
Automated Configuration of Legacy Applications in the Cloud

Xavier Etchevers, Thierry Coupaye

Orange Labs
Grenoble, France

firstname.lastname@orange.com

Fabienne Boyer1, Noel de Palma1, Gwen Salaun2

1University Joseph Fourier
2Grenoble INP

LIG Labs
Grenoble, France

firstname.lastname@inrialpes.fr

Abstract—Current solutions for managing distributed appli-
cations in the cloud, typically covered by PaaS (Platform as a
Service) offers, remain domain specific and are only partially
automated. In this context, the task consisting in automatically
configuring distributed applications is still a difficult issue. In
this paper, we present an application architectural model and
a self-configuration protocol that automates the deployment of
legacy distributed applications. Our protocol is decentralized
and loosely coupled to avoid the need of a global synchroniza-
tion between virtual machines (VMs) during the configuration
stage. An evaluation reports the performances of the protocol
when applied to deploy enterprise web applications on a private
cloud platform.

Keywords-cloud computing; deployment; self-configuration;
component;

I. INTRODUCTION

Distributed applications in the cloud are made up of

several virtual machines (VMs) that execute interconnected

software elements. From a user perspective (generally an

administrator in our case), deploying such applications goes

through the following steps: (i) the instantiation of images,

selected in the IaaS repository, as VMs in the cloud, (ii) the

post-configuration of the booted VMs to set up the dynamic

part of the application configuration, and (iii) the application

activation, which generally requires to start the VMs in a

given order so that the applicative components they embed

are activated at the right time.
These configuration and activation tasks are a real burden

as the VMs often include many software configuration

parameters. Some of them refer to local configuration as-

pects (e.g. pool size, authentication data) whereas others

participate in the definition of the interconnections between

the remote elements (e.g. IP address and port to access a

server). Therefore, once it has been instantiated, each virtual

machine has to apply a set of dynamic settings in order to

properly configure the distributed application. On the whole,

existing deployment solutions hardly take into account these

different configuration parameters, which are mostly man-

aged thanks to dedicated (i.e. application specific) and not

completely automated (i.e. human intervention is needed)

scripts. Moreover, such solutions enforce many requirements

that delineate the spectrum of distributed applications they

can deploy. For instance, Google App Engine [1] only deals

with web services that respect a restrictive programming

model.

To address this issue our contribution, supported by a plat-

form named VAMP for Virtual Applications Management

Platform, is a self-configuration protocol that automates the

deployment of distributed applications in the cloud. This

protocol ensures three key properties that are essential, in

our opinion:

1) It provides a solution aiming at self-deploying arbi-

trary distributed applications, independently from pro-

gramming languages, programming models and con-

ventions, runtime environments, or business domain.

A main design choice is to rely on a component model

in order to provide a uniform application model and

configuration interface for legacy software, instead of

relying on software-specific, hand-managed configura-

tion files. Therefore, any software configured by our

protocol is wrapped in a component which interfaces

its administration functions (without any modification

of the application code).

2) In order to avoid any centralized configuration server

(e.g. Puppet configuration server [2]), the proposed

self-configuration protocol is decentralized. Once the

VMs are instantiated, the protocol is able to configure

the whole application without requiring any central-

ized server. Therefore, each VM embeds the needed

knowledge of the application model and a configurator
agent that manages the setting of the legacy software

inside the VM (thanks to a set of MBean Objects), but

also participates in the global distributed configuration

between the legacy software and in the application

start-up.

3) The self-configuration protocol is loosely-coupled.

