events $]]\left(V_{1}, \ldots, V_{n}\right)$ ", where Z is an identifier and where V_{1}, \ldots, V_{n} are value expressions, there is a syntactic ambiguity, as statement I can be parsed either using the assignment rule (in such case " Z [[actual_events]] $\left(V_{1}, \ldots, V_{n}\right)$ " is parsed as an function-call expression) or using the procedure-call rule.
This ambiguity is solved on the semantic level. Indeed, identifier Z must be a function identifier and cannot be a procedure identifier, because Z is invoked here with "in" or "in var" parameters only, whereas a procedure has at least one "out", "out var, or "in out" parameter. Thus, statement I must be interpreted as an assignment to X of a call to function Z.

Ambiguity 2

In a pattern P having the form " $Z\left[\left(P_{0}, \ldots, P_{n}\right)\right]$ ", where Z is an identifier, there is a syntactic ambiguity between the constructed pattern rule and the constant pattern rule.
Similarly, in a pattern P having the form " $V_{1} Z V_{2}$ ", there is also a syntactic ambiguity between the constructed pattern rule and the constant pattern rule.
This ambiguity is resolved on the semantic level. The pattern P is considered to be a constructed pattern if at least one of the patterns P_{0}, \ldots, P_{n} is not a constant pattern or if there exists a constructor Z whose arguments have the same types as P_{0}, \ldots, P_{n} and whose result has the same type as P.

Ambiguity 3

In a value expression V having the form " Z ", where Z is an identifier, there is a syntactic ambiguity between a variable, a call to a constructor without parameter, and a call to a function without parameter.
This ambiguity is resolved on the semantic level. If a variable named Z is declared in the current context, then V is considered a variable. If not, V is assumed to be a constructor call or a function call.

Thus, priority is given to variable identifiers with respect to constructor and function identifiers.
Notice that a variable Z can coexist with functions and/or constructors having the same name and without parameter. In such cases, the expression Z is understood as referencing the variable, but it is always possible to call the functions and/or constructors by having their names followed by empty parentheses, i.e. $Z()$.
In expressions, Lnt2Lotos makes no distinction between a function call F and a constructor call C. This ambiguity is solved by CÆSAR/CesAr.adt.

Precedence rules

The following precedence rules apply to patterns and value expressions. The precedence of operators (from highest to lowest) is:

- in patterns: prefix constructed patterns, of (type coercion), infix constructed patterns (see next paragraph), as (aliasing)
- in value expressions: prefix function calls, array element accesses, dotted notations (field selection and field update), of (type coercion), infix function calls (see next paragraph), and constructor calls

The precedence of operators (from highest to lowest) in infix constructed patterns and infix function calls is:

- "of", "." field selection and update
- infix operators not listed below
- "**"
- "*", "/", "div", "mod", "rem"
- "+", "-"
- "==", "=", "!=", "<>", "<", "<=", ">", ">="
- "and", "and then" (not available as constructor), "or", "or else" (not available as constructor), "xor", "=>", "<=>"

The symbols "and", "or", "xor", "div", "mod", and "rem" are keywords, which must be written using lower-case letters. Identifiers containing upper-case letters (e.g., 'AND" or "Div") are assumed to be user-defined infix operators (with highest precedence). To avoid any confusion with the corresponding lower-case infix operators, a warning is emitted if parentheses are missing. The symbols "and then" and "or else" are also keywords and using upper-case letters would trigger a syntax error.

The infix Boolean connectors "and", "and then", "or", "or else", "xor", "<=>", and "=>" having the same precedence, parentheses should be used when combining them. Absence of parentheses triggers a warning, as for instance "x and y or z ". Similarly, parentheses should be used when combining distinct infix functions, which are neither keywords nor key symbols (i.e., "other infix operators" in the above list).
All (infix) operators of same precedence are parsed from left to right, meaning that " $V_{1} o p_{1} V_{2} o p_{2} V_{3}$ " is parsed as " $\left(V_{1} o p_{1} V_{2}\right) o p_{2} V_{3}$ " rather than " $V_{1} o p_{1}\left(V_{2} o p_{2} V_{3}\right)$ ".
Examples follow:

- "E (-1 == $x-2) "$ is parsed as "E $(-1==(x-2)) "$, since " - " has precedence over "==".
- "x gcd $1+y$ " is parsed as "($\mathrm{x} \operatorname{gcd} 1)+\mathrm{y}$ ", since " gcd " has precedence over "+".
- "x gcd y scm z" triggers a warning, since "gcd" and "scm" are not keywords and have same precedence.

To ensure the compatibility between Lnt2Lotos and Traian, the first symbol following T in a pattern of the form "any T " should not be an identifier. Otherwise, a warning message is triggered. The warning can be suppressed by using parentheses, e.g., a pattern of the form "any $T C P$ " should rather be written "(any T) $C P$ ". Note that "any T of T " does not require parentheses around "any T ", as "of" is a keyword.

7.4 Variables

The data part of LNT is a fully imperative language in syntax and semantics.
LnT supposes the existence of a memory: a set of variables (noted X in this manual) which can store values, and which can be accessed for read and write operations.
However, the static semantics constraints impose a clean imperative style, in the sense that errors in manipulation of variables are signalled at compile-time, and should not produce runtime errors.

These static semantics constraints are based on two principles:
(VAR1) LnT is strongly typed: each variable X must be declared before being used. The declaration assigns X a type T, and X keeps the same type T throughout its lifetime.
Variables are declared in "var ... end var" statements, "case ... end case" statements, and function definitions (as formal parameters).
Variables are used in value expressions and function calls.
The lifetime (or scope) of a variable extends from its declaration to the end of the statement in which it is declared (for "var ... end var" and "case ... end case" statements), or in the whole function definition (for formal parameters of functions). Outside this scope, the variable does not exist. Declarations can be nested: any re-declaration, whether with the same type or a different type, hides the outer declaration.

The strong typing is [checked by CÆSAR/CÆSAR.ADT].
(VAR2) Access to an uninitialized variable is signalled at compile-time: variables must be assigned before being used.
Variables can be assigned in assignment statements " $X:=V$ ", by procedure calls with "out", "out var", or "in out" parameters, or by patterns in case statements.
A consequence of this constraint is that every "out" or "out var" function parameter must be assigned before the function returns. [checked by Lnt2Lotos]

7.5 Function definitions

A function definition consists of a function name F, optional formal_events ${ }_{0}, \ldots$, formal_events $_{m}$, a (possibly empty) list of formal parameters formal_parameter ${ }_{1}, \ldots$, formal_parameter $_{n}$, an optional return type T, optional pragmas function_pragma $a_{1} \ldots$ function_pragma $_{l}$, optional preconditions
precondition $_{1}, \ldots$, precondition $_{j}$, optional postconditions postcondition ${ }_{1}, \ldots$, postcondition $_{k}$, and some instruction I_{0} called the body of the function:

$$
\begin{aligned}
\text { function_definition }::= & \text { function } F\left[\left[\text { formal_events }_{0}, \ldots, \text { formal_events }_{m}\right]\right] \\
& {\left[\left(\text { formal_parameters }_{1}, \ldots, \text { formal_parameters }_{n}\right)\right][: T] \text { is } } \\
& \text { function_pragma }_{1} \ldots \text { function_pragma }_{l} \\
& \text { precondition }_{1} \ldots \text { precondition }_{j} \\
& \text { postcondition }_{1} \ldots \text { postcondition }_{k} \\
& {\left[I_{0}\right] }
\end{aligned}
$$

A function can be defined without parameters. In this case, the parentheses can be omitted.
The body I_{0} computes the result value of F and the output parameters (those declared of mode "out", "out var", or "in out").
The following static semantics constraints apply to F :
(FD1) If F has a return type T, this type must refer to an existing type. [checked by CÆSAR/CÆSAR.ADT]
(FD2) If F has a return type T, I_{0} must return a result of type T. [checked by CÆSAR/Cestar.ADT]
(FD3) Two functions can have the same name if their profiles (i.e. the types and modes of formal parameters or the result type) differ. Such functions are said to be overloaded. [checked by CÆSAR/CÆSAR.ADT]
(FD4) This constraint was removed in January 2017; see item \#2276 in the \$CADP/HISTORY file.
(FD5) If F has no return type, I_{0} must not return a result, and must have at least one "out", "out var", or "in out" parameter. Indeed, a procedure with no result and only "in" and/or "in var" parameters does not perform useful computation. [checked by LnT2Lotos]
(FD6) If F has a return type T and exactly two parameters, which are "in" and/or "in var" parameters, then it can be used both in prefix and infix forms. [checked by LnT2Lotos]
(FD7) If the name of F is a special identifier, then F must have a result type.
(FD8) If the name of F is a special identifier, then F must not have any "out", "out var", or "in out" parameter.

7.6 Function pragmas

The optional pragmas attached to a function give hints about how the translation to Lotos and C of the source code should be performed.
When translating a non-external Lnt function F, Lnt2Lotos may generate one or several Lotos operations. More precisely, there will be one Lotos function generated to compute the result of F, plus one Lotos function for each "out", "out var", and "in out" parameter of F.

The "!implementedby "LOTOS:..."" pragma attached to an LNT function F enables one to specify precise names to be used by Lnt2Lotos when generating the Lotos function(s) corresponding to the translation of F. This pragma is useful when interfacing generated Lotos code with hand-written Lotos code.

The name of the generated Lotos functions is determined by name within the "!implementedby "LOTOS: name"" pragma. Precisely, if F has no "out"/ "out var"/ "in out" parameter, then a single Lotos function is generated. The name of this Lotos function is name. Otherwise, the name of each Lotos function is determined by concatenating name with two consecutive underscore characters ("-") and the name of the corresponding "out" / "out var" / "in out" parameter of F, or with the special name "return" to denote the result returned by F.
The "!implementedby "C:name"" (or simply "!implementedby "name"") pragma attached to an Lnt function F enables one to specify precise names to be used by CÆSAR.ADT when generating the C function(s) corresponding to the translation of the Lotos operation(s) generated by Lnt2Lotos for F. This pragma is useful when interfacing generated Lotos code with hand-written or external C code. The C name is determined by name using the same rules as for the "!implementedby "LOTOS: name"" pragma.
The "!external" pragma attached to an LnT function F enables one to use external (handwritten) C or Lotos functions in an Lnt module. Precisely, if F has an "!external" pragma, Lnt2Lotos behaves as follows:

- If F has an "!implementedby "LOTOS: name"" pragma, then LNT2LOTOS does not generate any Lotos function corresponding to F as this function is supposed to be defined by external Lotos code.
Note that name is currently silently ignored; the external function is supposed to have the same name as F. This limitation will be removed in the future.

Note also that if F has "require" or "ensure" clauses, then these clauses are ignored. This limitation will be removed in the future.

- Otherwise, Lnt2Lotos generates Lotos functions named in the same way as non-external functions but equipped with a special Lotos comment that declares them as external C functions in the generated Lotos code. The corresponding C functions must be be provided in a ".fnt" file (see Section 2.5).

The following static semantics constraints apply to the pragmas of a function F :
(FPG1) In the list function_pragma $a_{1} \ldots$ function_pragma $_{n}$ of each function definition, there should be at most one pragma of each kind (i.e., there cannot be two "!external" pragmas, nor two "!implementedby "LOTOS:..."" pragmas, nor two "!implementedby "...""/"!implementedby "C:..."" pragmas, etc.) [checked by LnT2LOTOS]
(FPG2) If the pragma "!external" is present, the body I_{0} should be "null". [checked by Lnt2Lotos]
(FPG3) If both pragmas "!external" and "!implementedby "LOTOS:..."" are present, then the function can neither have "out", "out var", nor "in out" parameters. [checked by Lnt2Lotos]
(FPG4) In pragmas "!implementedby "name"" and "!implementedby C: name"" for all functions, the values of name should be pairwise distinct. [checked by Lnt2Lotos]
(FPG5) This constraint was removed in September 2022; see item \#2822 in the \$CADP/HISTORY file.
(FPG6) This constraint was removed in December 2022; see item \#2837 in the \$CADP/HISTORY file.
(FPG7) To avoid name clashes in the generated Lotos code, the name provided by a pragma "!implementedby "LOTOS: name"" to a non-external function should not be a name of another Lnt function, either predefined or defined by the user. In particular, cyclic or self references such as "function F is !implementedby "LOTOS:F" ..." are forbidden unless F is declared as "!external". [checked by CÆSAR/CÆAAR.ADT]

In pragmas "!implementedby "C:..."" and "!implementedby "LOTOS:..."", The prefixes "C:" and "LOTOS:" are case-sensitive. Other forms, such as "c:" and "Lotos:" are rejected.

7.7 Lists of formal events

formal_events $::=$ formal_event_mode event_declaration

The above clause declares a list of formal event parameters E_{0}, \ldots, E_{n}.
In this definition, the formal_event_mode non-terminal denotes an optional occurrence of the "raise" keyword. Its semantics is the following:

- In Lnt processes, this keyword is meaningful and serves to distinguish between exceptions and gates. The presence of the "raise" keyword declares a list of exceptions, and the absence of this keyword declares a list of gates.
- In Lnt functions, the presence or absence of this keyword has no effect, since all events occurring in a function are assumed to be exceptions.

The following static semantic constraints hold:
(FE1) In a function (resp. process) definition, the formal events E_{0}, \ldots, E_{n} must be pairwise distinct. [checked by Lnt2Lotos]
(FE2) In a function (resp. process) definition, each formal event E_{i} must be different from the predefined event noted "i". [checked by Lnt2Lotos]
(FE3) In a function (resp. process) definition, each formal event E_{i} must be different from the predefined event noted "unexpected". [checked by Lnt2Lotos]
(FE4) In a function definition, the channel Γ must be equal to "none" (see Section 6.5). [checked by Lnt2Lotos]

7.8 Lists of formal parameters

formal_parameters $::=$ parameter_mode $X_{0}, \ldots, X_{n}: T$
(C) INRIA 2005-2024 - All rights reserved - Tous droits réservés

The above clause declares a list of variable parameters X_{1}, \ldots, X_{n}, which all have the same mode parameter_mode and the same type T.
(FP1) In a function definition, the names of the formal parameters must be pairwise distinct. [checked by Lnt2Lotos]
(FP2) T must refer to an existing type. [checked by CesAr/CÆSAR.ADT]

7.9 Modes of formal parameters

```
parameter_mode ::= [ in ]
    | in var
    | out
    | out var
    | in out
```

A value parameter declared with the keyword "in" denotes a constant parameter. The body I_{0} of the function should not change the value of an "in" parameter.
A value parameter declared with the keyword "in var" denotes a constant parameter. The body I_{0} of the function can change the local value of an 'in var" parameter, but this change is invisible to the caller.

A value parameter declared with the keyword "out" is a result parameter that must be assigned by I_{0}, and its value is visible after the function call. The body I_{0} of the function should not read the value of an "out" parameter.
A value parameter declared with the keyword "out var" is a result parameter that must be assigned by I_{0}, and its value is visible after the function call. The body I_{0} can read the value of an "out var" parameter after it has been assigned.

A value parameter declared with the keyword "in out" is a modifiable parameter that has an initial value. I_{0} may modify this value. The value of the parameter assigned by I_{0} is visible after the function call.
The default mode is "in".
The following static semantics constraint applies to the body I_{0} of function F :
(FA1) For each formal parameter X with mode "out" or "out var", X must be assigned a value on all execution paths before F returns. Section 7.11 explains how a variable can be assigned a value, and how a function can return. [checked by Lnt2Lotos]
(FA2) For each formal parameter X with mode "in out", X must be assigned a value before F returns. Otherwise, X should be rather declared with mode "in". [checked by LnT2Lotos, leading to a non-fatal warning]
(FA3) For each formal parameter X with mode "in out", there should exist at least one execution path on which the value of X is read before F returns and before X is modified again (should it be). Otherwise, X should rather be removed (if X is also never assigned), or declared with mode "out". [checked by Lnt2Lotos, leading to a non-fatal warning]
(FA4) For each formal parameter X with mode "out var", there should exist at least one execution path on which the value of X is read after being assigned. Otherwise, X should be rather declared with mode "out". [checked by Lnt2Lotos, leading to a non-fatal warning]
(FA5) For each formal parameter X with mode "in", X should never be assigned. [checked by Lnt2Lotos, leading to a non-fatal warning]
(FA6) For each formal parameter X with mode "in" or "in var", there should exist at least one execution path on which the value of X is read before F returns and before X is modified again (should it be). Otherwise, X should rather be removed (if X is also never assigned), or transformed into a local variable. [checked by Lnt2Lotos, leading to a non-fatal warning]
(FA7) For each formal parameter X with mode "in var", there should exist at least one execution path on which the value of X is modified. Otherwise, X should be rather declared with mode "in". [checked by Lnt2Lotos, leading to a non-fatal warning]

In the rest of this document, a function that has at least one formal parameter declared with mode "out", "out var", or "in out", is called a procedure.

7.10 Preconditions and postconditions

```
precondition ::= require V [raise E [()]];
postcondition ::= ensure V [raise E [()] ];
```

A "require" clause denotes a function precondition. V is a Boolean expression, whose variables must be formal parameters declared with mode "in", "in var", or "in out" (see Section 7.9).

When entering a function, a precondition "require V raise E " or "require V raise E ()" raises exception E if the value of V is false when replacing every parameter X by its input value. The syntax "require V " is a shorthand notation for "require V raise unexpected".
An "ensure" clause denotes a function postcondition. V is a Boolean expression, whose variables must be formal parameters. In V, the value expression " X.in" can be used to denote the input value of X if X is a parameter declared with mode "in", "in var", or "in out". The value expression " X. out" can be used to denote the output value of X if X is a parameter declared with mode "out", "out var", or "in out" (see Sections 7.9 and 7.13.1). V may also contain occurrences of the keyword "result" to denote the function result, if any (see Section 7.13.2).
Just before leaving a function normally (i.e., when the control reaches a "return" instruction or the end of the function, but not when an exception is raised), a postcondition "ensure V raise E " or "ensure V raise E ()" raises exception E if the value of V is false. The syntax "ensure V " is a shorthand notation for "ensure V raise unexpected".
(AF1) If event E is different from "unexpected", then it must have been declared as a parameter of the current function. [checked by Lnt2Lotos]
(AF2) The variables occurring in a precondition must be formal parameters declared with mode "in", "in var", or "in out". [checked by Lnt2Lotos]
(AF3) The variables occurring in a postcondition must be formal parameters. [checked by Lnt2Lotos]
(AF4) In a postcondition, if X is a parameter declared with mode "in" or "in var", then it cannot occur in V under the form " X. out". [checked by Lnt2Lotos]
(AF5) In a postcondition, if X is a parameter declared with mode "out" or "out var", then it cannot occur in V under the form " X.in". [checked by Lnt2Lotos]
(AF6) In a postcondition, if X is a parameter declared with mode "in out", then it can only occur in V under one of the forms " X. in" or " X. out" (excluding the ambiguous form " X "). [checked by Lnt2Lotos]
(AF7) In a postcondition, the "result" keyword can be used only if the function returns a value. [checked by LnT2Lotos]

Note: A function F declared with the pragma "!external" can have preconditions and/or postconditions. In such a case, before translation to Lotos, Lnt2Lotos expands F into two Lnt functions: an auxiliary function with same profile as F but new (unused) name, to which the "!external" and "!implementedby "...""/"!implementedby "C:..."" pragmas of F are attached, and whose body is defined as "null"; and the function F itself, from which the "!external" and "!implementedby "...""/"!implementedby "C:..."" pragmas are detached, and whose "null" body is replaced by a call to the above auxiliary function. As expected, when F is called from an LNT program, the preconditions (if any) are checked, the external function is called, and finally the postconditions (if any) are checked. Obviously however, calling the external C function directly from a C program does not yield a verification of the preconditions and/or postconditions. Note that this expansion of F does not change the name of the Lotos operations implementing F. In particular, if F has an "!implementedby "LOTOS:..."" pragma, then this pragma remains attached to F. Therefore, calling these operations from a Lotos program remains possible in the same way as any other function.
Note: Each semicolon occurring between successive preconditions (resp. postconditions) is a sequential composition operator, meaning that their execution is sequential. If several preconditions (resp. postconditions) are violated, the exception corresponding to the first one (in reading order) is raised. By contrast, the semicolon delimiting the sequence of preconditions and the sequence of postconditions and the semicolon delimiting the sequence of postconditions and the function body are not sequential composition operators, since the postconditions are not evaluated where they appear, but only when leaving the function.

7.11 Statements

Each Lnt statement is expected to terminate. Although termination cannot be checked automatically in the general case, LnT2Lotos may issue error messages when it is certain that a given statement (e.g., the body of a function or a procedure) will never terminate.

7.11.1 Null statement

This statement has no effect. It does not return any value nor assign any variable.

7.11.2 Sequential composition

The evaluation of the sequential composition " $I_{1} ; I_{2}$ " starts by evaluating I_{1}, and then evaluating I_{2}.

7.11.3 Return statement

In its simplest form, without a value expression, "return" makes the function return.
"return V " evaluates the expression V and makes the function return the value of V.
(R1) The simple "return" form can be used if and only if the function has no return type. [checked by Lnt2Lotos]
(R2) If the function has a return type, each execution path must contain a "return V " statement. [checked by Lnt2Lotos]
(R3) In "return V ", the type of V must be the return type of the function. [checked by CÆSAR/CÆSAR.ADT]

7.11.4 Exception raise

"raise E " makes the currently executed program print a message and stop.
For debugging purpose, this message includes the name of the identifier E (if different from "unexpected") and the name of the current Lnt function (resp. process).
(ER1) If event E is different from "unexpected", then it must have been declared by the function (resp. the process) that contains the "raise" statement. [checked by Lnt2Lotos]
(ER2) E must be an exception, which implies that its channel is "none". [checked by Lnt2Lotos]
Note: The current Lnt syntax, i.e., "raise E " or "raise E ()", enforces the restriction that exceptions do not carry value parameters (see Section 6.5).

7.11.5 Assertion

An assertion statement "assert V raise E " or "assert V raise E ()" raises exception E if the value of V is false. Otherwise, it is equivalent to null. This statement is thus equivalent to "if V then null else raise $E "$.
The syntax "assert V " is a shorthand notation for "assert V raise unexpected".
The constraints (ER1) and (ER2) of Section 7.11 .4 also apply to assertion statements.
Note that "assert V raise E " and "assert V; raise E " are fundamentally different, even if they only differ by the presence of a semicolon. In the latter case, an exception (either E or "unexpected") will always be raised, whatever the value of V.

7.11.6 Array element assignment

The statement " $X\left[V_{0}\right]:=V_{1}$ " modifies the value stored at index V_{0} of the variable X.
(C) INRIA 2005-2024 - All rights reserved - Tous droits réservés

Note that neither V_{0} nor V_{1} can contain procedure calls, i.e. calls to function with "out", "out var", or "in out" parameters.
(SAA1) The type T of variable X must be an array type. [checked by CeSAR/CÆSAR.ADT]
(SAA2) Expression V_{0} must be of type $N A T$. [checked by Cestr/CÆSAR.ADT]
(SAA3) Expression V_{1} must have the same type as elements of array type T. [checked by CÆSAR/CÆSAR.ADT]

Note that before being able to use X in an expression, X must have been assigned a value with a statement of the form " $X:=V$ ". Therefore, initializing each element of array X with a statement of the form " $X\left[V_{0}\right]:=V_{1}$ " is not sufficient to initialize X. This is because the LnT2Lotos translator cannot statically ensure that all the elements are initialized.

7.11.7 Procedure call

A procedure call has the form "[eval] [X :=] $F\left[\right.$ [actual_events]] (actual_parameter ${ }_{1}, \ldots$, actual_parameter ${ }_{n}$)".
The eval keyword is optional in function definitions, whereas it is mandatory in process definitions if the " $X:=$ " part is absent (i.e., the function does not return a result); if not, there would be an ambiguity between procedure calls and communications in the syntax of behaviours (see Section 8.2).
When F is called, its formal event parameters (if any) are replaced with the corresponding actual event parameters according to the standard call-by-value semantics
The actual events can be written either in the "positional" style or in the "named" one. In the named style:

- The notation "E formal,$i \rightarrow E_{\text {actual }, i}$ " means that the formal event parameter $E_{\text {formal }, i}$ of function F is instantiated with the actual event $E_{\text {actual }, i}$.
- The notation "..." means that each formal event parameter E of F that does not appear in $E_{\text {formal, } 1}, \ldots, E_{\text {formal, }, n}$ is instantiated with the actual event E.