Each VM starts the self-configuration protocol, just

after the boot sequence, without having to care about

the state of other VMs. The configuration of the

distributed application will progress each time a VM

belonging to the application becomes available. This

avoids the need of a global synchronization between

the VMs during the configuration stage. Hence it

provides more scalability and agility. In order to ensure

ha
l-0

06
65

59
2,

 v
er

si
on

 1
 - 

3 
Fe

b 
20

12
Author manuscript, published in "2011 Fourth IEEE International Conference on Utility and Cloud Computing, Australia (2011)"

http://hal.archives-ouvertes.fr/hal-00665592
http://hal.archives-ouvertes.fr


this property, configurators send, according to the

application model, part of their configuration thanks to

a Message Oriented Middleware (MOM). This MOM

implements a distributed message queuing system that

enables configurators to exchange messages in an

asynchronous and reliable way.

The rest of this paper is organized as follows. Section II

describes the architectural model used by our protocol to

configure a distributed application. Section III focuses on

the decentralized loosely-coupled self-configuration protocol

itself. Then section IV brings in the performance evalua-

tions obtained. Section V discusses related works. Finally,

section VI concludes.

II. APPLICATION ARCHITECTURAL MODEL

A cloud application can be viewed as a set of inter-

connected legacy software elements running on different

virtual machines. A legacy application designates here an

application that comes ”as it is” and therefore that does

not have to adapt to any arbitrary particular programming

models, conventions or hypotheses to be dealt with VAMP.

Three aspects are considered as essential in a configuration

protocol: local configuration settings (i.e., properties values),

global configuration settings (i.e. remote interconnections)

and life-cycle dependencies (i.e. start order precedences).

For modeling a distributed application with in terms of

components, interconnections and distribution constraints

within virtual machines, a component model has been used.

An Architecture Description Language (ADL) [3] enables

the expression of these aspects in a machine/human readable

format.

A. Component model

A component model, namely the Fractal component

model [4], allows to model an application from an architec-

tural point of view. Configuration and life-cycle aspects are

expressed in terms of constraints attached to the architectural

elements making up a distributed application. An important

aspect is that this model does not only offer a static de-

scription of a distributed application at starting time. It also

provides a dynamic reification of the architectural state of the

application at runtime. This makes possible to manage the

deployment as an incremental task that progresses according

to the dynamic state of the distributed application.

In more details, each software element, representing a

deployment unit of a distributed application, is supposed to

be represented by a component. Such a component mainly

exposes attributes representing configuration parameters,

and interfaces reflecting potential interconnection endpoints.

An interface reifies either a client (respectively a server)

endpoint of an interconnection that represents the classical

notion of provided (respectively required) service. A client

interface is characterized by a property named contingency.

It indicates whether this interface must be connected to

a server one before the component can be started (i.e.

mandatory contingency) or not (i.e. optional contingency).

Bindings represent explicit interconnections between

components. A binding links a client interface to a server

one. It is local if the linked components are running inside

the same address space (e.g. the same VM here). Otherwise

it is remote. An important point is that interfaces and

bindings do not make any assumption on the communication

model (e.g. synchronous, asynchronous, ...) and protocol

(e.g. rmi, http, ...) used by the legacy software to interoper-

ate. Although the proposed approach relies on a component

model for deployment and management purposes, it does not

require applications to conform to this model. Components,

interfaces and bindings only provide a way to reify and

control the configuration of the legacy software elements

and the establishment of their interconnections through the

following configuration interfaces:

• AttributeController: interface for attributes manage-

ment. Attributes represent the configurable properties

of a legacy software element that can be observed and

modified thanks to getters and setters.

• BindingController: interface for bindings manage-

ment. Bindings represent interconnections between lo-

cal or remote software elements. In order to provide a

uniform view of bindings, an export/bind pattern has

been used, inspired from the Reference Model of Open

Distributed Processing [5][6]. This pattern has been

introduced to define a way of setting up bindings by

identifying and spreading configuration data used to

set-up legacy communication channels. It consists of

two operations called export and bind. The export
one takes as parameters the name of a server interface

(that reifies a legacy access point as described in the

model). It returns an object that encodes the information

required by a client to connect to the legacy access point

and use it. The bind operation takes as parameter the

name of a client interface to be bound and the exported

object corresponding to the server interface. It decodes

the exported object that reifies the remote access point

and configures the legacy software accordingly. This is

a general scheme, which is embodied in many different

forms (e.g. socket, web services...).