The static semantics constraints (PE1) and (PE2) apply to the positional style $" E_{1}, \ldots, E_{n}$ ". The static semantics constraints (PE3) to (PE8) apply to the named style "E formal $, 1^{>} E_{\text {actual }, 1}, \ldots, E_{\text {formal }, n} \rightarrow E_{\text {actual }, n}[, \ldots]$ ". The remaining constraints (PE9) and (PE10) apply to both positional and named style.
(PE1) The number of actual event parameters of the procedure call must be equal to the number of formal event parameters of the corresponding procedure definition. [checked by CÆSAR/CÆSAR.ADT]
(PE2) Each actual event parameter E_{1}, \ldots, E_{n} must have been declared in the current context, i.e., in the function (resp. the process) that contains the call to F, except for the predefined event "unexpected". [checked by Lnt2Lotos]
(PE3) The formal events $E_{\text {formal, } 1}, \ldots, E_{\text {formal, } n}$ must be formal events of F and be pairwise distinct. [checked by Lnt2Lotos]
(PE4) Each actual event parameter $E_{\text {actual, }, 1}, \ldots, E_{a c t u a l, n}$ must have been declared in the current context, i.e., in the function (resp. the process) that contains the call to F, except for the predefined event "unexpected". [checked by Lnt2Lotos]
(PE5) If the notation "..." is used in "E formal $, 1 \rightarrow E_{\text {actual }, 1}, \ldots, E_{\text {formal }, n} \rightarrow E_{\text {actual }, n}, \ldots$ ", all the formal events of F that do not appear in $E_{\text {formal, } 1}, \ldots, E_{\text {formal, } n}$ must have been declared in the function (resp. the process) that contains the call to F. [checked by Lnt2Lotos]
(PE6) When "..." is omitted, all the formal events of F must appear in $E_{\text {formal, } 1}, \ldots, E_{\text {formal }, n}$. [checked by Lnt2Lotos]
(PE7) If event parameters are passed to F in the named style, and if F has several overloaded definitions in the current module, then each of those definitions of F must have the same formal event parameters, in the same order. [checked by LnT2Lotos]
(PE8) Function F must be defined in the current module, meaning that the named style can only be used to call routines in the same module (because, at present, Lnt2Lotos does not do sophisticated inter-module analysis). [checked by Lnt2Lotos]
(PE9) If F has event parameters but does not have value parameters, then empty parentheses are mandatory when calling this procedure, as in " $F\left[E_{0}, \ldots, E_{n}\right]$ ()", so as to avoid syntactic ambiguity with array elements when $m=0$. [checked by LnT2Lotos]
(PE10) In either named or positional style, each actual event must be compatible (as defined in Section 6.7) with the corresponding formal event of F. [checked by either LnT2Lotos or CÆSAR/CÆSAR.ADT]

Each actual parameter corresponds to a formal parameter in the definition of the procedure F (see Section 7.9) in the usual way. An actual parameter is one of the following:

- An expression V denotes an actual parameter corresponding to an "in" or "in var" formal parameter. Its value is just passed to the procedure and its variables remain unchanged when the procedure returns.
- A variable prefixed with a question mark, as in "? X ", denotes an actual parameter corresponding to an "out" or "out var" formal parameter. The variable X does not need to have a value before the procedure call. It is necessarily assigned a value when the procedure returns.
- A variable prefixed with an exclamation mark and question mark, as in "!? X ", denotes an actual parameter corresponding to an "in out" formal parameter. The variable X must have a value before the procedure call. This value is passed to the procedure, and the variable X may be assigned a new value when the procedure returns.
(PC1) The number of actual parameters of the procedure call must be equal to the number of formal parameters of the corresponding procedure definition. [checked by CÆSAR/CÆSAR.ADT]
(PC2) Each expression V must have the same type and must appear at the same position as the corresponding "in" or "in var" parameter of the procedure definition. [checked by CÆSAR/CÆSAR.ADT]
(PC3) Each variable "? X " must have the same type and must appear at the same position as the corresponding "out" or "out var" parameter of the procedure definition. [checked by CÆSAR/CÆSAR.ADT]
(PC4) Each variable "!? X " must have the same type and must appear at the same position as the corresponding "in out" parameter of the procedure definition. [checked by CÆsar/Cesar.adt]
(PC5) " $X:=$ " is present if and only if F has a return type. In this case, the type of X must be the same as the return type of F. [checked by CÆSAR/CÆSAR.ADT]
(PC6) If the procedure F is overloaded, the information given by the types and modes of its parameters and the type of the resulting value should suffice to solve the overloading. [checked by CÆSAR/CÆSAR.ADT]
(PC7) The "out", "out var", and "in out" parameters should be pairwise distinct (i.e. " $F(? X, ? X)$ " is forbidden $)$. [checked by LnT2Lotos]
(PC8) If the "[eval] $X:=F$ (actual_parameter ${ }_{1}, \ldots$, actual_parameter ${ }_{n}$) " form is used then X cannot appear among more than once in the "out", "out var", and "in out" parameters (i.e. " $X:=F(? X)$ " is forbidden). [checked by Lnt2Lotos]
(PC9) The assignment and "out", "out var", or "in out" parameter passing should be "useful", i.e., for each variable X occurring on the left-hand side of the assignment symbol ":=", or passed as an actual parameter ("? X " or "!? X "), there should exist at least one execution path on which the new value assigned to X is read before the execution completes and before X is modified again (should it be). [checked by Lnt2Lotos, leading to a non-fatal warning]

The evaluation of a procedure call begins with the simultaneous evaluation of expressions corresponding to the "in" and "in var" parameters. For the "in out" parameters, the input value is the value of the variable given as a parameter. Then, the body of the procedure is evaluated in the context of actual values for "in", "in var", and "in out" parameters. The body should assign all the "out" and "out var" parameters and should return a value if F returns a value.

7.11.8 Variable declaration

The following statement:

```
var
    var_declaration}\mp@subsup{0}{0}{}
    ...,
    var_declaration
in
    I
end var
```

declares local variables: their names and their types.
The scope of each variable is I_{0}.
Scoping is lexical: any re-declaration of a variable hides the outer declaration.
The declaration must obey the following rule:
(VD1) The names of the variables declared in "var_declaration ${ }_{0}$, ..., var_declaration ${ }_{n}$ " must be pairwise distinct. [checked by Lnt2Lotos]

7.11.9 Case statement

The most general conditional statement offered by LnT is the "case" statement:

```
case \(V_{0}, \ldots, V_{\ell}\)
    [ var var_declaration \({ }_{0}, \ldots\), var_declaration \(_{n}\) ] in
        match_clause \(_{0}\)-> \(I_{0}\)
    | ...
    | match_clausen \(->I_{n}\)
end case
```

First, the expressions V_{0}, \ldots, V_{ℓ} are evaluated. Then, the statement I_{i} corresponding to the first match_clause_i that matches V_{0}, \ldots, V_{ℓ} is executed.
Optionally, some variables can be declared at the beginning of the "case" statement. Their scopes are the match clauses and the statements I_{0}, \ldots, I_{n}.
The case patterns in the match clauses match_clause ${ }_{0}, \ldots$, match_clause $_{n}$ can bind variables declared in the optional variable declaration, as well as previously declared variables. The scope of a variable binding by a case pattern is limited by the variable's declaration only.
For example, function " f " modifies its local variable y either in the "Succ (y) " pattern or in the " y := 0" assignment.

```
function \(f(x: N a t)\) : Nat is
    var y : Nat in
        case x in
            Succ (y) -> null
        | any \(->y:=0\)
        end case;
        return y
    end var
end function
```

For example, the function "decr" decrements its parameter x by one if x is not already zero. The variable x is reassigned by the case statement and keeps its value until the end of the function.

```
function decr (in var x : Nat) : Nat is
    case x in
        Succ (x) -> null
    | any -> null
    end case;
    return x
end function
```

(CS1) The clauses match_clause ${ }_{0}, \ldots$, match_clause $_{n}$ must be exhaustive: they must cover all the possible sequences of values of the sequence of the types of V_{0}, \ldots, V_{ℓ}. This ensures that exactly one statement among I_{0}, \ldots, I_{n} will be executed at runtime. [This is not checked at compile-time by Lnt2Lotos, but is checked by the auxiliary script lnt_check on the C code generated by CÆsar.adt from the Lotos code produced by Lnt2Lotos; moreover, the Lotos and C code generated by Lnt2Lotos is such that case statements that are not exhaustive will abort at run-time when executed with a value V that is not covered by the clauses match_clause ${ }_{0}, \ldots$, match_clause $_{n}$.]
(CS2) The variables bound in the "case" pattern should be used afterwards; see rule (PA4). [checked by Lnt2Lotos, leading to a non-fatal warning]

Due to typing limitations in the early versions of the LnT2Lotos translator, each " V_{i} " should either be a variable " X " or an expression of the form " V_{i} of T " $(\forall i \in\{0, \ldots, \ell\})$. This constraint may be relaxed in the future.

A match_clause has the form " $P_{(0,0)}, \ldots, P_{(0, \ell)}\left[\right.$ where $\left.V_{0}\right]|\ldots| P_{(k, 0)}, \ldots, P_{(k, \ell)}$ [where $\left.V_{k}\right]$ ". Semantically, "match_clause $\rightarrow I$ " is strictly equivalent to:

$$
\begin{aligned}
& P_{(0,0)}, \ldots, P_{(0, \ell)}\left[\text { where } V_{0}\right] \rightarrow I \\
\mid & \ldots \\
\mid & P_{(k, 0)}, \ldots, P_{(k, \ell)}\left[\text { where } V_{k}\right] \rightarrow I
\end{aligned}
$$

The number ℓ of patterns must be equal to number of expressions in the case statement, and the corresponding types have to match.
A sequence of expressions is said to match a clause " P_{0}, \ldots, P_{ℓ} where V " when:

- it first matches the sequence of patterns P_{0}, \ldots, P_{ℓ}, and then
- the evaluation of V in the context of variables bound by the matching returns the Boolean value true.
(WT1) The expressions V_{0}, \ldots, V_{k} must be of type Boolean. [checked by CÆSAR/CÆSAR.ADT]
In " $P_{0}, \ldots, P_{\ell}[$ where $] V$ ", each P_{i} can be equal to "any". This possibility is an exception to the rule that wildcards inside patterns have to be typed explicitly (using the notation "any T").
Patterns are discussed in section 7.12

7.11.10 If statement

The "if" construct allows conditional computations, as it is included in all languages.
In LNT it has the following form:

```
if }\mp@subsup{V}{0}{}\mathrm{ then }\mp@subsup{I}{0}{
[ elsif V then I
```

```
    elsif V
[ else I In+1 ]
end if
```

(IF1) The expressions V_{0}, \ldots, V_{n} must be of type Boolean. [checked by CÆSAR/CÆSAR.ADT]

7.11.11 Breakable loop statement

A loop statement "loop L in I_{0} end loop" can be interrupted with the statement "break L ".
(BL1) A "loop L " statement cannot be declared inside a loop statement which has the same label L. [checked by Lnt2Lotos]
(BL2) A "loop L " statement must contain either a "return" statement, a "break L " statement, or a "break $L^{\prime \prime}$ statement such that the "loop L " statement occurs inside "loop $L^{\prime "}$ (otherwise it would be certain that the "loop L " never terminates). [checked by LnT2LOTOS]

7.11.12 Unbreakable loop statement

An unbreakable loop statement "loop I_{0} end loop" cannot be interrupted with a "break L " statement. However, since infinite computations should be avoided in the data part, the following static semantic constraint should be satisfied:
(UL1) A "loop" statement must contain either a "return" statement or a "break L " statement such that the "loop" statement occurs inside "loop L " (otherwise it would be certain that the "loop" never terminates). [checked by LnT2Lotos]

7.11.13 Breakable while statement

A loop statement "while V loop L in I_{0} end loop" can be interrupted with the statement "break L ".
(BW1) The expression V must be of type Boolean. [checked by CÆSAR/CÆSAR.ADT]
(BW2) A "while ... loop L " statement cannot be declared inside a loop statement which has the same label L. [checked by Lnt2Lotos]

7.11.14 Unbreakable while statement

An unbreakable while statement "while V loop I_{0} end loop" cannot be interrupted with a "break L " statement.
(UW1) The expression V must be of type Boolean. [checked by CÆSAR/CÆSAR.ADT]

7.11.15 Breakable for statement

A loop statement "for I_{0} while V by I_{1} loop L in I_{2} end loop" can be interrupted with the statement "break L ".

It is semantically equivalent to:

```
I
loop L in
    if V then I}\mp@subsup{I}{2}{};\mp@subsup{I}{1}{
    else break L
    end if
end loop
```

(BF1) The expression V must be of type Boolean. [checked by CÆSAR/CÆSAR.ADT]
(BF2) A "for ... loop L " statement cannot be declared inside a loop statement which has the same label L. [checked by LnT2Lotos]

7.11.16 Unbreakable for statement

A loop statement "for I_{0} while V by I_{1} loop I_{2} end loop" cannot be interrupted with a "break L " statement.

This statement is similar to the "for" construct of the C language. It is semantically equivalent to the statement defined above for breakable "for" statements, except that L must be a loop label that is not used elsewhere.
(UF1) The expression V must be of type Boolean. [checked by CÆSAR/CÆSAR.ADT]

7.11.17 Break statement

The "break L " statement can be used to interrupt a breakable "loop", "while", or "for statement". Loop statements can be nested, and the "break" statement enables one to interrupt a loop which is not the innermost loop.
(BS1) A statement "break L " can only be used within the body I of a loop statement of either form "loop L in I end loop", "while ... loop L in I end loop", or "for ... loop L in I end loop" declared with the same label L. [checked by Lnt2Lotos]

7.11.18 Use statement

The statement "use X_{1}, \ldots, X_{n} " marks the variables X_{1}, \ldots, X_{n} as used as if they were used in a normal expression. Apart from this, it has the same semantics as null.
(U1) The variables X_{1}, \ldots, X_{n} must have a value. [checked by Lnt2Lotos]

This statement is useful to eliminate warnings about unused "in", "in var", and "in out" parameters when the parameter modes cannot be changed and the parameters cannot be removed; see rules (FA3) and (FA6) page 63.
This statement could also be used to eliminate warnings about local variables that are not used after being assigned. However in this case, it is recommended to rather remove the useless variable assignments instead of resorting to unnecessary "use" statements.
In general, one should avoid writing "use" statements that are not strictly necessary. Thus, it is forbidden to introduce a "use X " on an execution path where variable X has been already used or will be used. At present, such check is not yet implemented, but it should be in the future.

7.11.19 Access statement

The statement "access E_{1}, \ldots, E_{n} " marks the events E_{1}, \ldots, E_{n} as accessed as if they occurred in a raise statement (in a function or in a process) or in a communication action (in a process only, see Chapter 8). Apart from this, it has the same semantics as null.
(A1) In a function (resp. process) definition, each formal event E_{i} must be different from the predefined event noted "i". [checked by Lnt2Lotos]
(A2) In a function (resp. process) definition, each formal event E_{i} must be different from the predefined event noted "unexpected". [checked by LnT2Lotos]

This statement is useful to eliminate warnings about non-accessed events.
In general, one should avoid writing "access" statements that are not strictly necessary. Thus, it is forbidden to introduce a "access E " on an execution path where event E has been already accessed or will be accessed. At present, such check is not yet implemented, but it should be in the future.

7.12 Patterns

7.12.1 Variable binding

The variables X belonging to a pattern P are "initialization" occurrences: they previously have been declared, but do not have to be initialized.
(PA1) The same variable X cannot be used more than once in the pattern sequence P_{0}, \ldots, P_{ℓ} of a single match-clause. [checked by Lnt2Lotos]
(PA2) The patterns P_{0}, \ldots, P_{n} in a constant pattern $F\left(P_{0}, \ldots, P_{n}\right)$ or in the infix constant pattern $P_{1} F P_{2}$, cannot contain any variable, wildcard, or aliasing patterns. [checked by CÆSAR]
(PA3) If a constant pattern of type T is used, an equality operator "==" of type $T, T \rightarrow$ Bool must be in scope in the same module. [checked by CÆSAR]
(PA4) For each variable X bound by the pattern, there should exist at least one execution path on which the new value of X is read before the execution completes and before X is modified again (should it be). Otherwise, "any" should be used in place of X in the pattern. [checked by Lnt2Lotos, leading to a non-fatal warning]

7.12.2 Pattern matching

The pattern-matching of a value V with a pattern P has two effects:

- It sends a Boolean result which is "true" if V has the same structure as P (i.e., V matches P), or "false" otherwise.
- If V matches P, the variables X used by P are initialized with the values extracted from V.

The result returned by matching a list of a list of values " V_{0}, \ldots, V_{ℓ} " with a list of patterns " P_{0}, \ldots, P_{ℓ} " is the conjunction of the results returned by matching V_{i} with P_{i}.
Matching is recursively defined as follows:

Pattern	Value	Condition	Effect	Result
X	V	None	X receives V	true
any T	V	None	None	true
X as P	V	P and V match	X receives V	true
X as P	V	P and V do not match	None	false
$C\left(P_{0}, \ldots, P_{n}\right)$	$C\left(V_{0}, \ldots, V_{n}\right)$	Each P_{i}, V_{i} match	None	true
$F\left(P_{0}, \ldots, P_{n}\right)$	V	$F\left(P_{0}, \ldots, P_{n}\right)$ equals V according to the operator $==$	None	true
$F\left(P_{0}, \ldots, P_{n}\right)$	V	$F\left(P_{0}, \ldots, P_{n}\right)$ does not equal V accord- ing to the operator $==$	None	false
$C\left(P_{0}, \ldots, P_{n}\right)$	$C\left(V_{0}, \ldots, V_{n}\right)$	Some P_{i}, V_{i} do not match	None	false
$C\left(P_{0}, \ldots, P_{n}\right)$	V	V has not the form $C\left(V_{0}, \ldots, V_{n}\right)$ or some V_{i} has not the same type as P_{i}	None	false
P of T	V	Same as matching P and V		
$P_{1} C P_{2}$	V	Same as matching $C\left(P_{1}, P_{2}\right)$ and V		
$P_{1} F P_{2}$	V	Same as matching $F\left(P_{1}, P_{2}\right)$ and V		

Note that the pattern " $P_{1} C P_{2}$ " has the same meaning as " $C\left(P_{1}, P_{2}\right)$ " when the infix notation of constructor C is used.
Note that the pattern " (P) " has the same meaning as " P ", but is required for instance to express right associativity of infix constructors.

Constant patterns are compared using the operator "==". It is the responsibility of the user to provide a sensible implementation of that operator.

7.12.3 List patterns

A list pattern of the form "\{P1, P2, ..., Pn $\}$ " is syntactically replaced by "cons (P1, cons (P2, ... cons (Pn, nil)...))". For example, \{\} is converted to nil and $\{0\}$ is converted to cons ($0, \mathrm{nil}$).

It is worth noticing that this syntax notation is not restricted to list types. It can also be used for sorted lists, sets, and even any LNT type that has nil and cons operations with the right profiles. Note that nil and cons do not need to be constructors. Precisely, the following constraints must be satisfied:
(PL1) All the elements $\mathrm{P} i$ must be of the same type T^{\prime} and this type must be declared. [checked by CÆSAR/CÆSAR.ADT]
(PL2) The type T of the list pattern result must be declared. [checked by CÆAAR/CÆSAR.ADT]
(PL3) The nil function must be declared (with the profile specified in section 5.7). [checked by CÆSAR/CÆSAR.ADT]
(PL4) The cons function must be declared (with the profile specified in section 5.7). If cons is not a constructor, then the list elements P1, ..., Pn cannot contain any variable, wildcard, or aliasing patterns. [checked by CÆSAR/CÆSAR.ADT]

Remind that, in the case of set and sorted list types, and unlike list expressions (see Section 7.13.9), the pattern must take into account the ordering and/or unicity constraints set by its type. For instance, considering a type of either form set of nat or sorted list of nat, the pattern $\{2,1\}$ (which is represented internally as cons (2, cons (1, nil)) cannot be matched by any value, including the value $\{2,1\}$ (which is represented internally as cons (1, cons (2, nil))) since $2>1$.

7.13 Value expressions

7.13.1 Variable

A value expression may be a variable X. The type of the expression is the type of the variable, and the result of the expression evaluation is the value of the variable X.
Only in postconditions of functions and processes, variables declared as formal parameters may occur in either form " X.in" or " X.out", to distinguish between their input and output values (see Section 7.10).
(EV1) The variable X must have been declared and assigned a value before it is used in an expression. [checked by Lnt2Lotos]
(EV2) The value expressions " X.in" and " X.out" can be used only in postconditions. [checked by Lnt2Lotos]

7.13.2 Result

The "result" keyword may be used in postconditions of functions that return a result (see Section 7.10).
(RV1) The "result" keyword can be used only in postconditions. [checked by Lnt2Lotos]

7.13.3 Constructor call

The constructor call " $C\left[\left(V_{1}, \ldots, V_{n}\right)\right]$ " computes a value of the domain of its target type.
The infix notation " $V_{1} C V_{2}$ " is equivalent to " $C\left(V_{1}, V_{2}\right)$ ".
The evaluation of a constructor call begins with the simultaneous evaluation of its actual parameters V_{1}, \ldots, V_{n}. The values obtained are used to form the constructed value which is the result of the evaluation.
(EC1) Each expression V must have the same type and must appear at the same position as the corresponding parameter of the constructor definition. [checked by CÆSAR/CÆSAR.ADT]
(EC2) If the constructor C is overloaded, the information given by the type of its parameters and the type of the resulting value should suffice to solve the overloading. [checked by CÆSAR/CÆSAR.ADT]
The type coercion operator explained below may help to solve the overloading.

7.13.4 Function call

A function call can either be written " $F\left[\right.$ [actual_events]] [(actual_parameter $_{1}, \ldots$, actual_parameter $\left.\left._{n}\right)\right]$ " (prefix notation), or " $V_{1} F\left[\right.$ [actual_events]] V_{2} " (infix notation). The latter is equivalent to " F [[actual_events]] $\left(V_{1}, V_{2}\right)$ ".

Function calls allowed inside value expressions are a particular case of procedure calls. Therefore, all constraints that have been defined for procedure calls in Section 7.11.7 also hold for function calls in the context of value expressions. The only additional constraints here are the following:
(FC1) Function F should return a value and cannot have side-effects, i.e., F must have only "in" and/or "in var" parameters. [checked by Lnt2Lotos]
(FC2) If F has event parameters and is the left-hand operand of an array element access expression, then parentheses are mandatory around the call to F, as in " $F\left[E_{0}, \ldots, E_{n}\right]\left(V_{1}, \ldots\right.$, $\left.V_{m}\right)$) [$\left.V^{\prime}\right]$ ". [checked by Lnt2Lotos]

All static semantics constraints given above for constructor calls also apply to function calls.

If F is a Lotos function, it is the programmer's responsibility to ensure that F has no side effect. A typical Lotos function cannot have side effects, but a Lotos function declared external can have side effects, depending on its actual C implementation.

7.13.5 Field selection

A field selection has the form " $V .[[E]]$ field" where V is an expression of type T, E (optional) is an exception, and field is the name of a formal parameter of a constructor of type T.
(FS1) At runtime, the value of V must be of the form " $C(\ldots)$ " where C is a constructor of type T that has a formal parameter named field. If not, then an exception (E if it is present or "unexpected" otherwise) is raised. [checked at runtime]

The selection expression returns the value of the actual parameter corresponding to field.
It is interesting to note that, while field selection is sometimes useful, in most cases it is more efficient to use a "case" instruction with pattern matching. Field selection should be used for accessing only one field, whereas pattern matching is better when several fields have to be accessed.

7.13.6 Field update

A field update has the form " $V .[[E]]\left\{\right.$ field $_{0} \rightarrow V_{0}, \ldots$, field $\left.{ }_{n} \rightarrow V_{n}\right\}$ " where V, (resp. E, field ${ }_{0}$, \ldots, field $_{n}$) respects the same semantic constraints as V (resp. E, field) in a field selection expression. Additionally:
(FU1) The expressions V_{0}, \ldots, V_{n} must have the same type as the corresponding formal parameters field $_{0}, \ldots$, field $_{n}$. [checked by CÆSAR/CÆSAR.ADT]

The update expression returns the value of V where the fields field ${ }_{0}, \ldots$, field ${ }_{n}$ have been replaced by the values resulting from the evaluation of the expressions V_{0}, \ldots, V_{n}.

7.13.7 Array element access

An array element access has the form " $V_{0}\left[V_{1}\right]$ ".
(AE1) The type of expression V_{0} must be an array type. [checked by CÆSAR/CÆSAR.ADT]
(AE2) The expression V_{1} must be of type NAT. [checked by CÆSAR/CÆSAR.ADT]
(AE3) The value of expression V_{1} must be a valid index for the array represented by expression V_{0}. [checked at runtime]

7.13.8 Type coercion

Type coercion " V of T " is allowed, to help solve the type ambiguity introduced by function and constructor overloading.
(TC1) T must be a possible type for expression V. Overloading is [checked by CÆSAR/CÆSAR.ADT].

Another source of ambiguity is the precedence of infix functions. This precedence can be forced using parenthesized expressions " (V) ".
Type coercion also serves to ease the use of range and predicate types (see Section 5.7). If type T^{\prime} is defined as a range type (i.e., "type T^{\prime} is range ... of T ") or as a predicate type (i.e., "type T^{\prime} is $\{X: T$ where $\ldots\}$ "), and if V is a value of type T, it is permitted to write " V of $T^{\prime \prime}$ " in addition to writing " V of T ", which is already permitted for any type T. The notation " V of $T^{\prime \prime}$ ", which enforces the principle of uniform reference, is actually translated to " $T^{\prime}(V)$ of $T^{\prime \prime}$ ", where, depending whether V has type T or T^{\prime}, the overloaded function T^{\prime} will be either a predefined conversion from type T to T^{\prime}, or the predefined identity function defined over T^{\prime}.

7.13.9 List expressions

A list expression of the form "\{V1, V2, ..., Vn\}" is syntactically replaced by "insert (V1, insert (V2, ... insert (Vn, nil)...))". For example, \{\} is converted to nil and \{1, 2, 3\} is converted to insert (1, insert (2, insert (3, nil))).
It is worth noticing that this syntax notation is not restricted to list types. It can also be used for sorted lists, sets, and even any LnT type that has nil and insert operations with the right profiles. Precisely, the following constraints must be satisfied:
(VL1) All the elements Vi must be of the same type T^{\prime} and this type must be declared. [checked by CÆSAR/CÆSAR.ADT]
(VL2) The type T of the list expression result must be declared. [checked by CesAR/CÆSAR.ADT]
(VL3) The nil function must be declared (with the profile specified in Section 5.7). [checked by Cestr/Cestar.adt]
(VL4) The insert function must be declared (with the profile specified in Section 5.7). [checked by CÆSAR/CÆSAR.ADT]

To improve the runtime performance, if " $\{\mathrm{V} 1, \ldots, \mathrm{Vn}\}$ " has a sorted list or set type, then it is recommended to sort $\mathrm{V} 1, \ldots, \mathrm{Vn}$ such that if $\mathrm{V} i<\mathrm{V} j$ holds and can be determined statically, then $i<j$.

Chapter 8

Process definitions in LNT

8.1 Notations

This chapter uses the BNF notations defined in Section 3.1 and the non-terminals defined in Chapters 5, 6, and 7 .

The following additional conventions are used:

- B is a behaviour
- E is an event identifier (which represents either an input/output communication gate or an exception)
- O is an offer
- Π is a process identifier

8.2 Syntax

```
process_definition ::= process \Pi[ [formal_events }\mp@subsup{0}{0}{,\ldots,\mp@subsup{formal_events m}{m}{\prime}]
                            [(formal_parameters}\mp@subsup{}{1}{\prime},\ldots,\mp@subsup{\mathrm{ formal_parameters }}{n}{})]\mathrm{ is
    process_pragma _...process_pragma 
                        precondition }\mp@subsup{\mp@code{N}}{1}{\ldots}\mp@subsup{\mathrm{ precondition }}{j}{
                        postcondition}\mp@subsup{\mp@code{N}}{1}{\ldots}\mp@subsup{\mathrm{ postcondition }}{k}{
                        B
        end process process definition
```

```
B ::= null no effect (with continuation)
    | stop inaction (without continuation)
    B1 ; B2 sequential composition
    | := V deterministic assignment
    | X := any T [where V] nondeterministic assignment
    | [eval] X := F[[actual_events] ] (actual_parameter 
    | eval F [[actual_events]] (actual_parameter 
            actual_parameter n
    | [V ] := V1 array element assignment
    var var_declaration }\mp@subsup{|}{0}{},\ldots,\mp@subsup{\mathrm{ var_declaration }}{n}{}\mathrm{ in variable declaration
        B0
        end var
    | case V}\mp@subsup{V}{1}{},\ldots,\mp@subsup{V}{\ell}{
            [var var_declaration }\mp@subsup{0}{0}{},\ldots,\mp@subsup{var_declaration}{n}{}]\mathrm{ in
                match_clause }\mp@subsup{0}{0}{}->\mp@subsup{B}{0}{
            | ...
            | match_clause m -> Bm
        end case
    | [only] if V then B
        [ elsif V}\mp@subsup{V}{1}{}\mathrm{ then }\mp@subsup{B}{1}{
            elsif }\mp@subsup{V}{n}{}\mathrm{ then }\mp@subsup{B}{n}{}
            [ else B B 
            end if
    | loop forever loop
            B0
        end loop
        | loop L in breakable loop
            B
        end loop
        while V loop while loop
            B0
        end loop
        | while V loop L in breakable while loop
            B
        end loop
        | for }\mp@subsup{B}{0}{}\mathrm{ while V by }\mp@subsup{B}{1}{}\mathrm{ loop for loop
            B
        end loop
```

| for B_{0} while V by B_{1} loop L in B_{2} end loop
| break L loop break
| use X_{1}, \ldots, X_{n} variable use
\mid access E_{1}, \ldots, E_{n} event access
| raise $E\left[\left(V_{1}, \ldots, V_{n}\right)\right] \quad$ exception raise
| assert $V\left[\right.$ raise $\left.E\left[\left(V_{1}, \ldots, V_{n}\right)\right]\right]$ assertion
| Π [[actual_events]] [(actual_parameter ${ }_{1}, \ldots$, actual_parameter $\left.\left._{n}\right)\right]$ process call
| $E\left[\left(O_{0}, \ldots, O_{n}\right)\right][$ where $V]$ communication
\mid select
B_{0}
[] ... []
B_{n}
end select
$\mid \operatorname{par}\left[E_{0}, \ldots, E_{n}\right.$ in $] \quad$ parallel composition
$\left[E_{(0,0)}, \ldots, E_{\left(0, n_{0}\right)} \rightarrow\right] B_{0}$
|| ... \|
$\left[E_{(m, 0)}, \ldots, E_{\left(m, n_{m}\right)}->\right] B_{m}$
end par
| hide event_declaration $_{0}, \ldots$, event_declaration $_{n}$ in hiding B
end hide
\mid disrupt B_{1} by B_{2} end disrupt disrupting
$\begin{array}{rlr}O:= & {[X->] V} & \text { output offer } \\ & \mid X>] ? P & \text { input offer }\end{array}$

8.3 Resolution of syntactic ambiguities

In a behaviour B, there can be a syntactic ambiguity between communications and process calls without event parameters. Here are examples of such ambiguous behaviours:

Z
$Z(1,2)$
$Z(? X)$

This ambiguity is solved on the semantic level. If the identifier Z is declared as a gate identifier in the current context, then the behaviour is considered to be a communication on gate Z. Otherwise, the behaviour is assumed to be a call to some process named Z.
Thus, priority is given to gate identifiers, meaning that, in process definitions, a formal gate parameter hides any process defined elsewhere with no event parameter.

8.4 Process definition

Lnt (like Lotos) allows a behaviour to be named using a process definition. A process is an object that denotes a behaviour; it can be parameterised by a list of formal events and a list of formal variables. Note that processes, like functions, cannot be parameters of processes: LnT is a first-order language.
A process definition consists of a process name, Π, optionally a list of formal event parameters formal_events ${ }_{0}, \ldots$, formal_events $_{m}$, optionally a list of formal parameters formal_parameter ${ }_{1}, \ldots$, formal_parameter ${ }_{n}$, optionally a list of preconditions precondition $_{1}, \ldots$, precondition $_{j}$, optionally a list of postconditions postcondition ${ }_{1}, \ldots$, postcondition $_{k}$, and a behaviour B called the body of the process:

$$
\begin{gathered}
\text { process_definition }::=\text { process } \Pi\left[\left[\text { formal_events }_{0}, \ldots, \text { formal_events }_{m}\right]\right] \\
\quad\left[\left(\text { formal_parameters }_{1}, \ldots, \text { formal_parameters }_{n}\right)\right] \text { is } \\
\text { process_pragma } \ldots \text { process_pragma }_{l} \\
\text { precondition }_{1} \ldots \text { precondition }_{j} \\
\text { postcondition }_{1} \ldots \text { postcondition }_{k} \\
B \\
\text { end process }
\end{gathered}
$$

A process can be defined without formal event parameters.
A process can be defined without formal value parameters.
The process names must be pairwise distinct. This means that (contrary to functions) overloading is not supported, even for processes with different parameter lists.
Each Lnt process Π is translated into a Lotos process Π of functionality "exit $\left(S_{1}, \ldots, S_{n}\right)$ ", where the S_{1}, \ldots, S_{n} is the list of the sorts of the formal variable parameters of mode "out" or "in out".
The preconditions and postconditions of a process have the same meaning as in functions, the only difference being that the "result" keyword cannot occur in postconditions since there is no "return" behaviour. The description of preconditions and postconditions in Section 7.10 is still valid when replacing the word "function" by "process".

8.5 Process pragmas

The optional pragma attached to a process gives hints about how the translation to Lotos and C of the source code should be performed.
The pragma "!implementedby "LOTOS: $\Pi^{\prime \prime} "$ " triggers the generation of a LOTOS process Π^{\prime} with the
same parameters and functionality as the Lotos process Π; the body of Π^{\prime} is always a call to the Lotos process Π.
The following static semantics constraints apply to Π :
(PPG1) In the list process_pragma ${ }_{1} \ldots$ process_pragma $_{l}$ of each process definition, there should be at most one pragma of each kind (i.e., there cannot be two "!implementedby "LOTOS:..."" pragmas). [checked by Lnt2Lotos]
(PPG2) The names provided by pragmas "!implementedby "LOTOS:..."" for all processes should be pairwise distinct. [checked by CÆSAR/CÆSAR.ADT]
(PPG3) To avoid name clashes in the generated Lotos code, the name provided by a pragma "!implementedby "LOTOS:..."" should not be a name of another LNT process defined by the user. In particular, cyclic or self references such as "process P is !implementedby "LOTOS:P" ..." are forbidden. [checked by CÆSAR/CÆSAR.ADT]

In pragmas "!implementedby "LOTOS:..."", the prefix "LOTOS:" is case-sensitive. Other forms, such as "Lotos:" are rejected.

8.6 Lists of formal events

The rules governing formal event parameters for functions (see Section 7.7) also apply to formal event parameters for processes.
The key difference is that in processes, formal event parameters are not necessarily exceptions, and may have a channel different from "none" or even be untyped (i.e., be declared with the channel "any").

When an event occurs in a routine, its value is the actual event passed as argument to the routine. However, in the current version of Lnt2Lotos, this general rule has practical limitations when applied to events declared as exceptions, namely:

- Lnt2Lotos cannot currently detect the case where a formal event parameter declared as an exception is instantiated by an actual event that has been declared as a gate. In this case, it generates a Lotos specification that compiles properly but executes incorrectly, i.e., without substitution of the formal exception parameter.
For instance, the following example compiles properly but when calling process P_{1} from process P_{2}, the actual event E_{2} (which is declared as a gate) is not substituted to the formal event E_{1} (which is declared as an exception):

```
process }\mp@subsup{P}{1}{[raise E E :none] (X:bool) is
        if X then
            raise E E 
        end if
end process
```

process $P_{2}\left[E_{2}\right.$:none $]$ is
-- the event E_{2} is incorrectly passed to P_{1} as it is
-- declared as a gate instead of an exception; for the moment,
-- Lnt2Lotos does not detect this kind of error
$P_{1}\left[E_{2}\right]$ (true)
end process

- If the root process is specified on the command line using the "-root" option, and if this process has formal event parameters declared as exceptions, then the value of each exception is the corresponding formal event parameter instead of the actual event passed on the command line, which is ignored.
For instance, if one uses option "-root " $P\left[E_{1}\right]$ "" and P has formal event parameter E_{2} declared as an exception, then the exception will be named E_{2} instead of E_{1}.

8.7 Lists of formal parameters

The rules governing formal value parameters for functions (see Sections 7.8 and 7.9) apply also to formal value parameters for processes.

8.8 Behaviours

The control part and the data part of LnT are symmetrical: behaviours are extensions of statements except on the following points:

- The "return" statement has no behaviour counterpart.
- It is not mandatory that every unbreakable "loop" construct be eventually interrupted, since it is very common for a process to loop forever without exiting. Rule (UL1) is thus relaxed in the control part.

As a general principle, the rules given for statements in Section 7.11 also apply to behaviours having the same syntax as these statements. In order to avoid repetition, we only discuss here those behaviours that do not exist as statements or are slightly different.

8.8.1 Stop

The "stop" behaviour terminates the execution of the enclosing process.
Note: The termination performed by "stop" is said to be unsuccessful, as it is impossible for any other process to resume sequentially after "stop" (said differently, "stop" represents a deadlock). This is quite different from the successful termination performed by the "null" operator, since "null" offers a " δ " action (see Section 6.6) that allows sequential continuation.

8.8.2 Procedure call

Procedure calls are considered similar to assignments: they execute instantaneously, and do not generate any transitions.

8.8.3 Only-if statement

Compared to the data part, the "if" construct is extended with the optional prefix "only" that is useful to implement guarded commands. Precisely, the behaviour

```
only if V}\mp@subsup{V}{0}{}\mathrm{ then }\mp@subsup{I}{0}{
elsif V}\mp@subsup{V}{1}{}\mathrm{ then }\mp@subsup{I}{1}{
...
elsif }\mp@subsup{V}{n}{}\mathrm{ then }\mp@subsup{I}{n}{
end if
is syntactic sugar for
if V}\mp@subsup{V}{0}{}\mathrm{ then }\mp@subsup{I}{0}{
elsif V}\mp@subsup{V}{1}{}\mathrm{ then }\mp@subsup{I}{1}{
...
elsif }\mp@subsup{V}{n}{}\mathrm{ then }\mp@subsup{I}{n}{
else stop
end if
```

(OIF1) An only if behaviour must not have an else branch. [checked by LnT2Lotos]
Notice that a missing "else" branch in an "if" statement is equivalent to "else null" and, thus, nonblocking (i.e., if the conditions following "if" and "elsif" are all false, then the "else" can be executed). To the contrary, a missing "else" branch in an "only if" statement is equivalent to "else stop" and thus blocking. The "only if" statement is most useful as part of a "select" statement.

[^2]
8.8.4 Nondeterministic assignment

The behaviour " X := any T [where V]" assigns to variable X an arbitrary value of type T such that the value of expression V is true; if variable X occurs in V, it refers to the candidate value, and not to any prior value of X.
Note: Nondeterministic assignment can be used to express the choice of values, as in a Lotos choice statement. For instance, the Lotos behaviour "choice $X: T$ [] B " can be written as " X := any T; $B "$.
The following static semantics constraints apply to this behaviour:
(NA1) The assignment should be "useful", i.e., there should exist at least one execution path on which the new value of X is read before the execution completes and before X is modified again (should it be). [checked by LnT2Lotos, leading to a non-fatal warning]

8.8.5 Exception raise

The meaning of the "raise" construct in LNT processes is similar to that in LNT functions (see Section 7.11.4).

8.8.6 Assertion

The meaning of the "assert" construct in LNT processes is similar to that in LNT functions (see Section 7.11.5).

8.8.7 Process call

A process call has the form:

$$
\Pi[[\text { actual_events }]]\left[\left(\text { actual_parameter }_{1}, \ldots, \text { actual_parameter }_{n}\right)\right]
$$

Process calls have many analogies with procedure calls (see Sectionr̃efsec:procedure-call).
The actual events can be written either in the "positional" style or in the "named" one. In the named style:

- The notation "E formal,$i \rightarrow E_{\text {actual }, i}$ " means that the formal event parameter $E_{\text {formal }, i}$ of process Π is instantiated with the actual event $E_{a c t u a l, i}$.
- The notation "..." means that each formal event parameter E of Π that does not appear in $E_{\text {formal, }, 1}, \ldots, E_{\text {formal, }, n}$ is instantiated with the actual event E.

The static semantics constraints (AG1) to (AG2) apply to the positional style $" E_{1}, \ldots, E_{n}$ ". The static semantics constraints (AG3) to (AG7) apply to the named style
"E formal $, 1^{\text {l }} E_{\text {actual }, 1}, \ldots, E_{\text {formal }, n} \rightarrow E_{\text {actual }, n}[, \ldots]$ ". The remaining constraints (AG8) to (AG9) apply to both positional and named styles.
(AG1) The number of actual event parameters of the process call must be equal to the number of formal event parameters of the corresponding process definition. [checked by CÆSAR/CÆSAR.ADT]
(AG2) Each actual event parameter E_{1}, \ldots, E_{n} must have been declared in the current context (i.e., as a formal parameter of the process that contains the call to Π, or in an enclosing "hide" statement), except for the predefined exception "unexpected". [checked by LNT2LOTOS]
(AG3) The formal events $E_{\text {formal, }, 1}, \ldots, E_{\text {formal, } n}$ must be formal events of Π and be pairwise distinct. [checked by Lnt2Lotos]
(AG4) Each actual event parameter $E_{\text {actual, } 1}, \ldots, E_{\text {actual,n }}$ must have been declared in the current context (i.e., as a formal parameter of the process that contains the call to Π, or in an enclosing "hide" statement), except for the predefined exception "unexpected". [checked by Lnt2Lotos]
(AG5) If the notation "..." is used in "E formal $, 1 \rightarrow E_{\text {actual }, 1}, \ldots, E_{\text {formal }, n} \rightarrow E_{\text {actual }, n}, \ldots$ ", all the formal events of Π that do not appear in $E_{\text {formal, } 1}, \ldots, E_{\text {formal, } n}$ must correspond to formal event parameters of the process that contains the call to Π. [checked by LnT2Lotos]
(AG6) When "..." is omitted, all the formal events of Π must appear in $E_{\text {formal, }, 1}, \ldots, E_{\text {formal }, n}$. [checked by Lnt2Lotos]
(AG7) Process Π must be defined in the current module, meaning that the named style can only be used to call processes defined in the same module (because, at present, Lnt2Lotos does not do sophisticated inter-module analysis). [checked by LnT2Lotos]
(AG8) In either named or positional style, each actual event must be compatible (as defined in Section 6.7) with the corresponding formal event of the process definition. [checked by CÆSAR/CÆSAR.ADT]
(AG9) In either named or positional style, each actual event must be different from "i". [checked by Lnt2Lotos]

The following constraints apply to variable parameters:
(PI1) The constraints concerning actual parameters of procedure calls, i.e. (PC1), (PC2), (PC3), and (PC4), must be satisfied.
(PI2) A recursive process call must be terminal, i.e. must not be followed in sequence (meaning, according to sequential composition) by any further statement (except, possibly, the "null" statement). [checked by CÆSAR/CÆSAR.ADT]
(PI3) For each recursive process call, the list of actual variable parameters of mode "out" or "in out" of the called process must be equal to the list of the formal parameters of mode "out" (or "out var") or "in out" of the calling process. [checked by CÆSAR/CÆSAR.ADT]
(PI4) For each variable X passed as actual variable parameter ("? X " or "!? X "), there should exist at least one execution path on which the new value assigned to X is read before the execution completes and before X is modified again (should it be). [checked by LNT2LOTOS, leading to a non-fatal warning]

Note: if constraints (PI2) and (PI3) are not respected, Lnt2Lotos might generate Lotos code for recursive process calls that does not respect a restriction of the CÆSAR compiler, namely the absence of recursion on the left hand side of an enable operator " \gg ". To review all the possible cases, consider the call of a process P in the body of a process P_{0} :

- If the call of P is not terminal in P_{0} and if P may call P_{0} recursively (either directly or transitively) - i.e., if constraint (PI2) is not satisfied -, CÆSAR will not accept the Lotos code generated by Lnt2Lotos.
- If the call of P is terminal in P_{0} :
- If P does not call P_{0}, Lnt2Lotos generates Lotos code that is accepted by CÆSAR.
- If P may call P_{0} recursively (either directly or transitively):
* If constraint (PI3) is satisfied, Lnt2Lotos generates Lotos code that is accepted by CÆSAR.
* Otherwise, Lnt2Lotos generates Lotos code that is rejected by CÆSAR.

The following examples illustrate these restrictions and show how to modify LNT source code to meet the above constraints (PI2) and (PI3):

- The recursive process:

```
process P [E:any] is
    E; P[E];
    stop
end process
```

violates constraint (PI2) because the call of P is followed by the non-null behaviour "stop"; P can be written without the "stop" behaviour (which is never reached anyway) as:
process P [E :any] is
$E ; P[E]$
end process
Notice that replacing "stop" by "null" would also be correct:

```
process P [E:any] is
    E; P[E];
    null
end process
```

- The process:

```
process \(P\) [ \(E\) :any] (out \(X:\) Nat) is
```

 var \(Y\) :Nat in
 \(E(? X) ; P[E](? Y)\)
 end var
 end process
violates constraint (PI3) because the actual parameter (i.e., variable Y) given for the recursive call of P is different from the formal parameter $X ; P$ can be written without the unnecessary local variable Y as:

```
process P [E:any] (out X:Nat) is
    E (?X); P[E] (?X)
end process
```

- The process:

```
process \(P\) [ \(E\) :any] (out \(X, Y\) : Nat) is
    \(E(? X, ? Y) ; P[E](? Y, ? X)\)
end process
```

violates constraint (PI3) because the order of the actual parameters in the call of P is not the same as the order of the formal parameters; P can be written by explicitly inlining one call as:

```
process P [E:any] (out X,Y: Nat) is
    E (?X,?Y); E (?Y,?X); P[E] (?Y,?X)
end process
```

- The mutually recursive processes P and Q :

```
process P [E:any] (out var X,Y:Nat) is
        E (?X, ?Y);
        if (X<Y) then
            Q [E] (?X,?Y)
        end if
end process
process Q [E:any] (out X,Y:Nat) is
    P[E] (?Y,?X)
end process
```

violate constraint (PI3) because the order of the actual parameters of the call of P is different from the order of the formal parameters of $Q ; Q$ can be inlined in the body of P :

```
process \(P[E:\) any \(]\) (out var \(X, Y:\) Nat) is
    \(E(? X, ? Y)\);
    if \((X<Y)\) then
        \(E(? Y, ? X) ;\)
        if \((Y<X)\) then
            \(P[E](? X, ? Y)\)
        end if
    end if
end process
```

- The mutually recursive processes P and Q :
process P [E :any] (out var $X:$ Nat) is var Y :Nat in

```
        \(E(? X, ? Y) ;\)
        if \((X<Y)\) then
            \(Q[E](? X, ? Y)\)
        end if
        end var
end process
process \(Q[E:\) any \(]\) (out var \(X, Y:\) Nat) is
    \(Y:=2 ;\)
    \(P[E](? X)\)
end process
```

violate constraint (PI3) because P and Q do not have the same number of parameters of mode "out" P and Q can be rewritten by adding "dummy" variables:
process P [E:any] (out var $X:$ Nat, out dummy:Nat) is
var Y :Nat in
$E(? X, ? Y)$;
if $(X<Y)$ then
$Q[E]$ (? X, ?dummy)
if $(X<Y)$ then
dummy :=0
end if
end var
end process
process Q [E:any] (out X, Y :Nat) is
$Y:=2 ;$
var dummy:Nat in
$P[E]$ (? X, ?dummy)
end var
end process

The execution of a process call begins with the simultaneous evaluation of the expressions corresponding to the "in" parameters. For an "in out" parameter, the input value is the value of the variable given as the parameter. Then the body of the process is executed, substituting formal event parameters by actual event parameters. The body should assign all "out" parameters.
Note: each call of an LnT process is translated into an call of a Lotos process of functionality "exit $\left(S_{1}, \ldots, S_{n}\right)$ ", where the S_{1}, \ldots, S_{n} is the list of the sorts of the actual variable parameters of mode "out" or "in out".