• LifecycleController: interface for software elements

life-cycle management. This interface provides an ex-

plicit control over a component life-cycle, through start

and stop methods, hence over the legacy software

element wrapped by this component.

To illustrate the use of these configuration interfaces, let’s

consider a simple example of a component representing an

Apache server, wrapping the legacy configuration file and

scripts of the Apache server as follows:

• The attribute interface is used to set attributes related to

the local execution of the Apache server. For instance,

ha
l-0

06
65

59
2,

 v
er

si
on

 1
 - 

3 
Fe

b 
20

12



a modification of the port attribute of the Apache

component is reflected in the httpd.conf file in which

the port attribute is defined.

• The binding interface is used to connect the Apache

server with other middleware tiers. For instance, the

bind operation on the Apache component sets up a

binding between an instance of Apache and an instance

of a servlet container (e.g. Tomcat). The invocation of

this bind method is reflected at the legacy layer in the

worker.properties file used to configure the connections

between the Apache and Tomcat servers.

• The life-cycle interface is used to start or to stop

the server as well as to read its state (i.e. running

or stopped). It is implemented by calling the Apache

commands for starting/stopping a server.

B. Architecture Description Language
In order to offer higher level control abstractions com-

pared to specific configuration scripts for managing a legacy

application, it is necessary to get an architectural description

of the application. In our approach, this description is

component-baed. It enables notably the representation and

the reification of the application. Its specification is based

on an ADL (namely the VADL for VAMP ADL), that

extends the standard language OVF (Open Virtualization

Format [7]) dedicated to virtual machines description. This

extension consists in an architectural view of the application

distributed within the VMs of an OVF package. It conforms

to the Fractal ADL1 associated to the Fractal component

model.
The VADL description of a distributed application con-

sists of a XML-based structure (OVF and Fractal ADL are

both XML-based) that encompasses the notions of compo-

nents, attributes, interfaces, and bindings. While adding the

notion of VM to each component description (thanks to the

specific tag virtual-node), VADL also permits to describe

the distribution constraints of components within virtual

machines.
To illustrate this ADL, we made use of the Java 2

Enterprise Edition Platform (JEE), which defines a model for

developing web applications in a multi-tiered architecture.

Such applications usually receive requests from web clients,

that flow through a web server, then to an application

server to execute the business logic of the application and

generate web pages on-the-fly, and finally to a database that

persistently stores data.
The following VADL description models a simple infras-

tructure made up of an Apache web server connected to a

JOnAS application server itself bound to a MySQL database.

Each component describes its client and server interfaces

(<interface .../>), their binding (<binding .../>), configu-

ration attributes (<attribute .../>) and the component im-

plementation used to control the software (<content .../>).

1http://fractal.ow2.org/fractaladl/

Moreover each component references the virtual image that

contains its software (<virtual-node .../>). The virtual image

is defined using the standard OVF section (<VirtualSystem

.../>)

<Envelope ...>
...
<!-- Applicative architecture -->
<AppArchitectureSection name="JEE">
<component name="Apache1">
<interface name="AJP13" role="client".../>
<content class="fr.orange.ApacheMBean" .../>
<virtual-node name="VM0"/>
</component>
<component name="AppServer1">
<interface name="AJP13" role="server" .../>
<interface name="BD" role="client" .../>
<content class="fr.orange.JonasMBean" .../>
<virtual-node name="VM1"/>
</component>
<component name="MySql1
<interface name="BD" role="server" .../>
<content class="fr.orange.MysqlMBean" .../>
<virtual-node name="VM3"/>
</component>
<binding client="Apache1.AJP13"

server="AppServer1.AJP13" />
<binding client="AppServer1.BD"

server="MySql1.BD" />
</AppArchitectureSection>
...
<!-- Virtual machines configuration -->
<VirtualSystemCollection ovf:id="App">
<!-- VM0 configuration -->
<VirtualSystem ovf:id="VM0" rsrvr:min="1"

rsrvr:max="1">
...