8.8.8 Communication

In Lnt, as in Lotos, behaviours communicate by rendezvous on gates.
In LNT processes, gates are declared either as formal event parameters or using the "hide" operator.
The behaviour " $E\left[\left(O_{0}, \ldots, O_{n}\right)\right][$ where $V]$ " waits for a rendezvous on gate E. The offers O_{0}, \ldots, O_{n} describe the data exchanged during the rendezvous. An offer " V " corresponds to an emission (output) of value expression V. An offer "? P " corresponds to a reception (input) of a value matching pattern P; the variables of P must be already declared. A rendezvous takes place only if the value expression in the condition " $[V]$ " evaluates to true; condition V can use values received by the offers O_{0}, \ldots, O_{n}.

The communication is blocked by both sending and receiving values: the behaviour waiting for a rendezvous is suspended and terminates immediately after the rendezvous takes place.
The internal gate "i" (see Section 6.6) specifies a non-observable action of the behaviour and terminates successfully.

In Lnt, as in Lotos, a rendezvous is symmetrical: there is no difference between the sender and the receiver. The rendezvous on a gate may allow several sending and receiving offers at the same time.
For gates that are not untyped, the list of offers must match one of the profiles of the channel with which E was declared. In this case, the variable names " X " can be specified; if specified, they must be identical to the variable names of the channel profile.
(COM1) Variables used in all receptions "? P " of the same communication must be pairwise distinct across all receptions. [checked by LnT2Lotos]
(COM2) The variables bound in the reception patterns "? P " should be used afterwards; see rule (PA4). [checked by Lnt2Lotos, leading to a non-fatal warning]
(COM3) The predefined gate "i" cannot be used with offers and/or a guard.

8.8.9 Nondeterministic choice

The behaviour "select B_{1} [] B_{2} end select" may execute either B_{1} or B_{2}. The start of the choice behaviour starts the execution of both B_{1} and B_{2}; the first action (e.g., rendezvous, internal action, or successful termination action) executed by one of B_{1}, B_{2} (call it B_{i}) resolves the choice in favor of B_{i}.

8.8.10 Parallel composition

A parallel composition has the form:

```
\(\operatorname{par}\left[E_{0}, \ldots, E_{n}\right.\) in \(]\)
    \(\left[E_{(0,0)}, \ldots, E_{\left(0, n_{0}\right)}->\right] B_{0}\)
    || ... \|
    \(\left[E_{(m, 0)}, \ldots, E_{\left(m, n_{m}\right)}->\right] B_{m}\)
end par
```

The set of events " $\left\{E_{0}, \ldots, E_{n}\right\}$ " is called the global synchronisation set. Each event in this set must have been declared as a gate. If " $\left\{E_{0}, \ldots, E_{n}\right\}$ " is omitted, then the global synchronisation set is empty. If a behaviour among B_{0}, \ldots, B_{m} is waiting for a communication whose gate belongs to the global synchronisation set, then this communication can happen only if all behaviours B_{0}, \ldots, B_{m} can make this communication simultaneously.
For all i in $0 . . m$, the set of events " $\left\{E_{(i, 0)}, \ldots, E_{\left(i, n_{i}\right)}\right\}$ " is called the local synchronisation set of B_{i}. Each event in this set must have been declared as a gate. If " $E_{(i, 0)}, \ldots, E_{\left(i, n_{i}\right)}$ " is omitted, then the local synchronisation set of B_{i} is empty. If a behaviour among B_{0}, \ldots, B_{m} is waiting for a communication whose gate belongs to its local synchronisation set, then this communication can
happen only if all behaviours B_{0}, \ldots, B_{m} that contain this gate in their local synchronisation set can make this communication simultaneously.
If a behaviour among B_{0}, \ldots, B_{m} is waiting for a communication whose gate does not belong to its local synchronisation set nor to the global synchronisation set, then this communication can happen without restriction.
(PAR1) Events that belong either to the global synchronisation set or to a local synchronisation set must be different from "i". [checked by Lnt2Lotos]
(PAR2) Events E_{0}, \ldots, E_{n} must not appear in $E_{(0,0)}, \ldots, E_{\left(0, n_{0}\right)}, \ldots, E_{(m, 0)}, \ldots, E_{\left(m, n_{m}\right)}$. [checked by Lnt2Lotos]
(PAR3) Every event that belongs to some B_{i} but does not belong to the corresponding $\left\{E_{(i, 0)}, \ldots, E_{\left(i, n_{i}\right)}\right\}$ must not belong to $\left\{E_{(0,0)}, \ldots, E_{\left(0, n_{0}\right)}, \ldots, E_{(m, 0)}, \ldots, E_{\left(m, n_{m}\right)}\right\}$. [checked by LnT2Lotos]
(PAR4) If a B_{i} assigns a value to a variable or parameter, every B_{j} such that $i \neq j$ must neither assign a value to that variable or parameter, nor read its value. [checked by Lnt2Lotos]
(PAR5) Behaviours B_{0}, \ldots, B_{n} must not contain a recursive call (either direct or indirect) to the current process. [checked by CÆSAR]
(PAR6) Behaviours B_{0}, \ldots, B_{n} must not contain a statement "break L " if the corresponding loop L is not defined by one of the behaviours B_{0}, \ldots, B_{n}, i.e., if the par statement is inside the body of the loop L. [checked by Lnt2Lotos]
(PAR7) Events that belong either to the global synchronisation set or to a local synchronisation set must be different from "unexpected". [checked by Lnt2Lotos]
(PAR8) Events that belong either to the global synchronisation set or to a local synchronisation set must have been declared as gates. [checked by CÆSAR]

8.8.11 Hiding

hide event_declaration $_{0}, \ldots$, event_declaration ${ }_{n}$ in
B
end hide

The hiding operator declares a list of events E_{0}, \ldots, E_{n}, which are gates. Such gates are not observable from the environment of the behaviour: each communication (possibly with input/output offers) on a hidden gate E_{i} is externally equivalent to the internal action " i ".
(H1) The hidden events E_{0}, \ldots, E_{n} must be pairwise distinct. [checked by LnT2Lotos]
(H2) Each hidden event E_{i} must be different from "i". [checked by Lnt2Lotos]
(H3) Each hidden event E_{i} must be different from "unexpected". [checked by Lnt2Lotos]

8.8.12 Disruption

disrupt B_{1} by B_{2} end disrupt

The disrupt behaviour starts behaviour " B_{1} ", which executes normally. However, at any moment, " B_{1} " can be interrupted, in which case the execution of " B_{2} " starts and " B_{1} " is terminated. Yet, if " B_{1} " successfully terminates before any action has taken place in " B_{2} ", the disrupt behaviour (as a whole) terminates, meaning that the possibility to be interrupted by " B_{2} " disappears.
(DIS1) Behaviour B_{1} should not contain a recursive call (neither direct nor indirect) to the current process. [checked by CÆSAR]

Appendix A

Syntax summary of the LnT language (version 7.3)

A. 1 Extended BNF notation used in this appendix

Notation	Meaning
$[y]$	optional operator (0 or 1 instance of y)
$y_{1} \mid y_{2}$	choice of either y_{1} or y_{2}
$y_{0} \ldots y_{n}$	concatenation of one or more y 's
$y_{1} \ldots y_{n}$	concatenation of zero or more y 's
y_{0}, \ldots, y_{n}	concatenation of one or more y 's separated by commas
y_{1}, \ldots, y_{n}	concatenation of zero or more y 's separated by commas

A. 2 Identifiers

Identifier (terminal symbol)	Meaning
M	module
T	type
C	type constructor
X	variable
F	function
L	loop label
Γ	channel
E	event
Π	process

[^3]NOTE: The following are not identifiers but are non-terminal symbols, and are defined below.

Non-terminal symbol	Meaning
I	statement
V	expression
P	pattern
B	behaviour
O	offer

A. 3 Modules

```
lnt_file ::= module M[(M0,\ldots,Mm)] module
    [with predefined_function}0,\ldots,\mp@subsup{\mathrm{ predefined_function}}{n}{}]\mathrm{ is
    module_pragma _...module_pragma 
        definition}\mp@subsup{|}{0}{...\mp@subsup{\mathrm{ definition }}{q}{}
    end module
```

predefined_function ::=	== \| =	equality
	<> \| !=	inequality
	$<$	less than
\|	<	less than or equal to
	>	greater than
	>=	greater than or equal to
	append	tail insertion
	card	set cardinality
	delete	element deletion
	diff	difference
	element	indexed access
	empty	emptyness test
	first	first element
	get	field selection
	head	first element
	insert	insertion
	inter	intersection
	last	last element
	length	list length
	member	membership test
	ord	ordinal
	remove	element removal
	reverse	reversal
	set	field update

(C) INRIA 2005-2024 - All rights reserved - Tous droits réservés

	subset \mid tail \mid union \mid val	subset test next elements union value
module_pragma	!nat_bits nat	number of bits for type Nat
	!nat_inf nat	lowest value of type Nat
	!nat_sup nat	highest value of type Nat
	!nat_check bit	check for Nat overflows/underflows
	! int_bits nat	number of bits for type Int
	!int_inf int	lowest value of type Int
	!int_sup int	highest value of type Int
	!int_check bit	check for Int overflows/underflows
	! num_bits nat	number of bits for numeral types
	! num_card nat	maximal cardinality for numeral types
	!string_card nat	maximal cardinality for type String
	!update string	update tag
	!version string	version tag

where nat denotes a natural number constant (in decimal notation without underscores), int denotes an integer number constant (in decimal notation without underscores), and bit denotes 0 or 1 .
definition $::=$ type_definition
| function_definition
| channel_definition channel definition
| process_definition process definition
type definition
function definition

A. 4 Types


```
string ::= "character*"
```

type_expression $::=$ constructor_definition $_{0}, \ldots$, constructor_definition $_{n} \quad$ constructed type
| set of T set
| list of T list
| sorted list of T sorted list
| array $[m . . n]$ of T array
| range $m . n$ of T^{\prime} range
| $X: T^{\prime}$ where V predicate
| empty (external type only)
constructor_definition $^{\text {chen }^{\prime}}:=C\left[\left(\right.\right.$ constructor_parameters $_{1}, \ldots$, constructor_parameters $\left.\left._{n}\right)\right]$
constructor_pragma ${ }_{1} \ldots$ constructor_pragma $_{m}$
constructor_parameters $::=X_{0}, \ldots, X_{n}: T \quad$ constructor parameters
constructor_pragma $::=$!implementedby "[C:]name" C operator name
predefined_function_declaration $::=$ predefined_function
[predefined_function_pragma $a_{1} \ldots$ predefined_function_pragma ${ }_{n}$]
predefined_function_pragma $::=$!external external function
!implementedby "[(C| LOTOS):]name" C/LOTOS name scheme

A. 5 Channels

```
channel_definition ::= channel }\Gamma\mathrm{ is channel definition
    channel_profile 0,
    ...,
    channel_profile }\mp@subsup{n}{}{\prime
    end channel
```

```
channel_profile ::= (\mp@subsup{profile_parameters}{1}{\prime},\ldots,\mp@subsup{\mathrm{ profile_parameters }}{n}{})\mathrm{ channel profile}
profile_parameters ::= X , ,., X 隹:T profile parameter list
```


A. 6 Functions

```
function_definition ::= function F[[formal_events }\mp@subsup{0}{0}{\prime},\ldots,\mp@subsup{\mathrm{ formal_events m}]}{m}{
    [(formal_parameters },\ldots,\mp@subsup{\mathrm{ formal_parameters }}{n}{})][:T] i
    function_pragma _...function_pragma l
    precondition }\mp@subsup{\mp@code{1}}{1...precondition}{j
    postcondition }\mp@subsup{|}{1}{\ldots}\mp@subsup{\mathrm{ postcondition }}{k}{
    [ I | ]
        end function function definition
formal_events ::= formal_event_mode event_declaration formal events
formal_event_mode ::= \varepsilon formal event with unspecified use
    | raise formal event used as an exception
event_declaration ::= E , ,\ldots,E E :\Gamma typed event declaration
    E E , .., En : any untyped event declaration
formal_parameters ::= parameter_mode }\mp@subsup{X}{0}{},\ldots,\mp@subsup{X}{n}{}:T\mathrm{ formal parameters
parameter_mode ::= [ in ] input formal parameter
    | in var input formal parameter used as local variable
    | out output formal parameter
    | out var output formal parameter used as local variable
    | in out input / output formal parameter
precondition ::= require V [raise E [()]]; precondition
postcondition ::= ensure V [raise E [()]]; postcondition
```

```
function_pragma ::= !external
                                    external function
    | !implementedby "[(C | LOTOS):]name" C or LOTOS name scheme
```


A． 7 Instructions and statements

```
I ::= null no effect
    I I ; I_ sequential composition
    return[V] return
    raise E [()] exception raise
    assert V [raise E [()]] assertion
    | X := V assignment
    | X[V洉] := V 隹 array element assignment
    | [ eval ] [X := ] F[[actual_events] ] (actual_parameter }\mp@subsup{}{1}{\prime},\ldots,, procedure call
            actual_parameter }\mp@subsup{n}{}{\prime
    | var var_declaration },\ldots,\mp@subsup{var_declaration}{n}{}\mathrm{ in variable declaration
        I
        end var
    | case V V ,.., 汭 case statement
            [var var_declaration }\mp@subsup{\mp@code{O}}{0}{},\ldots,\mp@subsup{var_declaration}{n}{}]\mathrm{ in
                match_clause }\mp@subsup{0}{0}{\prime>}\mp@subsup{I}{0}{
            | ...
            | match_clause m -> Im
        end case
    | if V
        [ elsif V 有 then }\mp@subsup{I}{1}{
            elsif }\mp@subsup{V}{n}{}\mathrm{ then }\mp@subsup{I}{n}{}
        [ else }\mp@subsup{I}{n+1}{}\mathrm{ ]
        end if
    | loop forever loop
            I
        end loop
    | loop L in breakable loop
            I
        end loop
    | while V loop while loop
            I
```


end loop

| while V loop L in
breakable while loop
I_{0}
end loop
| for I_{0} while V by I_{1} loop for loop
I_{2}
end loop
| for I_{0} while V by I_{1} loop L in breakable for loop I_{2}
end loop
| break L loop break
use $X_{0}, \ldots, X_{n} \quad$ variable use
access E_{0}, \ldots, E_{n} event access
var_declaration $::=X_{0}, \ldots, X_{n}: T \quad$ variable list
$\begin{aligned} \text { actual_events }::= & E_{1}, \ldots, E_{n} \\ & \mid \\ E_{\text {formal }, 1} \rightarrow E_{\text {actual }, 1}, \ldots, E_{\text {formal }, n} \rightarrow E_{\text {actual }, n}[, \ldots] & \begin{array}{r}\text { positional style } \\ \text { named style }\end{array}\end{aligned}$
$\begin{array}{rlr}\text { actual_parameter }::= & V & \text { actual parameter "in" } \\ & \mid & ? X \\ & \mid ? X & \text { actual parameter "out" } \\ & & \text { actual parameter "in out" }\end{array}$
match_clause $::=P_{0}, \ldots, P_{\ell}\left[\right.$ where $\left.V_{0}\right]|\ldots| P_{n}\left[\right.$ where $\left.V_{n}\right]$ match clause
any,\ldots, any $[$ where $V]$ wildcard

A. 8 Patterns

$P \quad::=$	X	variable
	any T	wildcard
	X as P_{0}	aliasing
	$C\left[\left(P_{0}, \ldots, P_{n}\right)\right]$	constructed pattern
	$P_{1} C P_{2}$	infix constructed pattern
	$F\left[\left(P_{0}, \ldots, P_{n}\right)\right]$	constant pattern
	$P_{1} F P_{2}$	infix constant pattern
	P_{0} of T	type coercion
	(P)	parenthesized pattern

$\mid\left\{P_{1}, \ldots, P_{n}\right\}$
list pattern

A. 9 Value expressions

```
V ::= X
    | X.in
    | .out output parameter value (in postcondition only)
    | result function result (in postcondition only)
    | C [ (V1, ..,V涪)] constructor call
    | V1 C V V infix constructor call
    | F[[actual_events] ][(V, ,..,Vn)] function call
    | V F [[actual_events] ] V2 infix function call
    | V.[[E] ] field field selection
    | V.[[E]]{{ield }\mp@subsup{0}{0}{}->\mp@subsup{V}{0}{},\ldots,\mp@subsup{\mathrm{ field}}{n}{}->\mp@subsup{V}{n}{}}}\mathrm{ field update
    | V [ V ] ] array element access
    | V of T type coercion
    (V) parenthesized expression
    | {V, ,\ldots,V涪} list expression
```


A. 10 Processes

```
process_definition ::= process \Pi[[formal_events (.,.,formal_events s] ]
            [(formal_parameters }\mp@subsup{\mp@code{l}}{1}{},\ldots,\mp@subsup{\mathrm{ formal_parameters }}{n}{})]\mathrm{ is
        process_pragma }\mp@subsup{1}{1}{\ldots}\mathrm{ ..process_pragma
        precondition 1...precondition}\mp@subsup{}{j}{
        postcondition }\mp@subsup{\mp@code{F}}{1}{\ldots}\mp@subsup{\mathrm{ postcondition }}{k}{
        B
            end process process definition
process_pragma ::= !implementedby "LOTOS:name"
    Lotos name
```


A. 11 Behaviours

| $B::$ | null | no effect (with continuation) |
| ---: | ---: | ---: | ---: |
| | \mid stop | inaction (without continuation) |

| $B_{1} ; B_{2}$
sequential composition
| $X:=V$ deterministic assignment
$\mid X:=$ any $T[$ where $V] \quad$ nondeterministic assignment
| [eval] $X:=F\left[\right.$ [actual_events]] (actual_parameter ${ }_{1}, \ldots$, procedure call with result
| eval F[[actual_events]] (actual_parameter ${ }_{1}, \ldots$, procedure call without result actual_parameter $_{n}$)
$\mid X\left[V_{0}\right]:=V_{1} \quad$ array element assignment
| var var_declaration ${ }_{0}, \ldots$, var_declaration $_{n}$ in variable declaration B_{0}
end var
| case V_{1}, \ldots, V_{ℓ} case behaviour
[var var_declaration ${ }_{0}, \ldots$, var_declaration $_{n}$] in match_clause $_{0} \rightarrow B_{0}$
| ...
| match_clause ${ }_{m} \rightarrow B_{m}$
end case
| [only $]$ if V_{0} then $B_{0} \quad$ conditional behaviour [elsif V_{1} then B_{1}
elsif V_{n} then B_{n}]
[else B_{n+1}]
end if
| loop forever loop
B_{0}
end loop
| loop L in breakable loop
B_{0}
end loop
| while V loop while loop B_{0}
end loop
| while V loop L in breakable while loop B_{0} end loop
| for B_{0} while V by B_{1} loop for loop B_{2}
end loop
| for B_{0} while V by B_{1} loop L in breakable for loop B_{2} end loop

```
        | break L loop break
        use }\mp@subsup{X}{1}{},\ldots,\mp@subsup{X}{n}{}\quad\mathrm{ variable use
        access E E , ,., En
        raise E [(V, , , ,Vn)] exception raise
        assert V[ raise E [(V1,\ldots,V涪)]] assertion
        | [[actual_events]][(actual_parameter }\mp@subsup{1}{1}{\prime},\ldots,\mp@subsup{\mathrm{ actual_parameter }}{n}{})]\mathrm{ process call
        | E [(O , ,., On )][where V] communication
        | select nondeterministic choice
        B0
        [] ... []
        Bn
        end select
        par [ E , ,., , En in ] parallel composition
        [ E E(0,0) ,\ldots, E (0,\mp@subsup{n}{0}{})
        | ... |
            [ E(m,0)},\ldots,\mp@subsup{E}{(m,\mp@subsup{n}{m}{})}{}->]\mp@subsup{B}{m}{
        end par
        hide event_declaration}\mp@subsup{}{0}{},\ldots,\mp@subsup{\mathrm{ event_declaration}}{n}{}\mathrm{ in hiding
        B
        end hide
        | disrupt B}\mp@subsup{B}{1}{}\mathrm{ by }\mp@subsup{B}{2}{}\mathrm{ end disrupt disrupting
O ::= [X -> ]V output offer
    | [X -> ] ?P input offer
```


Appendix B

Formal semantics of the LnT language (version 7.3)

B. 1 Preliminaries

We define the dynamic semantics of Lnt programs, using formal Sos (Structural Operational Semantics) rules. Programs are assumed to have successfully passed all static analysis phases, such as parsing, syntactic sugar expansion, binding analysis, typing analysis, and variable initialisation analysis, thus enabling a simplified abstract syntax, which is also precisely defined in this annex.

B.1.1 SOS rules

We give here a (partial) definition of Sos rules to fix the notations. The general goal of a set of Sos rules is to define an n-ary relation $R\left(e_{1}, \ldots, e_{n}\right)$ between elements $e_{i}(i \in 1 . . n)$ of different sorts. In the sequel, the term Boolean statement denotes either a Boolean predicate in first-order logic, or an expression of the form $R\left(e_{1}, \ldots, e_{n}\right)$. Each Sos rule has the following form:

$$
\text { Premise }_{1} \ldots \text { Premise }_{m}
$$

Conclusion
for some $m \geq 0$. The upper part "Premise ${ }_{1} \ldots$ Premise $_{m}$ " denotes a set of m Boolean statements, and the lower part "Conclusion" denotes a single Boolean statement of the form $R\left(e_{1}, \ldots, e_{n}\right)$. The meaning is that the conclusion $R\left(e_{1}, \ldots, e_{n}\right)$ holds if each Premise $_{i}$ (for all i ranging in the interval $1 . . m$) itself holds, either logically if Premise i_{i} is a Boolean predicate, or by repetitive application of the Sos rules otherwise. All variables which occur free in some Premise ${ }_{i}$ and/or in Conclusion are (implicitly) quantified universally over the whole rule.
In this appendix, we may use the concise notation "Premise $[i](i \in 1 . . m)$ ", where Premise $[i]$ is any Boolean statement that may depend on i, as a shorthand notation for the developed set of premises "Premise [1] ... Premise $[m]$ ", where each Premise $[k]$ (for any $k \in 1 . . m$) denotes Premise $[i]$ in which i is replaced by k.