</VirtualSystem>
...

</VirtualSystemCollection>
</Envelope>

III. PROTOCOL DESCRIPTION

Being given a distributed application description in the

previous formalism, all the virtual images composing this

application are first generated and instantiated within VMs

by a tool chain driven by VAMP [8]. Each VM embeds

the VADL description of the distributed application, as well

as a configurator agent that enables the self-configuration

protocol detailed in this section. Configurators are simple

Java objects that behave according to an event/reaction

model. All configurators evolve in parallel and each of them

carries out three tasks in sequence:

1) Based on the application architectural model contained

in the VADL descriptor, it creates the local applicative

components and configures them.

2) It participates in the global application configuration

by inferring the remote bindings. A remote binding

associates a client (respectively server) interface of

a local component with a server (respectively client)

interface provided by a component located in another

virtual machine. In such a situation, both virtual ma-

chines need to interact together in order to set up this

binding.

3) It starts the local applicative components. A com-

ponent can be started only when each of its client

ha
l-0

06
65

59
2,

 v
er

si
on

 1
 - 

3 
Fe

b 
20

12



interfaces with mandatory contingency is bound to a

server interface of a started component.

Both steps 2 and 3 introduced above require communica-

tions to be established between the different configurators.

These exchanges are carried out thanks to messages sent

through the MOM that provides an asynchronous com-

munication model. Thanks to this communication model,

configurators do not need to be both ready for execution

at the same time and tolerate transient network failure.

Consequently the configuration protocol can be designed and

implemented in a time-independent manner. This property

allows each VM to boot and to start the configuration process

independently. The global configuration will progress each

time a VM becomes available.

The steps for establishing the remote applicative bindings

(step 2 above) and then for activating the components (step

3 above) are organized according to the following protocol

executed sequentially by each configurator:

a. For each binding linking a client side component C1

to a server side component C2, the configurator K2

(responsible for C2) exports the C2 server interface to

configurator K1 (responsible for C1). Then, when K1

receives such an exported interface, it proceeds with

the C1 local binding configuration.

b. Once the configurator has exported all its server in-

terface, it can launch the process for starting the ap-

plicative components. It consists first in activating all

applicative components that do not own any binding

with a mandatory contingency. Then, the configurator

determines, for each activated component, the list of the

bindings whose server side is local. For each of them, it

sends a start message to each configurator responsible

for the associated client side.

c. Upon receiving a start message, a configurator deter-

mines whether the component targeted by the message

has all its server interfaces with mandatory contingency

satisfied (i.e. that the corresponding components are

started). In such a case, the component is started and the

configurator sends a start messages to the configurator

having components bound to the new started compo-

nent.

The overall behavior of a configurator follows a pre-

cise workflow that is summarized in Fig. 1 where actions

(CREATEVM, CREATECOMPO, etc.) appear in boxes identi-

fied using natural numbers (�, �, etc.). Diamonds stand for

choices, and each choice comes with a list of box identifiers

that can be reached from this point.

First, the configurator starts (�). Then, it successively

creates all the components described in the ADL for this

virtual machine (�), binds local components (�), and sends

binding messages to remote components (�). Diamonds

propose different choices in the workflow because a virtual

machine has not necessarily local bindings for instance, and

Figure 1. Abstract view of the configurator process

in such a case the configurator jumps to the next step.

Next, the configurator activates its local components that

can be started (�). At that moment in the protocol exe-

cution, only the components without any mandatory client

interfaces, or those whose all mandatory client interfaces are

connected to local components, can be started. From then

on, for each component Cserver started, the configurator

sends to every remote component connected to it through

an application binding, a start message (�) indicating to

the remote component that Cserver is started. When the

configurator has started all the local components that can

be launched, it starts reading from its input communication

channel provided by the underlying MOM (�). Two kinds

of message can occur: (i) upon receiving a binding request

message, the configurator binds the local component to the

remote one (	), (ii) upon receiving a message indicating that

a remote component has been started, the configurator keeps

track of this information and goes back to � in order to

check whether other local components can be started (those

with all mandatory client interfaces connected and whose

corresponding server components is started) or not.

Fig. 2 provides an example of an application (left part of

the figure) and the corresponding self-configuration protocol

execution (right part of the figure). This example involves

three VMs having interconnected components. The diagram

associated with the self-configuration protocol’s execution

shows the communication exchanges between the VMs

configurators. After being started, each VM creates its local

components and process their local bindings if any. Then, as

shown in the diagram, VM3 exports to VM2 the C4 server

interface. This implicitly means the ADL describing the

application indicates that a component of VM2 has a client

interface that shall be bound to a server interface of C4 in

VM3. In the same way, VM2 exports to VM1 the C3 server

interface. After a VM has exported all the needed server

interfaces to the other VMs, it sends the start messages,

indicating that a given component has just been started. A

main point shown by the diagram is that a VM can send

information to other VMs without knowing about their state.

Even if some of these VMs are not running (e.g., they have

not been instantiated yet), the asynchronous communication

model provided by the underlying MOM keeps message

ha
l-0

06
65

59
2,

 v
er

si
on

 1
 - 

3 
Fe

b 
20

12



Figure 2. Application configuration (left) and self-configuration protocol
(right)

pending until they can be delivered properly.

IV. EVALUATION

The goal of this assessment is to evaluate the VAMP

system efficiency for deploying an application in the cloud.

It focuses only on the performances in terms of deployment

speed.

A. Use Case

The application used to bench the VAMP deployment

process is an enterprise web application that aims at manag-

ing the product references, the catalogs, the offers and the

markets of a company. It consists of:

• a MySQL database server with the instance of the

database gathering the applicative data. Both of these

entities deployment is managed by a single VAMP

wrapper component (namely the database wrapper);

• a JEE JOnAS application server that instantiates the

business logic application (ear) and a JDBC connector

to the database. A VAMP wrapper component is as-

sociated to each of these entities (respectively the jee
wrapper, the ear wrapper and the rar wrapper);

• a HTTP Apache front-end server that routes the user

requests to the JEE application server. Its associated

VAMP wrapper component is called the http wrapper;

Each of these three subsystems is installed in an own 4

GB virtual image that VAMP will instantiate within a virtual

machine (see Fig. 32). Each one embeds one virtual CPU.

Both VMs running the database server and the HTTP server

own 128 MB virtual memory whereas the virtual machine

dedicated to the JEE application server has 512 MB virtual

memory.

Each client interface of each applicative component has a

mandatory contingency.

Table I illustrates, for each applicative binding, the con-

figuration data exported by the server interface to the client

one.

2On this figure, the name of both the client and the server interfaces of
each binding is the same. It is so just referred once on the binding in italic

Figure 3. Architecture of the JEE enterprise web application used for
benchmarking the VAMP deployment process

B. Tests Environment

The validation environment that has been used is a private

cloud platform. It consists of Dell Studio Hybrid machines

(1 x Intel Core 2 Duo T8100 2.1 GHz, 4 GB RAM and 320

GB HDD) linked through an Ethernet 100 Mbps local area

network. Each machine is installed with a Linux operating

system (Debian Lenny 64-bits), a Xen hypervisor (v3.2) and

a proprietary IaaS platform. One of the physical machines

(namely the IaaS manager) is dedicated to the IaaS platform

administration. The remaining physical servers make up a

cluster of instantiation nodes or deployment nodes.