We may also use the following notation for sets of Sos rules:

```
Premise \(_{1}[j] \ldots\) Premise \(_{n}[j]\)
\((j \in 1 . . p)\)
Conclusion \([j]\)
```

where both Conclusion $[j]$ and each Premise $_{i}[j](i \in 1 . . m)$ are Boolean statements that may depend on j. This notation is equivalent to the set of p rules obtained by replacing j by numbers in the interval 1..p, namely:

```
Premise, [1] ... Premise [1]
    Conclusion [1]
Premise }\mp@subsup{\mp@code{L}}{[p] ... Premisen [p]}{
    Conclusion [p]
```


B.1.2 Values and stores

The following notions of value and store are used in the Sos rules:

- A value is a ground term (i.e., a term without variables) containing only constructors. We write \mathcal{V} for the set of all values and v, v_{0}, v_{1}, \ldots for individual values.
- A store is a partial function from variables to values. We write $\sigma, \sigma_{0}, \sigma_{1}, \ldots$ for stores. The notation " $\left[X_{1} \leftarrow v_{1}, \ldots, X_{n} \leftarrow v_{n}\right]$ " (where $n \geq 0$, and $i \neq j \Longrightarrow X_{i} \neq X_{j}$) represents the store σ such that $\sigma\left(X_{1}\right)=v_{1}, \ldots, \sigma\left(X_{n}\right)=v_{n}$ and $\sigma(X)$ is undefined for any $X \notin X_{1}, \ldots, X_{n}$. In particular, "[]" represents the empty store.
- Given two stores σ_{1} and σ_{2}, we write " $\sigma_{1} \otimes \sigma_{2}$ " for the update of σ_{1} with respect to σ_{2}, which consists of σ_{2} plus the part of σ_{1} corresponding to variables not overwritten by σ_{2}. Store update is formally defined as follows:

$$
\left(\sigma_{1} \otimes \sigma_{2}\right)(X)= \begin{cases}\sigma_{2}(X) & \text { if } \sigma_{2}(X) \text { is defined } \\ \sigma_{1}(X) & \text { if } \sigma_{2}(X) \text { is not defined and } \sigma_{1}(X) \text { is defined } \\ \text { undefined } & \text { otherwise }\end{cases}
$$

- Given two stores σ_{1} and σ_{2}, we write " $\sigma_{1} \oplus \sigma_{2}$ " for the disjoint union of σ_{1} and σ_{2}. Formally, $\sigma_{1} \oplus \sigma_{2}$ is defined as $\sigma_{1} \otimes \sigma_{2}$ only if the sets of variables defined in σ_{1} and σ_{2} are disjoint, and it is undefined otherwise.
- Given two stores σ_{1} and σ_{2}, we write " $\sigma_{1} \ominus \sigma_{2}$ " for the difference between σ_{1} and σ_{2}, which consists of the part of σ_{1} corresponding to variables that are either not defined or defined with a different value in σ_{2}. Store difference is formally defined as follows:

$$
\left(\sigma_{1} \ominus \sigma_{2}\right)(X)= \begin{cases}\sigma_{1}(X) & \text { if } \sigma_{1}(X) \text { is defined and either } \sigma_{2}(X) \text { is not defined or } \sigma_{2}(X) \neq \sigma_{1}(X) \\ \text { undefined } & \text { otherwise }\end{cases}
$$

B. 2 Dynamic semantics of expressions

B.2.1 Definitions

The dynamic semantics of expressions are defined as a relation of the form " $\langle V, \sigma\rangle \rightarrow_{\mathrm{e}} v$ ", where V is an expression, σ is a store, and v is a value. This relation means that in store σ, the expression V evaluates to the value v. We assume the following:

- After parsing, parenthesized expressions have been eliminated.
- After syntactic sugar elimination, infix function (respectively, constructor) calls have been replaced by prefix function (respectively, constructor) calls; field selections, field updates, and array selections have been replaced by built-in functions (whose semantics are standard and not defined explicitly here); and list expressions have been replaced by appropriate constructor calls.
- After typing analysis, type coercions have been removed.
- After binding analysis, named parameter passing has been replaced by positional parameter passing.

We thus consider the following abstract syntax of expressions:

$$
\begin{aligned}
& V::= X \\
&\left.\left\lvert\, \begin{array}{l}
\mid \\
\\
\\
\\
\\
\\
F\left(V_{1}, \ldots, V_{n}\right) \\
\end{array}\right., \ldots, V_{n}\right)
\end{aligned}
$$

B.2.2 Variable

The value of a variable X is that recorded in the current store.

$$
\overline{\langle X, \sigma\rangle \rightarrow_{e} \sigma(X)}
$$

B.2.3 Constructor call

The value of " $C\left(V_{1}, \ldots, V_{n}\right)$ " is C applied to the values of V_{1}, \ldots, V_{n}.

$$
\frac{\left\langle V_{i}, \sigma\right\rangle \rightarrow_{\mathrm{e}} v_{i}(i \in 1 . . n)}{\left\langle C\left(V_{1}, \ldots, V_{n}\right), \sigma\right\rangle \rightarrow_{\mathrm{e}} C\left(v_{1}, \ldots, v_{n}\right)}
$$

B.2.4 Built-in function call

The value of " $F\left(V_{1}, \ldots, V_{n}\right)$ " is F applied to the values of V_{1}, \ldots, V_{n}. Here, F is understood as a mathematical function, i.e., F applied to values is itself a value defined mathematically.

$$
\frac{\left\langle V_{i}, \sigma\right\rangle \rightarrow_{\mathrm{e}} v_{i}(i \in 1 . . n)}{\left\langle F\left(V_{1}, \ldots, V_{n}\right), \sigma\right\rangle \rightarrow_{\mathrm{e}} F\left(v_{1}, \ldots, v_{n}\right)}
$$

B.2.5 User-defined function call

When F is used in an expression, the static semantics ensure that it contains neither "out" nor "in out" formal parameters. We thus assume that it is defined (omitting formal parameter types) as follows:
function F (in X_{1}, \ldots, X_{m}) : T is I end function
The value of " $F\left(V_{1}, \ldots, V_{m}\right)$ " is the value returned after executing the body I of F in a store associating the value of V_{i} to each formal parameter $X_{i}(i \in 1 . . n)$. Note that the Sos rule below anticipates on the dynamic semantics of statements (relation $\longrightarrow_{\mathrm{s}}$), defined in Section B.5.

$$
\frac{\left\langle V_{i}, \sigma\right\rangle \rightarrow_{\mathrm{e}} v_{i}(i \in 1 . . n) \quad\left\langle I,\left[X_{1} \leftarrow v_{1}, \ldots, X_{m} \leftarrow v_{m}\right]\right\rangle \xrightarrow{\operatorname{ret}(v)} \sigma_{\mathrm{s}} \sigma^{\prime}}{\left\langle F\left(V_{1}, \ldots, V_{m}\right), \sigma\right\rangle \rightarrow_{\mathrm{e}} v}
$$

B. 3 Dynamic semantics of patterns

B.3.1 Definitions

Given a pattern P, a value v, and a store σ, the dynamic semantics of patterns are defined as a relation that has two possible forms:

- " $\langle P \sharp v, \sigma\rangle \rightarrow_{\mathrm{p}} \sigma^{\prime \prime}$, where σ^{\prime} is a store, means that in store σ, the pattern P matches the value v, producing the updated store σ^{\prime}.
- " $\langle P \sharp v, \sigma\rangle \rightarrow_{\mathrm{p}}$ fail" means that in store σ, the pattern P does not match the value v.

We assume the following:

- After parsing, parenthesized patterns have been eliminated.
- After syntactic sugar elimination, infix constant (respectively constructor) patterns have been replaced by prefix constant (respectively constructor) patterns, and list patterns have been replaced by appropriate constructed patterns.
- After typing analysis, type coercions have been removed.
- After binding analysis, named parameter passing has been replaced by positional parameter passing.

We thus consider the following abstract syntax of patterns, which also merges the definition of match_clause:

```
P ::= X
    | any
    | X as P
    | C ( }\mp@subsup{P}{1}{},\ldots,\mp@subsup{P}{n}{}
    | F(V
    P
    P}||\mp@subsup{P}{2}{
```


B.3.2 Variable

A variable X always matches any value v, which becomes the new value of X.

$$
\langle X \sharp v, \sigma\rangle \rightarrow_{\mathrm{p}} \sigma \theta[X \leftarrow v]
$$

B.3.3 Wildcard

The wildcard any always matches any value v, the store being left unchanged.

$$
\langle\text { any } \sharp v, \sigma\rangle \rightarrow_{\mathrm{p}} \sigma
$$

B.3.4 Aliasing

A pattern " X as P_{0} " matches a value v if and only if P_{0} matches v. In this case, v becomes the new value of X.

$$
\begin{aligned}
& \frac{\left\langle P_{0} \sharp v, \sigma\right\rangle \rightarrow_{\mathrm{p}} \sigma^{\prime}}{\left\langle X \text { as } P_{0} \sharp v, \sigma\right\rangle \rightarrow_{\mathrm{p}} \sigma^{\prime} \theta[X \leftarrow v]} \\
& \frac{\left\langle P_{0} \sharp v, \sigma\right\rangle \rightarrow_{\mathrm{p}} \text { fail }}{\left\langle X \text { as } P_{0} \sharp v, \sigma\right\rangle \rightarrow_{\mathrm{p}} \text { fail }}
\end{aligned}
$$

B.3.5 Constructed pattern

A pattern " $C\left(P_{1}, \ldots, P_{n}\right)$ " matches a value v if and only if v has the form " $C\left(v_{1}, \ldots, v_{n}\right)$ " and every pattern P_{i} matches the corresponding value $v_{i}(i \in 1 . . n)$.

$$
\begin{aligned}
& \frac{\sigma_{0}=\sigma \quad\left\langle P_{i} \sharp v_{i}, \sigma_{i-1}\right\rangle \rightarrow_{\mathrm{p}} \sigma_{i}(i \in 1 . . n)}{\left\langle C\left(P_{1}, \ldots, P_{n}\right) \sharp C\left(v_{1}, \ldots, v_{n}\right), \sigma\right\rangle \rightarrow_{\mathrm{p}} \sigma_{n}} \\
& \frac{\sigma_{0}=\sigma \quad\left\langle P_{i} \sharp v_{i}, \sigma_{i-1}\right\rangle \rightarrow_{\mathrm{p}} \sigma_{i}(i \in 1 . . j-1) \quad\left\langle P_{j} \sharp v_{j}, \sigma_{j-1}\right\rangle \rightarrow_{\mathrm{p}} \text { fail }}{\left\langle C\left(P_{1}, \ldots, P_{n}\right) \sharp C\left(v_{1}, \ldots, v_{n}\right), \sigma\right\rangle \rightarrow_{\mathrm{p}} \text { fail }}
\end{aligned}
$$

The above rules ensure that patterns are evaluated from left to right. Theoretically, this would allow a variable bound in a pattern to be used in an expression (e.g., a Boolean condition) located further to the right, although for practical reasons, this is not currently allowed by the static semantics.

$$
\frac{\left(C \neq C^{\prime}\right) \vee(n \neq m)}{\left\langle C\left(P_{1}, \ldots, P_{n}\right) \sharp C^{\prime}\left(v_{1}, \ldots, v_{m}\right), \sigma\right\rangle \rightarrow_{\mathrm{p}} \text { fail }}
$$

B.3.6 Constant pattern

A constant pattern of the form " $F\left(V_{1}, \ldots, V_{n}\right)$ " matches a value v if and only if the expression " $F\left(V_{1}, \ldots, V_{n}\right)$ " (which contains no variable and can thus be evaluated in the empty store) evaluates to v. The store is left unchanged.

$$
\begin{aligned}
& \frac{\left\langle F\left(V_{1}, \ldots, V_{n}\right),[]\right\rangle \rightarrow_{\mathrm{e}} v}{\left\langle F\left(V_{1}, \ldots, V_{n}\right) \sharp v, \sigma\right\rangle \rightarrow_{\mathrm{p}} \sigma} \\
& \frac{\left\langle F\left(V_{1}, \ldots, V_{n}\right),[]\right\rangle \rightarrow_{\mathrm{e}} v^{\prime} \quad v^{\prime} \neq v}{\left\langle F\left(V_{1}, \ldots, V_{n}\right) \sharp v, \sigma\right\rangle \rightarrow_{\mathrm{p}} \text { fail }}
\end{aligned}
$$

B.3.7 Conditional pattern

A conditional pattern " P_{0} where V " matches a value v if and only if P_{0} matches v and V evaluates to true in the resulting store.

```
\(\left\langle P_{0} \sharp v, \sigma\right\rangle \rightarrow_{\mathrm{p}} \sigma^{\prime} \quad\left\langle V, \sigma^{\prime}\right\rangle \rightarrow_{\mathrm{e}}\) true
    \(\left\langle P_{0}\right.\) where \(\left.V \sharp v, \sigma\right\rangle \rightarrow_{\mathrm{p}} \sigma^{\prime}\)
\(\left\langle P_{0} \sharp v, \sigma\right\rangle \rightarrow_{\mathrm{p}} \sigma^{\prime} \quad\left\langle V, \sigma^{\prime}\right\rangle \rightarrow_{\mathrm{e}}\) false
    \(\left\langle P_{0}\right.\) where \(\left.V \sharp v, \sigma\right\rangle \rightarrow_{\mathrm{p}}\) fail
    \(\left\langle P_{0} \sharp v, \sigma\right\rangle \rightarrow_{\mathrm{p}}\) fail
\(\left\langle P_{0}\right.\) where \(\left.V \sharp v, \sigma\right\rangle \rightarrow_{\mathrm{p}}\) fail
```


B.3.8 Alternative

An alternative " $P_{1} \mid P_{2}$ " matches a value v if and only if P_{1} matches v or else P_{2} matches v. The patterns are evaluated from left to right, so that the resulting store is defined non-ambiguously if both patterns match v.

```
\(\left\langle P_{1} \sharp v, \sigma\right\rangle \rightarrow_{\mathrm{p}} \sigma_{1}\)
\(\left\langle P_{1} \mid P_{2} \sharp v, \sigma\right\rangle \rightarrow_{\mathrm{p}} \sigma_{1}\)
\(\left\langle P_{1} \sharp v, \sigma\right\rangle \rightarrow_{\mathrm{p}}\) fail \(\left\langle P_{2} \sharp v, \sigma\right\rangle \rightarrow_{\mathrm{p}} \sigma_{2}\)
    \(\left\langle P_{1} \mid P_{2} \sharp v, \sigma\right\rangle \rightarrow_{\mathrm{p}} \sigma_{2}\)
\(\left\langle P_{1} \sharp v, \sigma\right\rangle \rightarrow_{\mathrm{p}}\) fail \(\left\langle P_{2} \sharp v, \sigma\right\rangle \rightarrow_{\mathrm{p}}\) fail
    \(\left\langle P_{1} \mid P_{2} \sharp v, \sigma\right\rangle \rightarrow_{\mathrm{p}}\) fail
```


B. 4 Dynamic semantics of offers

B.4.1 Definitions

The dynamic semantics of offers are defined as a relation of the form " $\langle O \sharp v, \sigma\rangle \rightarrow_{0} \sigma^{\prime \prime}$ ", where O is an offer, v is a value, and σ, σ^{\prime} are stores. This relation means that in store σ, the offer O matches the value v, producing the updated store σ^{\prime}.

We assume that after binding analysis, named offers have been replaced by positional offers. We thus consider the following abstract syntax of offers:

B.4.2 Send offer

A send offer " V " matches a value v only if v is the value of V.

$$
\frac{\langle V, \sigma\rangle \rightarrow_{\mathrm{e}} v}{\langle V \sharp v, \sigma\rangle \rightarrow_{\mathrm{o}} \sigma}
$$

B.4.3 Receive offer

A receive offer "? P " matches a value v only if the pattern P matches v.

$$
\frac{\langle P \sharp v, \sigma\rangle \rightarrow_{\mathrm{p}} \sigma^{\prime}}{\langle ? P \sharp v, \sigma\rangle \rightarrow_{\circ} \sigma^{\prime}}
$$

B. 5 Dynamic semantics of statements

B.5.1 Definitions

The dynamic semantics of statements are defined as a relation of the form " $\langle I, \sigma\rangle \xrightarrow{a}{ }_{\mathrm{s}} \sigma^{\prime \prime}$, where I is a statement, σ and σ^{\prime} are stores, and a is a label. This relation means that in store σ, the statement I terminates, σ^{\prime} being the store obtained after execution of I. The label a has one of the following forms:

- " $\sqrt{ }$ " means that I has terminated normally. The execution must continue at the next instruction.
- "brk (L) ", where L is the label of a loop, means that I has terminated on a "break L " statement. The execution must continue at the instruction that follows immediately the loop identified by L.
- "ret (v) " (respectively ret), where $v \in \mathcal{V}$, means that I has terminated on a "return v " (respectively return) statement. The execution must continue at the instruction that follows immediately the call to the current function or procedure.

Note that non-terminating statements (e.g., infinite loops or non well-founded recursive functions or procedures) must be considered as incorrect. However, the static semantics cannot guarantee the
termination of statements (this problem being undecidable), although it can detect particular cases in which non-termination is certain (see for instance the static semantics rules for the "loop L " statement in Section 7.11.11). In general, it is the user's responsibility to make sure that statements terminate.

We assume the following:

- After syntactic sugar elimination, array element assignments have been replaced by normal assignment using built-in functions (whose semantics are standard and not given explicitly here) for array update; conditional statements have been replaced by case statements; and all kinds of loops have been replaced by breakable loops.
- After binding analysis, each local variable has been assigned a distinct name, thus enabling local variable declarations to be removed, and named parameter passing has been replaced by positional parameter passing. In addition, for simplicity, we assume that parameters occur in the following order: "in" parameters, then "out" parameters, then "in out" parameters.
- Also, since Lnt exceptions are not catchable (for the time being), we do not give rules for exception raising. In practice, raising an exception triggers a runtime error that halts the execution of the LNT specification.
- The Lnt construct "assert V [raise $E(\ldots)]$ " is semantically equivalent to "if V then null else raise $E(\ldots)$ end if". If the "raise" clause is missing, then E is taken to be the predefined exception ξ (see Section 6.6) that is implicitly declared at the top level.

We thus consider the following abstract syntax of statements:

```
\(I::=\) null
    | \(\quad I_{1} ; I_{2}\)
    | return [ \(V\) ]
    | \(X:=V\)
        \([X:=] F\left(V_{1}, \ldots, V_{m}, ? Y_{1}, \ldots, ? Y_{p},!? Z_{1}, \ldots,!? Z_{q}\right)\)
        case \(V\) in \(P_{1} \rightarrow I_{1}|\ldots| P_{m} \rightarrow I_{m}\) end case
        break \(L\)
        loop \(L\) in \(I_{0}\) end loop
```


B.5.2 Null

The null statement terminates normally and keeps the store unchanged.

$$
\overline{\langle\text { null }, \sigma\rangle{ }^{\vee}{ }_{\mathrm{s}} \sigma}
$$

B.5.3 Sequential composition

The statement " $I_{1} ; I_{2}$ " starts by executing I_{1}.
If I_{1} terminates normally, then I_{2} is executed in the store updated by I_{1}.

$$
\frac{\left\langle I_{1}, \sigma\right\rangle \xrightarrow{\checkmark}_{\mathrm{s}} \sigma^{\prime} \quad\left\langle I_{2}, \sigma^{\prime}\right\rangle \xrightarrow{a}{ }_{\mathrm{s}} \sigma^{\prime \prime}}{\left\langle I_{1} ; I_{2}, \sigma\right\rangle \xrightarrow{a}{ }_{\mathrm{s}} \sigma^{\prime \prime}}
$$

If I_{1} terminates on a break statement or on a return statement, then " $I_{1} ; I_{2}$ " also terminates on that statement.

$$
\frac{\left\langle I_{1}, \sigma\right\rangle \xrightarrow{a}{ }_{\mathrm{s}} \sigma^{\prime} \quad a \neq \sqrt{ }}{\left\langle I_{1} ; I_{2}, \sigma\right\rangle \xrightarrow{a}{ }_{\mathrm{s}} \sigma^{\prime}}
$$

B.5.4 Return

A return statement terminates, passing a return label to its context.

$$
\begin{aligned}
& \overline{\langle\text { return }, \sigma\rangle \xrightarrow{\text { ret }}_{\mathrm{s}} \sigma} \\
& \frac{\langle V, \sigma\rangle \rightarrow_{\mathrm{e}} v}{\langle\text { return } V, \sigma\rangle \xrightarrow{\text { ret }(v)} \sigma}
\end{aligned}
$$

B.5.5 Assignment

An assignment statement terminates normally after updating the store by associating the value of its right-hand side to the assigned variable.

$$
\frac{\langle V, \sigma\rangle \rightarrow_{\mathrm{e}} v}{\langle X:=V, \sigma\rangle \xrightarrow{\checkmark}_{\mathrm{s}} \sigma \theta[X \leftarrow v]}
$$

B.5.6 Procedure call that returns a value

Let F be a procedure defined (omitting formal parameter types) as follows:
function F (in X_{1}, \ldots, X_{m}, out Y_{1}, \ldots, Y_{p}, in out Z_{1}, \ldots, Z_{q}) : T is I end function

A procedure call first evaluates the procedure body I in a store that associates the value of each "in" and "in out" actual parameter to its respective formal parameter, waiting for a return value v and an updated store σ^{\prime}. The execution then terminates normally after updating the initial store, so that the value of each "out" and "in out" formal parameter in σ^{\prime} is associated to its respective actual parameter, and the return value v is associated to the assigned variable. In the rule below, we use the following abbreviation ${ }^{1}$:

$$
\begin{aligned}
& \sigma^{\prime \prime} \triangleq \sigma \theta\left[Y_{1}^{\prime} \leftarrow \sigma^{\prime}\left(Y_{1}\right), \ldots, Y_{p}^{\prime} \leftarrow \sigma^{\prime}\left(Y_{p}\right), Z_{1}^{\prime} \leftarrow \sigma^{\prime}\left(Z_{1}\right), \ldots, Z_{q}^{\prime} \leftarrow \sigma^{\prime}\left(Z_{q}\right), X \leftarrow v\right] \\
& \frac{\left\langle V_{i}, \sigma\right\rangle \rightarrow \rightarrow_{\mathrm{e}} v_{i}(i \in 1 . . m) \quad\left\langle I,\left[X_{1} \leftarrow v_{1}, \ldots, X_{m} \leftarrow v_{m}, Z_{1} \leftarrow \sigma\left(Z_{1}^{\prime}\right), \ldots, Z_{q} \leftarrow \sigma\left(Z_{q}^{\prime}\right)\right]\right\rangle \xrightarrow{\text { ret }(v)}{ }_{\mathrm{s}} \sigma^{\prime}}{\left\langle X:=F\left(V_{1}, \ldots, V_{m}, ? Y_{1}^{\prime}, \ldots, ? Y_{p}^{\prime},!? Z_{1}^{\prime}, \ldots,!? Z_{q}^{\prime}\right), \sigma\right\rangle \xrightarrow{V_{\mathrm{s}}} \sigma^{\prime \prime}}
\end{aligned}
$$

B.5.7 Procedure call that does not return a value

The definition of F has the following form:
function F (in X_{1}, \ldots, X_{m}, out Y_{1}, \ldots, Y_{p}, in out Z_{1}, \ldots, Z_{q}) is I end function
We assume that I necessarily ends with a return statement (possibly added by the compiler). In the rule below, we use the following abbreviation:

$$
\begin{aligned}
& \sigma^{\prime \prime} \triangleq \sigma \otimes\left[Y_{1}^{\prime} \leftarrow \sigma^{\prime}\left(Y_{1}\right), \ldots, Y_{p}^{\prime} \leftarrow \sigma^{\prime}\left(Y_{p}\right), Z_{1}^{\prime} \leftarrow \sigma^{\prime}\left(Z_{1}\right), \ldots, Z_{q}^{\prime} \leftarrow \sigma^{\prime}\left(Z_{q}\right)\right] \\
& \frac{\left\langle V_{i}, \sigma\right\rangle \rightarrow_{\mathrm{e}} v_{i}(i \in 1 . . m) \quad\left\langle I,\left[X_{1} \leftarrow v_{1}, \ldots, X_{m} \leftarrow v_{m}, Z_{1} \leftarrow \sigma\left(Z_{1}^{\prime}\right), \ldots, Z_{q} \leftarrow \sigma\left(Z_{q}^{\prime}\right)\right]\right\rangle \xrightarrow{\text { ret }} \sigma_{\mathrm{s}}}{\left\langle F\left(V_{1}, \ldots, V_{m}, ? Y_{1}^{\prime}, \ldots, ? Y_{p}^{\prime},!? Z_{1}^{\prime}, \ldots,!? Z_{q}^{\prime}\right), \sigma\right\rangle \xrightarrow{\vee}_{\mathrm{s}_{\mathrm{s}}} \sigma^{\prime \prime}}
\end{aligned}
$$

B.5.8 Case statement

A case statement "case V in $P_{1} \rightarrow I_{1}|\ldots| P_{m} \rightarrow I_{m}$ end case" first evaluates the value v of the expression V. It then executes the first (from left to right) statement I_{i}, whose pattern P_{i} matches v. Note that the static semantics ensure that case statements are exhaustive, i.e., there is necessarily a P_{i} that matches v.

$$
\frac{\langle V, \sigma\rangle \rightarrow_{\mathrm{e}} v \quad\left\langle P_{i} \sharp v, \sigma\right\rangle \rightarrow_{\mathrm{p}} \text { fail }(i \in 1 \ldots j-1) \quad\left\langle P_{j} \sharp v, \sigma\right\rangle \rightarrow_{\mathrm{p}} \sigma_{j}\left\langle I_{j}, \sigma_{j}\right\rangle \xrightarrow{a}{ }_{\mathrm{s}} \sigma_{j}^{\prime}}{\left.\left\langle\text { case } V \text { in } P_{1} \rightarrow I_{1}\right| \ldots \mid P_{m} \rightarrow I_{m} \text { end case }, \sigma\right\rangle \xrightarrow{a}{ }_{\mathrm{s}} \sigma_{j}^{\prime}} \quad(j \in 1 \ldots m)
$$

B.5.9 Loop break

A break statement terminates, passing the loop label to its context.

[^4]$\overline{\langle\text { break } L, \sigma\rangle \xrightarrow{\text { brk }(L)} \sigma}$

B.5.10 Breakable loop

A breakable loop first executes its body I_{0}.
If I_{0} terminates normally, then the loop is executed once more in the updated store.

$$
\left\langle I_{0}, \sigma\right\rangle{\xrightarrow{\checkmark_{\mathrm{s}}} \sigma^{\prime} \quad\left\langle\text { loop } L \text { in } I_{0} \text { end loop, } \sigma^{\prime}\right\rangle \xrightarrow{a}{ }_{\mathrm{s}} \sigma^{\prime \prime}, ~}_{\prime \prime}
$$

$\left\langle\right.$ loop L in I_{0} end loop, $\left.\sigma\right\rangle \xrightarrow{a}{ }_{\mathrm{s}} \sigma^{\prime \prime}$

If I_{0} terminates on a "break L " statement, L being the label of the current loop, then the loop terminates normally.

$$
\left\langle I_{0}, \sigma\right\rangle \xrightarrow{\operatorname{brk}(L)} \sigma^{\prime}
$$

$\left\langle\right.$ loop L in I_{0} end loop, $\left.\sigma\right\rangle \xrightarrow{\checkmark_{\mathrm{s}}} \sigma^{\prime}$

If I_{0} terminates on a return statement or on a "break $L^{\prime \prime}$ " statement, L^{\prime} not being the label of the current loop, then the loop terminates on that statement.

$$
\left\langle I_{0}, \sigma\right\rangle \xrightarrow{a}_{\mathrm{s}} \sigma^{\prime} \quad a \notin \mathcal{C}_{\mathcal{V}} \quad a \neq \operatorname{brk}(L)
$$

$\left\langle\right.$ loop L in I_{0} end loop, $\left.\sigma\right\rangle \xrightarrow{a}{ }_{s} \sigma^{\prime}$

B. 6 Dynamic semantics of behaviours

B.6.1 Definitions

The dynamic semantics of behaviours are defined as an LTs (Labeled Transition System), whose states are couples, often called configurations in the literature, of the form " $\langle B, \sigma\rangle$ ", where B is a behaviour and σ is a store. The initial state of an LnT program B_{0} is " $\left\langle B_{0},[]\right\rangle$ ". The transitions of the LTs, of the form " $\langle B, \sigma\rangle \xrightarrow{a} \mathrm{~b}\left\langle B^{\prime}, \sigma^{\prime}\right\rangle$ ", are defined by the Sos rules below, where the label a has one of the following forms:

- " $\sqrt{ }$ " (similar to the semantics of statements) is a special label that denotes normal termination. Invariantly, if $a=\sqrt{ }$ then $B^{\prime}=$ stop, i.e., all transitions labeled by $\sqrt{ }$ necessarily lead to a deadlock state.
- "brk (L) " (similar to the semantics of statements) is a special label that denotes termination on a "break L " behaviour. Note that transitions labeled by " $\operatorname{brk}(L)$ " can only occur in intermediate Sos steps, and not in the LTS corresponding to the main behaviour of an LNT program.
- A communication label has either the form \mathbf{i} or " $E\left(v_{1}, \ldots, v_{n}\right)$ ", where E is a gate and v_{1}, \ldots, v_{n} are values. We write \mathcal{C} for the set of communication labels. For a communication label a, the function gate (a) returns the gate of a as follows:

$$
\begin{aligned}
\operatorname{gate}(\mathbf{i}) & =\mathbf{i} \\
\operatorname{gate}\left(E\left(v_{1}, \ldots, v_{n}\right)\right) & =E
\end{aligned}
$$

Note that, unlike statements, behaviours that do not terminate are correct. In general, a nonterminating behaviour produces a potentially infinite sequence of transitions labeled by the communication actions executed along the behaviour execution. As a particular case, a non-terminating behaviour that never reaches any communication action is equivalent to the "stop" statement, as it does not produce any transition.

A gate substitution is a list of the form " $\left[E_{1}^{\prime} / E_{1}, \ldots, E_{n}^{\prime} / E_{n}\right]$ ", where $E_{1}, \ldots, E_{n}, E_{1}^{\prime}, \ldots, E_{n}^{\prime}$ are gates. We write $\gamma, \gamma_{0}, \gamma_{1}, \ldots$ for gate subtitutions. A gate substitution $\gamma=\left[E_{1}^{\prime} / E_{1}, \ldots, E_{n}^{\prime} / E_{n}\right]$ can be applied to a behaviour B, which is written " $B \gamma$ " or " $B\left[E_{1}^{\prime} / E_{1}, \ldots, E_{n}^{\prime} / E_{n}\right]$ ", resulting in the behaviour B in which every occurrence of a gate E_{i} is replaced by $E_{i}^{\prime}(i \in 1 . . n)$. A substitution can alternatively be applied to a label a, which is written " $a \gamma$ " or " $a\left[E_{1}^{\prime} / E_{1}, \ldots, E_{n}^{\prime} / E_{n}\right]$ ", resulting in the label a whose gate (if any) has been substituted as defined by γ.
We make the same assumptions as for statements (see Section B.5), and we thus consider the following abstract syntax of behaviours:

```
B ::= stop
    | null
    | B
    X:=V
    X:= any T where V
    [X := ] F ( }\mp@subsup{V}{1}{},\ldots,\mp@subsup{V}{m}{},?\mp@subsup{Y}{1}{},\ldots,?Y\mp@subsup{Y}{p}{},!?\mp@subsup{Z}{1}{},\ldots,!?ZZq
        case V in P}\mp@subsup{P}{1}{}->\mp@subsup{B}{1}{}|\ldots|\mp@subsup{P}{m}{}->\mp@subsup{B}{m}{}\mathrm{ end case
        break L
        loop L in B}\mp@subsup{B}{0}{}\mathrm{ end loop
```



```
        E (O},\mp@subsup{O}{1}{},\ldots,\mp@subsup{O}{n}{})\mathrm{ where V
        select B1 [] ... [] }\mp@subsup{B}{n}{}\mathrm{ end select
        par }\mp@subsup{E}{0}{},\ldots,\mp@subsup{E}{n}{}\mathrm{ in
            E (1,0),\ldots, E (1,\mp@subsup{n}{1}{})
        end par
        hide E E , \ldots., E E in }\mp@subsup{B}{0}{}\mathrm{ end hide
    | disrupt B
```


B.6.2 Stop

No Sos rule is associated to $\langle\mathbf{s t o p}, \sigma\rangle$, which represents process inaction.

B.6.3 Null

The null statement terminates normally and keeps the store unchanged.

$$
\overline{\langle\text { null }, \sigma\rangle \xrightarrow{\checkmark}_{\mathrm{b}}\langle\text { stop }, \sigma\rangle}
$$

B.6.4 Sequential composition

The behaviour " $B_{1} ; B_{2}$ " starts by executing B_{1}.
If B_{1} terminates normally, then B_{2} is executed in the store updated by B_{1}.

$$
\frac{\left\langle B_{1}, \sigma\right\rangle \xrightarrow{\vee}_{\mathrm{b}}\left\langle B_{1}^{\prime}, \sigma^{\prime}\right\rangle}{\left\langle B_{2}, \sigma^{\prime}\right\rangle \xrightarrow{a} \mathrm{~b}\left\langle B_{2}^{\prime}, \sigma^{\prime \prime}\right\rangle} \underset{\left\langle B_{1} ; B_{2}, \sigma\right\rangle \xrightarrow{a} \mathrm{~b}\left\langle B_{2}^{\prime}, \sigma^{\prime \prime}\right\rangle}{ }
$$

If B_{1} terminates on a break statement, then " $B_{1} ; B_{2}$ " also terminates on that statement.

$$
\frac{\left\langle B_{1}, \sigma\right\rangle \xrightarrow{\operatorname{brk}(L)}\left\langle B_{1}^{\prime}, \sigma^{\prime}\right\rangle}{\left\langle B_{1} ; B_{2}, \sigma\right\rangle \xrightarrow{\operatorname{brk}(L)}\left\langle B_{1}^{\prime}, \sigma^{\prime}\right\rangle}
$$

If B_{1} offers a communication label, then the execution of B_{1} must continue until termination.

$$
\frac{\left\langle B_{1}, \sigma\right\rangle \xrightarrow{a} \mathrm{~b}\left\langle B_{1}^{\prime}, \sigma^{\prime}\right\rangle \quad a \in \mathcal{C}}{\left\langle B_{1} ; B_{2}, \sigma\right\rangle \xrightarrow{a} \mathrm{~b}\left\langle B_{1}^{\prime} ; B_{2}, \sigma^{\prime}\right\rangle}
$$

B.6.5 Deterministic assignment

A deterministic assignment terminates normally after updating the store by associating the value of its right-hand side to the assigned variable.

$$
\frac{\langle V, \sigma\rangle \rightarrow_{\mathrm{e}} v}{\langle X:=V, \sigma\rangle \xrightarrow{V_{\mathrm{b}}}\langle\text { stop }, \sigma \theta[X \leftarrow v]\rangle}
$$

B.6.6 Nondeterministic assignment

A nondeterministic assignment terminates normally after updating the store by associating a value to the assigned variable, provided the condition of the assignment evaluates to true in the updated store.

$$
\frac{v \in T \quad \sigma^{\prime}=\sigma \theta[X \leftarrow v] \quad\left\langle V, \sigma^{\prime}\right\rangle \rightarrow_{\mathrm{e}} \text { true }}{\langle X:=\text { any } T \text { where } V, \sigma\rangle \xrightarrow{\checkmark}_{\mathrm{b}}\left\langle\text { stop }, \sigma^{\prime}\right\rangle}
$$

B.6.7 Procedure call that returns a value

The behaviour semantics of such a procedure call are directly derived from its statement semantics.

$$
\frac{\left\langle X:=F\left(V_{1}, \ldots, V_{m}, ? Y_{1}, \ldots, ? Y_{p},!? Z_{1}, \ldots,!? Z_{q}\right), \sigma\right\rangle \xrightarrow{\checkmark_{\mathrm{s}}} \sigma^{\prime}}{\left\langle X:=F\left(V_{1}, \ldots, V_{m}, ? Y_{1}, \ldots, ? Y_{p},!? Z_{1}, \ldots,!? Z_{q}\right), \sigma\right\rangle \xrightarrow{V_{\mathrm{b}}\left\langle\text { stop }, \sigma^{\prime}\right\rangle}}
$$

B.6.8 Procedure that does not return a value

The behaviour semantics of such a procedure call are directly derived from its statement semantics.

$$
\begin{aligned}
& \left\langle F\left(V_{1}, \ldots, V_{m}, ? Y_{1}, \ldots, ? Y_{p},!? Z_{1}, \ldots,!? Z_{q}\right), \sigma\right\rangle \xrightarrow{\checkmark_{\mathrm{s}}} \sigma^{\prime} \\
& \overline{\left\langle F\left(V_{1}, \ldots, V_{m}, ? Y_{1}, \ldots, ? Y_{p},!? Z_{1}, \ldots,!? Z_{q}\right), \sigma\right\rangle{\xrightarrow{V_{b}}}^{\text {b }}\left\langle\boldsymbol{s t o p}, \sigma^{\prime}\right\rangle}
\end{aligned}
$$

Note that in both rules above, $\sqrt{ }$ is the only label that can possibly be obtained from the statement semantics of a procedure call.

B.6.9 Case behaviour

The dynamic semantics of a case behaviour are similar to the dynamic semantics of a case statement.

$$
\frac{\langle V, \sigma\rangle \rightarrow_{\mathrm{e}} v \quad\left\langle P_{i} \sharp v, \sigma\right\rangle \rightarrow_{\mathrm{p}} \text { fail }(i \in 1 . . j-1) \quad\left\langle P_{j} \sharp v, \sigma\right\rangle \rightarrow_{\mathrm{p}} \sigma_{j} \quad\left\langle B_{j}, \sigma_{j}\right\rangle \xrightarrow{a}{ }_{\mathrm{b}}\left\langle B_{j}^{\prime}, \sigma_{j}^{\prime}\right\rangle}{\left.\left\langle\text { case } V \text { in } P_{1} \rightarrow B_{1}\right| \ldots \mid P_{m} \rightarrow B_{m} \text { end case }, \sigma\right\rangle \xrightarrow{a} \rightarrow_{\mathrm{b}}\left\langle B_{j}^{\prime}, \sigma_{j}^{\prime}\right\rangle} \quad(j \in 1 . . m)
$$

B.6.10 Loop break

A break behaviour terminates, passing the loop label to its context.

$$
\langle\text { break } L, \sigma\rangle \xrightarrow{\operatorname{brk}(L)}\langle\operatorname{stop}, \sigma\rangle
$$

B.6.11 Breakable loop

The dynamic semantics of a breakable loop behaviour are slightly more complicated than those of a breakable loop statement, because of the possible occurrence of an unknown number of communications in the loop body before termination. The introduction of an intermediate construct written "loop $\left(L, B_{1}, B_{2}\right)$ " is necessary. Its semantics are defined as follows.
The behaviour "loop $\left(L, B_{1}, B_{2}\right)$ " starts by executing B_{1}.
If B_{1} offers a communication label then loop $\left(L, B_{1}, B_{2}\right)$ offers this communication label.

$$
\frac{\left\langle B_{1}, \sigma\right\rangle \xrightarrow{a} \mathrm{~b}\left\langle B_{1}^{\prime}, \sigma^{\prime}\right\rangle \quad a \in \mathcal{C}}{\left\langle\operatorname{loop}\left(L, B_{1}, B_{2}\right), \sigma\right\rangle \xrightarrow{a}_{\mathrm{b}}\left\langle\operatorname{loop}\left(L, B_{1}^{\prime}, B_{2}\right), \sigma^{\prime}\right\rangle}
$$

If B_{1} terminates on a "break L " statement, then loop $\left(L, B_{1}, B_{2}\right)$ terminates normally.

$$
\frac{\left\langle B_{1}, \sigma\right\rangle \stackrel{\operatorname{brk}(L)}{\longrightarrow}\left\langle B_{1}^{\prime}, \sigma^{\prime}\right\rangle}{\left\langle\operatorname{loop}\left(L, B_{1}, B_{2}\right), \sigma\right\rangle{\xrightarrow{\checkmark_{\mathrm{b}}}}\left\langle B_{1}^{\prime}, \sigma^{\prime}\right\rangle}
$$

If B_{1} terminates on a "break $L^{\prime \prime}$ statement, where $L^{\prime} \neq L$, then loop $\left(L, B_{1}, B_{2}\right)$ terminates on that statement.

$$
\frac{\left\langle B_{1}, \sigma\right\rangle \xrightarrow{\operatorname{brk}\left(L^{\prime}\right)}\left\langle B_{1}^{\prime}, \sigma^{\prime}\right\rangle \quad L^{\prime} \neq L}{\left\langle\operatorname{loop}\left(L, B_{1}, B_{2}\right), \sigma\right\rangle \xrightarrow{\operatorname{brk}\left(L^{\prime}\right)}\left\langle B_{1}^{\prime}, \sigma^{\prime}\right\rangle}
$$

If B_{1} terminates normally (without a break), then B_{2} is executed in the store updated by B_{1}.

$$
\frac{\left\langle B_{1}, \sigma\right\rangle{\xrightarrow{\vee_{\mathrm{b}}}}_{\mathrm{b}}\left\langle B_{1}^{\prime}, \sigma^{\prime}\right\rangle \quad\left\langle B_{2}, \sigma^{\prime}\right\rangle \xrightarrow{a} \mathrm{~b}\left\langle B_{2}^{\prime}, \sigma^{\prime \prime}\right\rangle}{\left\langle\operatorname{loop}\left(L, B_{1}, B_{2}\right), \sigma\right\rangle \xrightarrow{a} \mathrm{~b}\left\langle B_{2}^{\prime}, \sigma^{\prime \prime}\right\rangle}
$$

The Sos for a breakable loop are therefore given by the following single rule.

```
\(\left\langle\right.\) loop \(\left(L, B_{0}\right.\), loop \(L\) in \(B_{0}\) end loop),\(\left.\sigma\right\rangle \xrightarrow{a}{ }_{\mathrm{b}}\left\langle B_{0}^{\prime}, \sigma^{\prime}\right\rangle\)
```

$\left\langle\right.$ loop L in B_{0} end loop, $\left.\sigma\right\rangle \xrightarrow{a}{ }_{\mathrm{b}}\left\langle B_{0}^{\prime}, \sigma^{\prime}\right\rangle$

B.6.12 Process call

Although the static semantics currently restrict process recursion to tail recursion, the following Sos rules encompass the case of general recursion, which might become available in future versions of Lnt. To this end, we introduce an intermediate behaviour construct called a closure, denoted by "call (B, I, γ, σ) ", where B is a behaviour, I is a (possibly empty) sequence of assignments of the form " $X_{1}^{\prime}:=X_{1} ; \ldots ; X_{m}^{\prime}:=X_{m} "(m \geq 0), \gamma$ is a gate substitution of the form " $\left[E_{1}^{\prime} / E_{1}, \ldots, E_{n}^{\prime} / E_{n}\right]$ " ($n \geq 0$), and σ is a store.
We assume that Π is a process defined (omitting formal parameter types) as follows:

```
process \(\Pi\left[E_{1}, \ldots, E_{n}\right]\) (in \(X_{1}, \ldots, X_{m}\), out \(Y_{1}, \ldots, Y_{p}\), in out \(Z_{1}, \ldots, Z_{q}\) ) is
    B
end process
```

When calling process Π, a closure is created, containing the process body B, a sequence of assignments I implementing the update of "out" and "in out" parameters, a gate substitution γ implementing gate parameter passing, and the current store σ, which is the store of the caller. At the same time, a local store σ^{\prime} is created, assigning the values of "in" and "in out" actual parameters to the corresponding formal parameters. The closure is then executed in the local store σ^{\prime}, which is the store of the callee. In the rule below, we use the following abbreviations:

$$
\begin{array}{rll}
\gamma & \triangleq & {\left[E_{1}^{\prime} / E_{1}, \ldots, E_{n}^{\prime} / E_{n}\right]} \\
I & \triangleq & Y_{1}^{\prime}:=Y_{1} ; \ldots ; Y_{p}^{\prime}:=Y_{p} ; Z_{1}^{\prime}:=Z_{1} ; \ldots ; Z_{q}^{\prime}:=Z_{q} \\
\sigma^{\prime} \triangleq & {\left[X_{1} \leftarrow v_{1}, \ldots, X_{m} \leftarrow v_{m}, Z_{1} \leftarrow \sigma\left(Z_{1}^{\prime}\right), \ldots, Z_{q} \leftarrow \sigma\left(Z_{q}^{\prime}\right)\right]} \\
& & \left\langle V_{i}, \sigma\right\rangle \rightarrow_{\mathrm{e}} v_{i}(i \in 1 . . m) \quad\left\langle\operatorname{call}(B, I, \gamma, \sigma), \sigma^{\prime}\right\rangle \xrightarrow{a}{ }_{\mathrm{b}}\left\langle B^{\prime \prime}, \sigma^{\prime \prime}\right\rangle \\
\hline\left\langle\Pi\left[E_{1}^{\prime}, \ldots, E_{n}^{\prime}\right]\left(V_{1}, \ldots, V_{m}, ? Y_{1}^{\prime}, \ldots, ? Y_{p}^{\prime},!? Z_{1}^{\prime}, \ldots,!? Z_{q}^{\prime}\right), \sigma\right\rangle \xrightarrow{a} \mathrm{~b}\left\langle B^{\prime \prime}, \sigma^{\prime \prime}\right\rangle
\end{array}
$$

If the body of the process offers a communication label, then the communication label is renamed according to gate parameters. The execution then continues normally.

$$
\frac{\langle B, \sigma\rangle \xrightarrow{a} \mathrm{~b}\left\langle B^{\prime}, \sigma^{\prime}\right\rangle \quad a \in \mathcal{C}}{\left\langle\operatorname{call}\left(B, I, \gamma, \sigma_{0}\right), \sigma\right\rangle \xrightarrow{a \gamma} \mathrm{~b}\left\langle\operatorname{call}\left(B^{\prime}, I, \gamma, \sigma_{0}\right), \sigma^{\prime}\right\rangle}
$$

If the body of the process terminates normally, then the process call also terminates normally after restoring the store of the caller and updating the "out" and "in out" actual parameters.

$$
\frac{\langle B, \sigma\rangle \xrightarrow{\checkmark}_{\mathrm{b}}\left\langle B^{\prime}, \sigma^{\prime}\right\rangle}{\left\langle\operatorname{call}\left(B,\left\{X_{1}^{\prime}:=X_{1} ; \ldots ; X_{n}^{\prime}:=X_{n}\right\}, \gamma, \sigma_{0}\right), \sigma\right\rangle \xrightarrow{\vee}_{\mathrm{b}}\left\langle B^{\prime}, \sigma_{0} \otimes\left[X_{1}^{\prime} \leftarrow \sigma^{\prime}\left(X_{1}\right), \ldots, X_{n}^{\prime} \leftarrow \sigma^{\prime}\left(X_{n}\right)\right]\right\rangle}
$$

Note that the static semantics ensure that no transition labeled by "brk (L) " can be derived from a closure, because a break behaviour can only interrupt a loop that belongs to the process body.

B.6.13 Communication

If v_{1}, \ldots, v_{n} are (nondeterministic) values matching the offers O_{1}, \ldots, O_{n} in such a way that the guard V evaluates to true, then the communication behaviour " $E\left(O_{1}, \ldots, O_{n}\right.$) where V " offers the communication label " $E\left(v_{1}, \ldots, v_{n}\right)$ " and then behaves like null, so as to enable execution of the next behaviour.

$$
\frac{\sigma_{0}=\sigma \quad\left\langle O_{i} \sharp v_{i}, \sigma_{i-1}\right\rangle \rightarrow_{0} \sigma_{i}(i \in 1 . . n) \quad\left\langle V, \sigma^{\prime}\right\rangle \rightarrow_{\mathrm{e}} \text { true }}{\left\langle E\left(O_{1}, \ldots, O_{n}\right) \text { where } V, \sigma\right\rangle \stackrel{E\left(v_{1}, \ldots, v_{n}\right)}{\mathrm{v}_{\mathrm{b}}}\left\langle\text { null }, \sigma_{n}\right\rangle}
$$

The above rule ensure that offers are evaluated from left to right. Theoretically, this would allow a variable bound in an offer to be used in an expression (e.g., a Boolean condition) located further to the right, although for practical reasons, this is not currently allowed by the static semantics.