The only noticeable behavior of the proprietary IaaS

platform used, is its placement policy. This one ensures that

each instantiation node always embeds the same number

(+/-1) of VMs of each different type (i.e. data base server,

application server, http server). This way, the load applied to

each instantiation node in terms of resources consumption

(CPU, memory, I/O, ...) is roughly equivalent.

However, insofar as the VAMP platform is part of the

PaaS layer, it is independent from any IaaS platform. Thus

the benchmark of the self-configuration it provides, does

not focus on the IaaS behaviors efficiency. For each instan-

tiated virtual machine, the different assessment metrics are

evaluated after the VM finished to be provisioned on an

instantiation node (see the following subsection for details).

Table I
CONFIGURATION DATA SHARED BETWEEN APPLICATIVE COMPONENTS

Client
cmp

Client
itf

Server
cmp

Server
itf

Shared
configuration data

rar
wrapper

dbinfo database
wrapper

dbinfo IP address, database name,
database user and password

rar
wrapper

jeeinfo jee
wrapper

jeeinfo IP address, JOnAS home directory,
JOnAS working directory, JOnAS

instance name, JOnAS domain, Java
home directory

ear
wrapper

jeeinfo jee
wrapper

jeeinfo IP address, JOnAS home directory,
JOnAS working directory, JOnAS

instance name, JOnAS domain, Java
home directory

ear
wrapper

rarinfo rar
wrapper

rarinfo IP address

http
wrapper

ajpinfo jee
wrapper

ajpinfo IP address, AJP port,
JVM route

ha
l-0

06
65

59
2,

 v
er

si
on

 1
 - 

3 
Fe

b 
20

12



C. Results

The assessment metrics measured are a set of durations

depicted in Fig. 4. They were evaluated for each instantiated

virtual machine. The evaluation process went through two

stages. The first one consisted in quantifying each metric

in order to obtain its evolution tendency and to determine

the overhead introduced by VAMP in terms of execution

duration. The second one focused on the user perception of

different deployment durations when deploying N instances

of the test application.

1) Quantification and Tendency Assessment: The mea-

sures were obtained while making the number of deployed

application instances vary from 2 to 24. This corresponds

to a number of virtual machines enclosed between 6 and

72 and a number of virtual machines per instantiation node

ranged between 1 and 12.

Each evaluated metric can be broken down into two

components. The first one is common to any application and

measures the overhead introduced by the VAMP platform

whereas the second one evaluates the time consumption spe-

cific to the deployed application. The distribution between

these two components varies according to the considered

metric. Thus, as the VAMP component instantiation and

local configuration do not require any applicative processing,

the local configuration duration is reduced to its VAMP

specific component. Conversely the weight of this compo-

nent is very limited or even negligible in both other cases.

It represents indeed less than 3.3% of the remote binding

duration and only 0.07% of the start duration. Consequently

a quite good estimation of the VAMP time overhead consists

in comparing the local configuration duration to the applica-

tion specific components of the remote binding duration and

of the start duration. Fig. 5 illustrates the values obtained

while benchmarking the JEE application described above.

This graphic also shows the values obtained for booting

preliminarily the virtual machine associated.

In this benchmark, the overhead introduced by the VAMP

system represents about 8% of the total duration for obtain-

ing an operational VM. Moreover its increasing tendency

(i.e. the evolution of the local configuration duration) is

appreciably less marked than the start and boot duration

ones.

Figure 4. Assessment metrics used for benchmarking VAMP deployment
mechanism and evaluating the overhead it introduces

Figure 5. Evaluation of the time overhead introduced by the VAMP system

2) End-user Perception of Deployment Durations: The

second step of the benchmark aims at measuring different

durations that reflect the user perception when deploying

simultaneously N application instances. The metrics that

have been so assessed are:

• the mean time to deploy one VM (MTTD1V), i.e. the

time elapsed to instantiate and to boot the VM and then

to get the applicative components it embeds ready;

• the mean time to deploy one application instance

(MTTD1A), i.e. the time elapsed to get ready all VMs

participating to an application instance;

• the mean time to deploy N application instances

(MTTDNA), i.e. the time elapsed to get the N appli-

cation instances ready.