B.6.14 Nondeterministic choice

A nondeterministic choice between behaviours B_{1}, \ldots, B_{n} behaves as any of the B_{i} behaviours.

$$
\frac{\left\langle B_{i}, \sigma\right\rangle \xrightarrow{a}_{\mathrm{b}}\left\langle B_{i}^{\prime}, \sigma^{\prime}\right\rangle}{\left\langle\text { select } B_{1}[] \ldots[] B_{n} \text { end select }, \sigma\right\rangle \xrightarrow{a}{ }_{\mathrm{b}}\left\langle B_{i}^{\prime}, \sigma^{\prime}\right\rangle} \quad(i \in 1 . . n)
$$

B.6.15 Parallel composition

In the first Sos rule below, for a communication label $a \in \mathcal{C}, \operatorname{sync}(a)$ denotes a set of subsets of 1..m, each such subset (called a synchronization set) denoting the indices of the behaviours among B_{1}, \ldots, B_{m} that synchronize on a. It is defined as follows:

$$
\begin{aligned}
& \operatorname{sync}(a)= \\
& \begin{cases}\{\{1 . . m\}\} & \text { if gate }(a) \in\left\{E_{0}, \ldots, E_{n}\right\} \\
\left\{\left\{i \mid i \in 1 . . m \wedge \operatorname{gate}(a) \in\left\{E_{(i, 0)}, \ldots, E_{\left(i, n_{i}\right)}\right\}\right\}\right\} & \text { if gate }(a) \in \bigcup_{i \in 1 . . m}\left\{E_{(i, 0)}, \ldots, E_{\left(i, n_{i}\right)}\right\} \\
\{\{i\} \mid i \in 1 . . m\} & \text { otherwise }\end{cases}
\end{aligned}
$$

Note that the static semantics ensure that all three cases in the definition above are exclusive.
If S is a synchronization set for a communication label a, and if each behaviour in S offers a while the behaviours outside S remain idle, then the parallel composition offers a. In the rule below, we use the following abbreviation:

$$
\sigma^{\prime} \triangleq \sigma \otimes\left(\left(\sigma_{1} \ominus \sigma\right) \oplus \ldots \oplus\left(\sigma_{m} \ominus \sigma\right)\right)
$$

If all parallel behaviours terminate normally, then the parallel composition terminates normally. Again in the rule below, we use the following abbreviation:

$$
\begin{aligned}
& \sigma^{\prime} \triangleq \sigma \otimes\left(\left(\sigma_{1} \ominus \sigma\right) \oplus \ldots \oplus\left(\sigma_{m} \ominus \sigma\right)\right) \\
& \left\langle B_{i}, \sigma\right\rangle{ }^{\checkmark_{\mathrm{b}}}\left\langle B_{i}^{\prime}, \sigma_{i}\right\rangle(i \in 1 . . m) \\
& \operatorname{par} E_{0}, \ldots, E_{n} \text { in } \\
& \left\langle\begin{array}{l}
E_{(1,0)}, \ldots, E_{\left(1, n_{1}\right)} \rightarrow B_{1} \\
\|\ldots\| \\
E_{(m, 0)}, \ldots, E_{\left(m, n_{m}\right)} \rightarrow B_{m}
\end{array}, \sigma\right\rangle \xrightarrow{\checkmark}{ }_{\mathrm{b}}\left\langle\text { stop, } \sigma^{\prime}\right\rangle \\
& \text { end par }
\end{aligned}
$$

In both rules above, the resulting store σ^{\prime} is the initial store updated with respect to the union of store updates performed locally in the parallel branches. Note that the static semantics ensure that the sets of variables on which the stores $\sigma_{1}, \ldots, \sigma_{m}$ are defined are mutually disjoint, because each variable can be updated in at most one parallel branch. Hence, the store $\left(\sigma_{1} \ominus \sigma\right) \oplus \ldots \oplus\left(\sigma_{m} \ominus \sigma\right)$ is well-defined. Also, the order of B_{1}, \ldots, B_{m} in the parallel composition has no effect on the resulting store as disjoint union is associative and commutative.
Sos rules for parallel behaviours terminating on a break behaviour are unnecessary because the static semantics ensure that if one of the parallel behaviours executes a break then the broken loop also occurs in the same parallel behaviour. Therefore, every label of the form "brk (L) " has necessarily already been turned into a $\sqrt{ }$ by the Sos rule for breakable loops.

B.6.16 Hiding

If the body of a hide behaviour offers a communication label whose gate belongs to the set of gates to be hidden, then the communication label offered by the hide behaviour is the internal action " \mathbf{i} ".

$$
\left\langle B_{0}, \sigma\right\rangle \xrightarrow{a} \mathrm{~b}\left\langle B_{0}^{\prime}, \sigma^{\prime}\right\rangle \quad a \in \mathcal{C} \quad \text { gate }(a) \in\left\{E_{1}, \ldots, E_{n}\right\}
$$

$\overline{\left\langle\text { hide } E_{1}, \ldots, E_{n} \text { in } B_{0} \text { end hide }, \sigma\right\rangle \xrightarrow{\mathrm{i}} \text { b }\left\langle\text { hide } E_{1}, \ldots, E_{n} \text { in } B_{0}^{\prime} \text { end hide, } \sigma^{\prime}\right\rangle}$

If the body of the hide behaviour offers a communication label whose gate does not belong to the set of gates to be hidden, then the hide behaviour offers this communication label.

$$
\left\langle B_{0}, \sigma\right\rangle \xrightarrow{a} \mathrm{~b}\left\langle B_{0}^{\prime}, \sigma^{\prime}\right\rangle \quad a \in \mathcal{C} \quad \text { gate }(a) \notin\left\{E_{1}, \ldots, E_{n}\right\}
$$

$\left\langle\right.$ hide E_{1}, \ldots, E_{n} in B_{0} end hide, $\left.\sigma\right\rangle \xrightarrow{a} \mathrm{~b}\left\langle\right.$ hide E_{1}, \ldots, E_{n} in B_{0}^{\prime} end hide, $\left.\sigma^{\prime}\right\rangle$

If the body of the hide behaviour terminates, then the hide behaviour also terminates.

$$
\left\langle B_{0}, \sigma\right\rangle \xrightarrow{a} \mathrm{~b}\left\langle B_{0}^{\prime}, \sigma^{\prime}\right\rangle \quad a \notin \mathcal{C}
$$

$\left\langle\right.$ hide E_{1}, \ldots, E_{n} in B_{0} end hide,$\left.\sigma\right\rangle \xrightarrow{a} \mathrm{~b}\left\langle B_{0}^{\prime}, \sigma^{\prime}\right\rangle$

B.6.17 Disrupting

If the left-hand behaviour of a disrupt behaviour offers a communication label, then the disrupt behaviour also offers this communication label, without disabling its right-hand behaviour.

$$
\left\langle B_{1}, \sigma\right\rangle \xrightarrow{a} \mathrm{~b}\left\langle B_{1}^{\prime}, \sigma^{\prime}\right\rangle \quad a \in \mathcal{C}
$$

$\left\langle\right.$ disrupt B_{1} by B_{2} end disrupt, $\left.\sigma\right\rangle \xrightarrow{a} \mathrm{~b}\left\langle\right.$ disrupt B_{1}^{\prime} by B_{2} end disrupt, $\left.\sigma^{\prime}\right\rangle$

If the left-hand behaviour of the disrupt behaviour terminates normally or on a break behaviour, then the disrupt behaviour also terminates.

$$
\frac{\left\langle B_{1}, \sigma\right\rangle \xrightarrow{a}_{\mathrm{b}}\left\langle B_{1}^{\prime}, \sigma^{\prime}\right\rangle \quad a \notin \mathcal{C}}{\left\langle\text { disrupt } B_{1} \text { by } B_{2} \text { end disrupt }, \sigma\right\rangle \xrightarrow{a} \mathrm{~b}\left\langle B_{1}^{\prime}, \sigma^{\prime}\right\rangle}
$$

Finally, at any time, the disrupt behaviour may behave as its right-hand behaviour, thus disabling its left-hand behaviour.

$$
\left\langle B_{2}, \sigma\right\rangle \xrightarrow{a} \mathrm{~b}\left\langle B_{2}^{\prime}, \sigma^{\prime}\right\rangle
$$

$\overline{\left\langle\text { disrupt } B_{1} \text { by } B_{2} \text { end disrupt, } \sigma\right\rangle \xrightarrow{a} \mathrm{~b}\left\langle B_{2}^{\prime}, \sigma^{\prime}\right\rangle}$

B. 7 Discussion on the dynamics semantics

Lnt dynamic semantics are defined formally in Appendix B. Note that Lnt relies on a notion of semantic equivalence (namely, strong bisimulation) that gives an account of the branching structure of
programs. This implies that behaviour executions must be thought of as trees rather than traces, i.e., the locations where nondeterministic choices are resolved during program execution are meaningful. Therefore, reasoning about LnT program equivalences is more subtle than standard (generally tracebased) program equivalences.
To illustrate this, consider a sequential composition " $B_{1} ; B_{2} ; B_{3}$ ", such that communication occurs in B_{1} and B_{3} but not in B_{2}. If every variable used in B_{1} is not modified in B_{2} and conversely, one might think that " $B_{1} ; B_{2} ; B_{3}$ " and " $B_{2} ; B_{1} ; B_{3}$ " denote equivalent behaviours. In fact, this is not true if B_{2} is nondeterministic.
More concretely, let B_{1} be " E_{0} " (communication on gate E_{0} without offers), B_{2} be the nondeterministic assignment " $b:=$ any bool", and B_{3} be defined by "if b then E_{1} else E_{2} end if". Then, the programs " $B_{1} ; B_{2} ; B_{3}$ " and " $B_{2} ; B_{1} ; B_{3}$ " are not equivalent:

- In " $B_{1} ; B_{2} ; B_{3}$ " (i.e., " $E_{0} ; b:=$ any bool; if b then E_{1} else E_{2} end if"), E_{0} is first executed deterministically, leading the program to a state in which there is a nondeterministic choice between E_{1} and E_{2}.
- In " $B_{2} ; B_{1} ; B_{3}$ " (i.e., " $b:=$ any bool; E_{0}; if b then E_{1} else E_{2} end if"), there is a nondeterministic choice on E_{0} initially: the program may either execute E_{0} then E_{1} (if b is true), or execute E_{0} then E_{2} (otherwise), but there is no state in which the program has a choice between E_{1} and E_{2}.

In general, it is recommended to think carefully about the order in which communications and nondeterministic behaviours should be combined.

Appendix C

Predefined functions

This appendix lists the predefined functions that can be used in an LnT program over the six basic types (Booleans, natural numbers, integers, real numbers, characters, and strings). The Lotos code for these functions is defined in the "LNT_V1.lib" file and the files it includes.
Every predefined Lnt function named F is implemented in "LNT_V1.lib" by a Lotos operation that is also named F, except $=($ which is implemented by $==)$ and $!=($ which is implemented by $/=)$, because $=$ and $!=$ are not valid Lotosnames.

In each section, the table shows the predefined functions. Binary functions can be used in either prefix or infix mode, whereas other functions can be used in infix mode only.
The predefined functions over non-basic types (e.g., list, sorted list, and set types) are defined in Chapter 5.
In addition to these predefined functions, a set of predefined libraries can be found in the directory "\$LNT_LOCATION/lib" (look for files having the ". lnt" extension). The data types and associated functions provided by these libraries can be consulted by reading the corresponding LNT code.

C. 1 Functions on Booleans

Functions	Profile
and, and then, or, or else, xor, =>, <=>	Bool, Bool \rightarrow Bool
$==,=,\langle>,!=,<,\langle=,>,>=$	Bool, Bool \rightarrow Bool
false, true	\rightarrow Bool
not	Bool \rightarrow Bool
Succ, Pred	Bool \rightarrow Bool
String	Bool \rightarrow String

C. 2 Functions on natural numbers

Functions	Profile
$+,-, *, * *$, div, mod, min, max, gcd, scm	Nat, Nat \rightarrow Nat
$==,=,\langle>,!=,<,\langle=,>,>=$	Nat, Nat \rightarrow Bool
Succ, Pred	Nat \rightarrow Nat
Char	Nat \rightarrow Char
Int	Nat \rightarrow Int
Real	Nat \rightarrow Real
String	Nat \rightarrow String

C. 3 Functions on integer numbers

Functions	Profile
,+- (minus), *, div, rem, mod	Int, Int \rightarrow Int
$* *$	Int, Nat \rightarrow Int
$==,=,\langle>,!=,\langle,\langle=,>,>=$	Int, Int \rightarrow Bool
min, max	Int, Int \rightarrow Int
Pos, Neg	Nat \rightarrow Int
$+($ opposite $),-($ opposite $)$	Int \rightarrow Int
Succ, Pred, sign, abs	Int \rightarrow Int
Nat	Int \rightarrow Nat
Real	Int \rightarrow Real
String	Int \rightarrow String

Note: Functions rem and mod denote respectively the remainder and the modulo of two integer numbers:

- The definition of rem is consistent with the mathematical definition of remainder in Euclidian division, satisfying the law x rem $\mathrm{y}=\mathrm{x}-(\mathrm{y} *(\mathrm{x} \operatorname{div} \mathrm{y}))$. The result is equal to zero or has the same sign as the left operand.
- The definition of mod is consistent with the mathematical definition of the modulo operator in modulo arithmetic, satisfying the law $(x+n) \bmod n=x \bmod n$. The result is equal to zero or has the same sign as the right operand.

Both functions coincide if both operands have the same sign or if the left operand is a multiple of the right operand. They may yield different results in all other cases.

C. 4 Functions on real numbers

Functions	Profile
$==,=,\langle>,!=,\langle,\langle=,>,>=$	Real, Real \rightarrow Bool
$+,-($ minus $), *, /, * *$	Real, Real \rightarrow Real
$-($ opposite $)$	Real \rightarrow Real
abs	Real \rightarrow Real
Int	Real \rightarrow Int
String	Real \rightarrow String

C. 5 Functions on characters

Functions	Profile
$==,=,\langle>,!=,<,<=,>,>=$	Char, Char \rightarrow Bool
IsLower, IsUpper, IsAlpha, IsAlnum, IsDigit, IsXDigit	Char \rightarrow Bool
ToLower, ToUpper	Char \rightarrow Char
Succ, Pred	Char \rightarrow Char
Nat	Char \rightarrow Nat
String	Char \rightarrow String

C. 6 Functions on strings

Functions	Profile
$\&, \sim$	String, String \rightarrow String
prefix, suffix	String, Nat \rightarrow String
element	String, Nat \rightarrow Char
index, rindex	String, String \rightarrow Nat
$==,=,\langle>,!=,<,<=,>,>=$	String, String \rightarrow Bool
length	String \rightarrow Nat
empty	String \rightarrow Bool
substr	String, Nat, Nat \rightarrow String
Char	String \rightarrow Char
Nat	String \rightarrow Nat
Int	String \rightarrow Int
Real	String \rightarrow Real
String	String \rightarrow String

Appendix D

Examples

D. 1 Lnt types

D.1.1 Enumerated type

Here is an example which defines a simple enumerated LNT data type WEEK_DAY:

```
module DAY is
    type WEEK_DAY is
        MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY
        with ==, !=
    end type
end module
```

The definition of the Lnt type takes only 6 lines. If the same type had been written in Lotos, it would have taken 20 lines. Here is an idea of the Lotos code generated by Lnt2Lotos for this example:

```
type DAY is
    sorts WEEK_DAY
opns
    MONDAY (*! constructor *) : -> WEEK_DAY
    TUESDAY (*! constructor *) : -> WEEK_DAY
    WEDNESDAY (*! constructor *) : -> WEEK_DAY
    THURSDAY (*! constructor *) : -> WEEK_DAY
    FRIDAY (*! constructor *) : -> WEEK_DAY
    SATURDAY (*! constructor *) : -> WEEK_DAY
    SUNDAY (*! constructor *): -> WEEK_DAY
    _==_ : WEEK_DAY, WEEK_DAY -> BOOL
    _/=_ : WEEK_DAY, WEEK_DAY -> BOOL
eqns
    forall x, y : WEEK_DAY
        ofsort BOOL
            x == x = true;
```

```
            x == y = false;
    ofsort BOOL
            x /= y = not (x== y);
endtype
```


D.1.2 Record type

This section gives an example of a record type. The PERSON type stores information about a person.
The type NAT is assumed to be defined in a module called NATURAL and represents the natural numbers. The type STRING is defined in a module called STRING and represents character strings.

```
module PERSON (NATURAL, STRING) is
    type GENDER is
        F,M
    end type
    type PERSON is
        PERSON (NAME : STRING, SURNAME : STRING, AGE : NAT, SEX : GENDER)
    end type
end module
```

The corresponding generated Lotos code is:

```
type PERSON is NATURAL, STRING
    sorts
            GENDER,
            PERSON
    opns
            (* constructors for sort "GENDER"*)
            F (*! constructor *) : -> GENDER
            M (*! constructor *) : -> GENDER
            (* constructors for sort "PERSON" *)
            PERSON (*! constructor *) : STRING, STRING, NAT, GENDER - > PERSON
endtype
```


D.1.3 List type

A list of booleans could be defined as follows:

```
module BOOLEAN_LIST (BOOLEAN) is
    type BOOLEAN_LIST is
            list of BOOL
    end type
end module
```

This is a shorthand notation to define a type with two constructors CONS and NIL. The following piece of LNT code defines exactly the same type:

```
module BOOLEAN_LIST (BOOLEAN) is
    type BOOLEAN_LIST is
        NIL,
        CONS (HEAD : BOOL, TAIL: BOOLEAN_LIST)
        end type
end module
```

The corresponding generated Lotos code is:

```
type BOOLEAN_LIST is BOOLEAN
    sorts BOOLEAN_LIST
    opns
        NIL (*! constructor *) : -> BOOLEAN_LIST
        CONS (*! constructor *) : BOOL, BOOLEAN_LIST -> BOOLEAN_LIST
endtype
```


D.1.4 Array types

An array of three natural numbers could be defined as follows:

```
type Nat_Array is
    array [0 .. 2] of Nat
end type
```

An array of a records containing a pair of natural numbers could be defined as follows:

```
type Record is
    Record (n, m: Nat)
with get, set
end type
type Record_Array is
    array [0 .. 1] of Record
end type
```

An array of arrays of natural numbers could be defined as follows:

```
type Nat_Array is
    array [0 .. 1] of Nat
end type
type Nat_Array_Array is
    array [0 .. 1] of Nat_Array
end type
```


D. 2 Lnt functions

D.2.1 Manipulating record fields

Consider the following nested record types:

```
module PERSON (NATURAL, STRING) with get, set is
    type GENDER is
        F,M
    end type
    type NAME is
        NAME (FIRST_NAME, LAST_NAME : STRING)
    end type
    type PERSON is
        PERSON (NAME: NAME, AGE: NAT, SEX: GENDER)
    end type
end module
```

The following two functions illustrate the use of field updates (see Section 7.13.6) to change fields of a (nested) record:

```
function CHANGE_AGE (in out P: PERSON, NEW_AGE: NAT) is
    P := P.{AGE - > NEW_AGE}
end function
function CHANGE_LAST_NAME (in out P: PERSON, NEW_LAST_NAME: STRING) is
    P := P.{NAME - > P.NAME.{LAST_NAME - > NEW_LAST_NAME}}
end function
```


D.2.2 The factorial function

The following example gives several implementations of the factorial function, and shows how to use the main Lnt features.

```
module FACT (NATURAL) is
    (* while loop *)
    function FACT1 (N : NAT) : NAT is
        var RESULT : NAT := 1,
            I : NAT := 1
        in
            while I <= N loop
                RESULT := RESULT * I;
                    I := I + 1
            end loop;
            return RESULT
        end var
    end function
```

```
(* for loop *)
function FACT2 (N : NAT) : NAT is
    var RESULT, I : NAT in
        RESULT := 1;
        for I := 1 while I <= N by I := I + 1 loop
            RESULT := RESULT * I;
        end loop;
        return RESULT
    end var
end function
(* breakable loop *)
function FACT3 (N : NAT) : NAT is
    var RESULT, I : NAT in
        RESULT := 1;
        I := 1;
        loop L in
            if I > N then
                break L
            end if;
            RESULT := RESULT * I;
            I := I + 1
        end loop;
        return RESULT
    end var
end function
(* recursive *)
function FACT4 (N : NAT) : NAT is
    if N}==0\mathrm{ then
        return 1
    else
        return N * FACT4 (N - 1)
    end if
end function
(* another recursive *)
function FACT5 (N : NAT) : NAT is
    case N of NAT
    var I : NAT in
        0 -> return 1
        | I -> return I * FACT5 (I - 1)
    end case
end function
(* tail-recursive *)
function FACT6 (N : NAT) : NAT is
    return FACT6 (N, 1)
end function
function FACT6 (N, ACC : NAT) : NAT is
    if N == 0 then
        return ACC
```

```
        else
            return FACT6 (N - 1, ACC * N)
        end if
    end function
    (* another tail-recursive *)
    function FACT7 (N : NAT) : NAT is
        return FACT7 (N, 1)
    end function
    function FACT7 (N, ACC : NAT) : NAT is
        case N of NAT
        var I : NAT in
            0-> return ACC
        | I >> return FACT7 (I - 1, ACC * I)
        end case
    end function
end module
```


D. 3 LnT processes

D.3.1 Hello World program

```
module Test is
process Main [Output: any] is
    Output ("Hello_World!")
end process
end module
```


D.3.2 Pattern matching in a rendezvous

In contrast to Lotos, offers in an Lnt rendezvous can use pattern matching. Consider the type T and channel C, defined as follows:

```
type T is
    Request (x: Nat),
    Response (y: Bool)
end type
```

channel C is (T) end channel
The following process repeatedly accepts rendezvous on gate G (of type C) if the offer is a request with a value equal to either 3 or 4 :

```
process P [G: C] is
    var x: Nat in
        loop
            G (?Request(x) of T) where (x>2 and x < 5)
        end loop
    end var
end process
```


D.3.3 Array types

The following three processes illustrate the initialization, access and modification of array (see also the definition of array types in Section D.1.4).

Simple array

```
type Nat_Array is
    array [0 .. 2] of Nat
end type
process main [G: any] is
    var a: Nat_Array, x: Nat in
        G (?x);
        -- initialisation of all elements to x
        a := Nat_Array (x);
        G (a [0], a [1], a [2]);
        G (?x);
        -- set element 1 to the new value x
        a [1] := x;
        G (a[0], a [1], a [2]);
    end var
end process
```


Array of records

```
type Record is
    Record (n, m: Nat)
with get, set
end type
type Record_Array is
    array [0 .. 1] of Record
end type
process main [G: any] is
    var a: Record_Array, x, y, z: Nat in
        -- initialisation of all fields to zero
        a := Record_Array (Record (0, 0));
        G (a[0].n, a [0].m, a [1].n, a [1].m);
        G (?x, ?y, ?z) where (x < 2);
        -- set element }x\mathrm{ to the record (y,z)
        a[x]:= a[x].{n->y,m-> z};
        G (a[0].n, a [0].m, a [1].n, a [1].m);
    end var
```

end process

Two-dimensional array type

```
type Nat_Array is
    array [0 .. 1] of Nat
end type
type Nat_Array_Array is
    array [0 .. 1] of Nat_Array
end type
process main [G: any] is
    var a: Nat_Array_Array, x, y, z: Nat in
        G (?x, ?y);
            -- simultaneous initialisation of both lines
            a := Nat_Array_Array (Nat_Array (x), Nat_Array (y));
            G (a [0][0], a [0][1], a [1][0], a [1][1]);
            G (?x, ?y, ?z) where (x<2) and (y<2);
            -- set of element (x,y) to the new value z
            var b: Nat_Array in
                b := a[x];
            b[y]:= z;
            a[x]:= b
        end var;
        G (a [0][0], a [0][1], a [1][0], a [1][1]);
        end var
end process
```


D.3.4 The Alternating Bit protocol

This example is a variant of the alternating bit protocol.

Channel definitions

The protocol uses four different kinds of channel:

- Channels connected to the environment: these channels carry a message, i.e, value of type Msg: channel C is (Msg) end channel
- Channels carrying pairs of a message and a bit, i.e., one value of type Msg and one of type Bit: channel M is (Msg, Bit) end channel
- Channels carrying a bit, i.e., a value of type Bit:
channel A is (Bit) end channel

The root process MAIN

The complete system of the alternating bit protocol is described by the following parallel composition of four processes, encapsulated inside the root process MAIN.

```
process MAIN [GET, PUT: C] is
    hide SDT, RDT: M, RACK, SACK: A, RDTe, SACKe: none in
        par SDT, RDT, RDTe, RACK, SACK, SACKe in
            par
                TRANSMITTER [PUT, SDT, SACK, SACKe] (0 of Bit)
            |
                RECEIVER [GET, RDT, RACK, RDTe] (0 of Bit)
            end par
        |
            par
                MEDIUM1 [SDT, RDT, RDTe]
            |
                MEDIUM2 [RACK, SACK, SACKe]
            end par
        end par
    end hide
end process
```


The process TRANSMITTER

```
process TRANSMITTER [PUT: C, SDT: M, SACK: A, SACKe: none] (in var b: Bit) is
var m: Msg in
    loop
        PUT (?m); (* receive a message *)
        loop L in
            SDT (m, b); (* send a message *)
            select
                        SACK (b); (* control bit correct *)
                        b := not(b);
                        break L
            []
                        SACK (not(b)) (* control bit incorrect => resend *)
            []
                SACKe (* indication of loss => resend *)
            []
                i (* timeout => resend *)
            end select
        end loop
    end loop
end var
end process
```


The process RECEIVER

```
process RECEIVER [GET: C, RDT: M, RACK: A, RDTe: none] (in var b: Bit) is
var m: Msg in
    loop
        select
            RDT (?m, b); (* control bit correct *)
            GET (m); (* delivery of message *)
            RACK (b); (* receipt acknowledgement send correct *)
            b}:=\operatorname{not}(\textrm{b}
        []
            RDT (?any Msg, not(b)); (* control bit incorrect => *)
            RACK (not(b)) (* receipt acknowledgement send incorrect *)
        []
            RDTe; (* indication of loss => *)
            RACK (not(b)) (* receipt acknowledgement send incorrect *)
        []
            i; (* timeout => *)
            RACK (not(b)) (* receipt acknowledgement send incorrect *)
        end select
    end loop
end var
end process
```


The processes MEDIUM1 and MEDIUM2

```
process MEDIUM1 [SDT, RDT: M, RDTe: none] is
var m: Msg, b:Bit in
    loop
        SDT (?m, ?b); (* receive a message *)
        select
                RDT (m, b) (* transmission correct *)
        []
            RDTe (* loss with indication *)
        []
            i (* silent loss *)
        end select
    end loop
end var
end process
process MEDIUM2 [RACK, SACK: A, SACKe: none] is
var b: Bit in
    loop
        RACK (?b); (* receive receipt acknowledgement *)
        select
            SACK (b) (* transmission correct *)
        []
            SACKe (* loss with indication *)
        []
            i (* silent loss *)
        end select
    end loop
end var
end process
```


Appendix E

Differences between Lnt (Lnt2Lotos) and Lotos NT (Traian)

E. 1 Lnt vs Lotos NT

This appendix lists the differences between:

- the Lnt language defined in this reference manual, and
- the Lotos NT language described in $\left[\mathrm{SCC}^{+} 23\right]$ (or its more recent versions), which is the language accepted by the Traian compiler.

When the development of Lpp and Lnt2Lotos started in 2005, the initial goal was to reuse the same language as Traian. However, while developing the tools and gaining industrial feedback from Bull, extensions (e.g., array types) and restrictions (related to translation issues) have been brought to this language. This progressively led to two diverging versions of the language.
Between 2005 and 2014, the name "Lotos NT" has been used for both languages supported by Lnt2Lotos and Traian. As of May 2014, the name "Lnt" (acronym of Lotos NT) has been used as the official name to designate the input language accepted by Lnt2Lotos, while "Lotos NT" remained to designate the input language of Traian exclusively.
Since 2020, with the advent of Traian 3.1 and later versions of Traian, a deep convergence has been undertaken to merge Lnt2Lotos and Lnt into a single language. There still remain a few differences, which are listed in the present Annex.

E. 2 Keywords

The set of keywords that must not be used as identifiers has been changed between Traian and Lnt2Lotos. See Section 3.3 for lists of keywords recognized by Lnt2Lotos.
There are certain keywords recognized by Traian but not by Lnt2Lotos. The following keywords are part of Lotos NT but not of Lnt:
exception library

E. 3 Module definitions

- Traian currently supports a "library ... end library" syntax, which is not supported by Lnt2Lotos, to split a module into several files.
- In Lnt2Lotos, when one wants to select a field (resp. update the fields) of a value V of type T by using the notation " V. field" (resp. "V. $\left\{\right.$ fiel $_{0}->V_{0}, \ldots$, field $\left.d_{n}->V_{n}\right\}$ "), the "with get" (resp. "with set") clause must be explicitly present in the definition of type T or of its module. In Traian, these two clauses are implicit and will be automatically added if they are absent.

E. 4 Type definitions

- In Traian, literal constants are supported natively, whereas in Lnt2Lotos, they are translated to Lotos expressions by the Lpp preprocessor.
- The predefined library of Traian and the predefined functions available with Lnt2Lotos (See appendix C) are globally compatible. Should some Traian function not be supported by Lnt2Lotos, it is always possible to write it using Lnt, and possibly implement it as an external C function.
- Arrays, predicate types, range types, sets, and sorted lists are not yet fully implemented in Traian, which accepts them, performs the appropriate checks, but does not generate code for them.
- The Lotos code generated by Lnt2Lotos may assume function dependencies that are not checked (neither by Lnt2Lotos itself, nor by Traian), triggering errors when compiled with CÆsAr.adt and Cesar. For instance, the "first" (resp. "last") function generated by LnT2LOTOS for a constructed type T whose fields have types $T_{i}(i \in 1 . . n)$ requires the existence of "first" (resp. "last") for each type T_{i}. Also, the "pred" (resp. "succ") function requires the existence of "pred" (resp. "succ"), "first", "last" and "==" for each type T_{i}.

E. 5 Function definitions

- When invoking a constructor or a function (in a pattern or an expression) or a process (in a behaviour), Lnt2Lotos supports neither parameters passed in the "named style", e.g., " F ($X_{1} \rightarrow V_{1}, \ldots X_{n} \rightarrow V_{n}$)", nor wildcards ("..."), whereas Traian suppports both of them.
- Contrary to Traian, which accepts either "any" or "any T " in patterns, Lnt2Lotos (which performs only a limited form of type checking) only accepts "any" in simple contexts where the type can be inferred easily; in other contexts, it requires the use of "any T " instead.
- The "trap" operator of Lotos NT does not exist (yet) in LNT, because it cannot be implemented easily in the target language Lotos. Consequently, in Lnt, exceptions can be raised, but not trapped. If an LNT program raises an exception (either explicitly using the "raise" operator, or implicitly, e.g., because of a division by zero or selection of an improper field), the program stops.
- Contrary to Traian, Lnt2Lotos does not check whether pattern matching ("case ... end case") is exhaustive, i.e. whether for any expression V that is filtered, at least one pattern matches. But Lnt.Open invokes Traian, which produces warnings if certain "case" statements present in LnT may be not exhaustive. If such warnings are not taken into account, the code generated by CÆSAR.ADT may stop at run-time with an error message.

E. 6 Process definitions

Processes and behaviours are not yet fully implemented in Traian, which accepts them, performs the appropriate checks, but does not generate code for them.

Appendix \mathbf{F}

LPP translation schemes

This appendix provides detailed examples showing how Lnt constants are translated to Lotos by the LPP preprocessor.

F. 1 Translation of Lnt natural numbers to Lotos

The following table shows how natural numbers in Rich Term Syntax (see Section 3.6) are translated to Lotos:

Rich Term Syntax notation	Lotos translation
0	(0)
9	(9)
123	(1 DecNum 2 DecNum 3)
0x4	(4)
0xf	(Hex__F)
0xAD	(Hex__A HexNum Hex__D)
0xF9D8	(Hex__F HexNum 9 HexNum Hex__D HexNum 8)
005	(5)
0076	(7 OctNum 6)
00746	(7 OctNum 4 OctNum 6)
0b1	(1)
Ob1011	(1 BinNum 0 BinNum 1 BinNum 1)
0b110	(1 BinNum 1 BinNum 0)

The translation to Lotos of the natural numbers is easily readable. Since infix operators are leftassociative, we get the following expression:
(((1 DecNum 2) DecNum 3) DecNum 4)
from the 1234 number that we could also have manually written:
1 DecNum 2 DecNum 3 DecNum 4
One must be careful not to write strange Lotos numbers such as 3 BinNum 2 or f DecNum 8. They will be interpreted as $3 * 2+2$ and $15 * 10+8$ by the CADP tools, but they are not valid notations of binary and decimal numbers.
In the context of hexadecimal numbers ("0x..." strings) the digits a to f are respectively translated
to the constants Hex__A to Hex__F.

F. 2 Translation of LnT integer numbers to Lotos

The following table shows how integer numbers in Rich Term Syntax (see Section 3.7) are translated to Lotos:

Rich Term Syntax notation	Lotos translation
0	(0)
000	(0)
12	(1 DecNum 2)
123	(1 DecNum 2 DecNum 3)
0123	(1 DecNum 2 DecNum 3)
1_2_3	(1 DecNum 2 DecNum 3)
+0	(Pos (0))
+00000	(Pos (0))
+12	(Pos (1 DecNum 2))
+123	(Pos (1 DecNum 2 DecNum 3))
+1_2_3	(Pos (1 DecNum 2 DecNum 3))
+0123	(Pos (1 DecNum 2 DecNum 3))
-0	(Pos (0))
-000	(Pos (0))
-1	(Neg (0))
-9	(Neg (8))
-12	(Neg (0) DecNum - (2))
-00012	(Neg (0) DecNum -(2))
-123	(Neg (0) DecNum - (2) DecNum - (3))
0x4	(4)
0x4f	(4 HexNum Hex__F)
0xab	(Hex__A HexNum Hex__B)
0xa_b	(Hex__A HexNum Hex__B)
+0xab	(Pos (HexNum__A HexNum Hex__B))
+0xa_b	(Pos (HexNum__A HexNum Hex__B))
-0xa	(Neg (9))
-0xb	(Neg (Hex__A))
-0x0003	(Neg (2))
-0xFD	(Neg (e) HexNum - (Hex__D))
-0x000789a	(Neg (6) HexNum - (8) HexNum -(9) HexNum -(Hex__A))

© INRIA 2005-2024 - All rights reserved - Tous droits réservés

Rich Term Syntax notation	Lotos translation
0012	(1 OctNum 2)
001_2	(1 OctNum 2)
+0012	(Pos (1 OctNum 2))
+001_2	(Pos (1 OctNum 2))
-0076	(Neg (6) OctNum -(6))
-00002	(Neg (1))
-0000234	(Neg (1) OctNum - (3) OctNum - (4))
0b11	(1 BinNum 1)
Ob1_1	(1 BinNum 1)
+0b11	(Pos (1 BinNum 1))
+0b1_1	(Pos (1 BinNum 1))
-0b001	(Neg (0))
-0b00101	(Neg (0) BinNum - (0) BinNum - (1))
-0b1011	(Neg (0) BinNum - (0) BinNum - (1) BinNum - (1))

The translation to LOTOS adds surrounding parentheses to all numerical constants and removes leading zeros (following the prefix indicating the base, if any). To avoid overflows ${ }^{1}$, a negative constant (i.e., a number preceded by a unary minus operator "-") is translated using the constructor " $\operatorname{Neg}()$) for the first digit. Notice that because " $\operatorname{Neg}(\mathrm{X})$ " is defined as " $-\mathrm{X}-1$ ", it is necessary to decrement the first digit and to treat " 0 " as a special case. The unary plus operator " + " is translated by the constructor "Pos ()".

Note that the use of the use of explicit prefixes "+" and "-" generates expressions using the constructors "Pos()" and "Neg()", avoiding the need for explicit type annotations (e.g., " of Int").

Input LNT sequence	LOTOS translation
$\mathrm{n}-1$	$\mathrm{n}-(1)$
$\mathrm{n}-1$	$\mathrm{n}-(1)$
$\mathrm{m}-1+\mathrm{n}$	$\mathrm{m}-(1)+\mathrm{n}$
$\mathrm{n}==-1$	$\mathrm{n}==-(1)$
return-1	return-(1)
$\mathrm{\mid}-1->$	$\mid-(1)->$

When natural numbers and integer numbers need to be used in the same specification, number notations have to be explicitly cast:

- 12 of Nat will be translated to (1 DecNum 2) of Nat
- 12 of Int will be translated to (1 DecNum 2) of Int

F. 3 Translation of Lnt real numbers to Lotos

This section explains how floating-point numbers in Rich Term Syntax (see Section 3.8) are translated to Lotos.
Floating-point numbers are translated into a call to the Lotos operation "Real()" that takes a character string as argument and is implemented by a call to "strtod()".

[^5]| LNT constant | Lotos translation |
| :---: | :---: |
| 0.1 | Real (Real__0 ~ Real__Dot ~ Real__1) |
| 0.2 | Real (Real__0 ~ Real__Dot $\sim_{\text {R }}$ Real__2) |
| 3.0e-1 | Real (Real__3 ~ Real_Dot ~ Real__0 ~ Real_Exp ~ Real_Neg ~ Real__1) |
| $4 . e 0$ | Real (Real__4 ~ Real_Dot ~ Real_Exp ~ Real__0) |
| 5.0 | Real (Real__5 ~ Real_Dot ~ Real__0) |

F. 4 Translation of Lnt characters to Lotos

This section explains how characters in Rich Term Syntax (see Section 3.9) are translated to Lotos. Each character is translated into Char__iii, where iii is the decimal ASCII code of the character written with 3 digits ($i i i \leq 255$).

The character constants can also be written using these operators. The following example shows the translation into Lotos of some character constants:

LNT constant	LOTOS translation
'Z'	Char__090
'0'	Char__048
'\0',	Char__000
' $\backslash n '$,	Char__010
'\',	Char__039
'\"',	Char__034
'\x5A',	Char__090
' $\backslash 132$ '	Char__090

F. 5 Translation of Lnt strings to Lotos

This section explains how strings in Rich Term Syntax (see Section 3.10) are translated to Lotos.
Each string literal constant is translated into the concatenation of predefined strings made of one character only. The concatenation operator ${ }^{\sim}$ is an internal one that must be used only to concatenate string literal constants. All string literal constants of one character are implemented by operators String__iii where iii is the decimal ASCII code of the character written with 3 digits (code less than or equal to 255). Each string ends with String__000.

The string constants can also be written using these operators. The translation into Lotos of the strings of the previous example is:

```
String (String__000 (* "" *))
String (String__233 ~ String__234 ~ String__232 ~ String__000 (* "éêè" *))
String (String__050 ~ String__010 ~ String__108 ~ String__105 ~ String__110
    ~ String__101 ~ String__115 ~ String__000 (* "2\nlines" *)) ;
String (String__034 ~ String__000 (* "\"" *)) ;
String (String__039 ~ String__000 (* ")" *)) ;
String (String__039 ~ String__000 (* "\'" *)) ;
String (String__092 ~ String__000 (* "\\" *)) ;
String (String__065 ~ String__090 ~ String__069 ~ String__082 ~ String__084
    ~ String__089 ~ String__000 (* "AZERTY" *)) ;
String (String__065 ~ String__090 ~ String__069 ~ String__082 ~ String__084
    ~ String__089 ~ String__000 (* "A\x5AERTY" *)) ;
```

© INRIA 2005-2024 - All rights reserved - Tous droits réservés

```
String (String__065 ~ String__090 ~ String__069 ~ String__082 ~ String__084
    ~ String__089 ~ String__000 (* "A\132ERTY" *)) ;
```

This translation uses the fact that the C pre-compilers support string literal constants constructed from contiguous shorter strings separated by simple spaces:
printf ("H" "e" "ll" "o") ;
The "ABC" String constant that is translated to the expression (String__065 ~ ... ~ String__000) is then compiled to Lotos with the following result:

```
... = (((STRING__065 ~ STRING__066) ~ STRING__067) ~ STRING__000) OF STRING;
```

This equation is then compiled by CÆSAR and CÆSAR.ADT to generate the following C code:

```
return ADT_CONCAT_CONST_STRING (
    ADT_CONCAT_CONST_STRING (
        ADT_CONCAT_CONST_STRING (ADT_STRING_065 (),
                        ADT_STRING_066 ()),
        ADT_STRING_067 ()),
    ADT_STRING_000 ());
```

The C macro definitions of ADT_CONCAT_CONST_STRING and ADT_STRING_iii finally generate:

```
return "A" "B" "C" "\x00";
```

which is equal to:

```
return "ABC\0";
```


Appendix G

Change history

In May 2014, the contents of this appendix have been moved to the \$CADP/HISTORY file, as a logical consequence of the fact that since January 2010, Lnt2Lotos, Lpp, and related tools are integral part of the CADP toobox.
The following table gives the mapping between the versions of Lnt2Lotos and the corresponding items in the \$CADP/HISTORY file.

Version	Release date	\$CADP/HISTORY item(s)
1A	Jul. 8, 2005	\#1457 part 1
1B	Sep. 16, 2005	\#1457 part 2
1C	Sep. 29, 2005	\#1457 part 3
1D	Oct. 20, 2005	\#1457 part 4
1 E	Feb. 24, 2006	\#1457 part 5
1F	Mar. 15, 2006	\#1457 part 6
2 A	Apr. 21, 2006	\#1457 part 7
2D	Jun. 1, 2006	\#1457 part 8
2F	Feb. 5, 2007	\#1457 part 9
2G	Jun. 5, 2007	\#1457 part 10
3A	Jun. 8, 2007	\#1457 part 11
3B	Apr. 7, 2008	\#1457 part 12
3C	May 19, 2008	\#1457 part 13
4 A	Jun. 19, 2008	\#1457 part 14
4B	Jul. 18, 2008	\#1457 part 15
4 C	Aug. 1st, 2008	\#1457 part 16
4D	Sep. 8, 2008	\#1457 part 17
4E	Sep. 11, 2008	\#1457 part 18
4 F	Oct. 15, 2008	\#1457 part 19
4G	Jan. 14, 2009	\#1457 part 20
4H	Apr. 10, 2009	\#1457 part 21
4I	Jun. 242009	\#1457 part 22
4 J	Sep. 28, 2009	\#1457 part 23
4K	Dec. 4, 2009	\#1457 part 24

Version	Release date	\$CADP/HISTORY item(s)
5.0	Sep. 14, 2010	\#1571 part 1
5.1	Feb. 13, 2011	\#1571 part 2
5.2	May 17, 2011	\#1571 part 3
5.3	Jul. 5, 2011	\#1571 part 4
5.4	Sep. 12, 2011	\#1571 part 5
5.5	Feb. 20, 2012	\#1591
5.6	Jul. 5, 2012	\#1594, \#1609, \#1610, \#1619, \#1620, \#1622, \#1623
5.7	Jan. 11, 2013	$\begin{aligned} & \text { \#1640, \#1641, \#1642, \#1643, \#1645, \#1646, \#1647, \#1648, \#1649, \#1650, } \\ & \# 1653, \# 1654, \# 1655 \end{aligned}$
5.8	Dec. 13, 2013	\#1661, \#1662, \#1663, \#1667, \#1668, \#1669, \#1670, \#1677, \#1681, \#1683, $\# 1685, \# 1686, \# 1687, \# 1688, \# 1689, \# 1697, \# 1698$, \#1699, \#1700, \#1707, $\# 1708, \# 1723, \# 1725, \# 1734, \# 1739, \# 1741, \# 1750, \# 1751, \# 1752, \# 1760$
5.9	Jan. 13, 2014	\#1766, \#1767, \#1770, \#1771
6.0	May 13, 2014	\#1776, \#1777, \#1778, \#1784, \#1786, \#1787, \#1788, \#1790, \#1792, \#1794, \#1796, \#1798, \#1799, \#1800, \#1805, \#1810, \#1811, \#1813, \#1824, \#1825, \#1826, \#1830, \#1831, \#1834, \#1836, \#1837, \#1838, \#1839, \#1843, \#1845, \#1846, \#1847, \#1850, \#1851, \#1852, \#1853, \#1854, \#1856, \#1857, \#1858, \#1859, \#1861, \#1862, \#1863, \#1865, \#1872, \#1875, \#1878, \#1881
6.1	Aug. 26, 2014	\#1887, \#1939, \#2007
6.2	Feb. 26, 2015	```#2018, #2024, #2026, #2032, #2034, #2036, #2043, #2045, #2047, #2049, #2053, #2060, #2064```
6.3	Jul. 26, 2015	\#2075, \#2076, \#2087, \#2088, \#2098, \#2100, \#2103, \#2109, \#2110, \#2111, \#2112, \#2113, \#2117, \#2119, \#2122, \#2124, \#2126, \#2129, \#2131, \#2132, \#2134, \#2138, \#2139
6.4	Jan. 13, 2016	\#2141, \#2147, \#2149, \#2150, \#2152, \#2154, \#2156, \#2166, \#2170, \#2173, \#2201, \#2217, \#2218, \#2219, \#2221, \#2225, \#2228, \#2230, \#2234, \#2235
6.5	Sep. 13, 2016	\#2239, \#2241, \#2242, \#2245, \#2251, \#2269, \#2270, \#2271, \#2275, \#2276, \#2278, \#2279, \#2281, \#2283
6.6	Mar. 26, 2017	\#2286, \#2288, \#2289
6.7	Jul. 13, 2017	\#2291, \#2292, \#2295, \#2300, \#2310, \#2314
6.8	Jan. 13, 2019	\#2317, \#2319, \#2321, \#2322, \#2323, \#2325, \#2327, \#2332, \#2342, \#2343, \#2346, \#2347, \#2350, \#2352, \#2354, \#2361, \#2390, \#2450, \#2462, \#2478
6.9		to be completed

Bibliography

[Gar95] Hubert Garavel. On the Introduction of Gate Typing in E-LOTOS. In Piotr Dembinski and Marek Sredniawa, editors, Proceedings of the 15th IFIP International Workshop on Protocol Specification, Testing and Verification (PSTV'95), Warsaw, Poland, pages 283298. Chapman \& Hall, June 1995.
[Gar15] Hubert Garavel. Revisiting Sequential Composition in Process Calculi. Journal of Logical and Algebraic Methods in Programming, 84(6):742-762, November 2015.
[GLS17] Hubert Garavel, Frédéric Lang, and Wendelin Serwe. From LOTOS to LNT. In JoostPieter Katoen, Rom Langerak, and Arend Rensink, editors, ModelEd, TestEd, TrustEd - Essays Dedicated to Ed Brinksma on the Occasion of His 60th Birthday, volume 10500 of Lecture Notes in Computer Science, pages 3-26. Springer, October 2017.
[GS96] Hubert Garavel and Mihaela Sighireanu. On the Introduction of Exceptions in LOTOS. In Reinhard Gotzhein and Jan Bredereke, editors, Proceedings of the IFIP Joint International Conference on Formal Description Techniques for Distributed Systems and Communication Protocols, and Protocol Specification, Testing, and Verification (FORTE/PSTV'96), Kaiserslautern, Germany, pages 469-484. Chapman \& Hall, October 1996.
[GS99] Hubert Garavel and Mihaela Sighireanu. A Graphical Parallel Composition Operator for Process Algebras. In Jianping Wu, Qiang Gao, and Samuel T. Chanson, editors, Proceedings of the IFIP Joint International Conference on Formal Description Techniques for Distributed Systems and Communication Protocols, and Protocol Specification, Testing, and Verification (FORTE/PSTV'99), Beijing, China, pages 185-202. Kluwer Academic Publishers, October 1999.
[ISO89] ISO/IEC. LOTOS - A Formal Description Technique Based on the Temporal Ordering of Observational Behaviour. International Standard 8807, International Organization for Standardization - Information Processing Systems - Open Systems Interconnection, Geneva, September 1989.
[ISO01] ISO/IEC. Enhancements to LOTOS (E-LOTOS). International Standard 15437:2001, International Organization for Standardization - Information Technology, Geneva, September 2001.
[SCC $\left.{ }^{+} 23\right]$ Mihaela Sighireanu, Alban Catry, David Champelovier, Hubert Garavel, Frédéric Lang, Guillaume Schaeffer, Wendelin Serwe, and Jan Stoecker. LOTOS NT User's Manual (Version 3.10). INRIA/CONVECS, Grenoble, France, https://vasy.inria.fr/ftp/traian/manual.pdf, 86 pages, June 2023.

[^0]: ${ }^{1}$ http://vasy.inria.fr/traian
 2http://cadp.inria.fr
 ${ }^{3}$ http://vasy.inria.fr/dyade/formalfame.html
 ${ }^{4}$ http://vasy.inria.fr/multival

[^1]: ${ }^{1}$ Functions are sometimes referred to as non-constructors.

[^2]: (C) INRIA 2005-2024 - All rights reserved - Tous droits réservés

[^3]: (C) INRIA 2005-2024 - All rights reserved - Tous droits réservés

[^4]: ${ }^{1}$ The symbol \triangleq should read as equals by definition.

[^5]: ${ }^{1}$ Using n bits, the constant 2^{n-1} cannot be represented.