As depicted on Fig. 6, all these metrics evolve linearly

towards the number of applications instantiated simultane-

ously. In order to evaluate the parallelism introduced by

VAMP for deploying N applications, two ratios have been

evaluated:

• the first one measures the average gain introduced

by the deployment of one application instance with

VAMP compared to deploying each of its three VMs

sequentially. Its value is equals to 1−MTTD1A/(3 ∗
MTTD1V )3. It is constant towards the number of

applications instantiated simultaneously (N ) and equal

to 52%.

• the second one evaluates the benefit to deploy N
applications with VAMP compared to deploy them

sequentially. The ratio formula is 1−MTTDNA/(N ∗
MTTD1A). When making N vary from 2 to 24, it

33 is the number of VMs participating in one application instance

Figure 6. Duration perceived by an end-users for deploying an application
with VAMP

ha
l-0

06
65

59
2,

 v
er

si
on

 1
 - 

3 
Fe

b 
20

12



converges to an asymptotical value where the gain is

about 85%.

Both of these observations (see Fig. 7) illustrate the

benefit associated to the VAMP use. Its asynchronous and

decentralized self-configuration protocol allows a human ad-

ministrator to reduce significantly the duration for deploying

a large number of applications.

V. RELATED WORKS

The emergence of cloud computing during the last years

has come with a profusion of PaaS solutions. The fragmen-

tation of this market ensues essentially from a too general

and imprecise definition of what the PaaS is. Conversely

to the IaaS or the SaaS whose goal is absolutely clear (i.e.

to provide the users respectively with virtualized hardware

or software), according to the US National Institute of

Standards and Technologies (NIST) definition, the PaaS

offers models and environments to automatically manage the

whole life-cycle of the applications deployed in the cloud.

Such a vagueness had for consequence to delay the PaaS

offers compared to the IaaS or SaaS ones.

From an industrial point of view, a lot of companies

try, from now on, to enter into this promising market.

Whether they are IaaS players –that wish to offer higher-

level solutions based on the quite ”basic” provisioning of

virtualized hardware resources, e.g. [9]–, SaaS agents –that

want to allow their users to customize their own business

services, e.g. [10]– or newcomers –that become aware of the

challenges and the economical repercussions associated to

the cloud market–, each of them has as an absolute priority to

conquer new PaaS market shares as fast as possible. This has

for consequence a mass of heterogeneous offers towards the

technological or functional spectrum they cover, the business

domain they address or even their maturity. Thus [9] and [1]

only deal with the deployment and elastic management

of JEE enterprise web applications. Moreover [1] is only

delivered as public cloud4. [1] imposes also a Java-like

very specific programming model to which applicative code

4A functionally equivalent and open-source solution is available [11] and
can be deployed as private cloud

Figure 7. Evaluation of the parallelism introduced by the VAMP deploy-
ment process

must conform (e.g. no Java threads). On its own side, the

use of [9] limited to stateless applications compatible with

the execution environment based on the Tomcat 6 web

server. Comparably [12], that automates some deployment

and elasticity aspects, is confined to the applications based

on Microsoft technologies. The main restriction of [10]

concerns the business domain it addresses, i.e. the customer

relationship management. Finally solutions like [2] or [13]

focus on a tiny part of the life-cycle management (i.e. the

multi-VMs post-configuration, that consists in setting some

configuration parameters when VMs boot completed). That

for, such solutions adopt a declarative approach based on

master/slaves mode in which each virtual machine synchro-

nizes regularly its internal configuration with this stored

on a centralized server. Nevertheless exchanging dynamic

data between two slave entities (i.e. VMs) or starting an

application is quite a complex task for such tools, due to an

inappropriate approach based on recurrent synchronizations.

In order to address these limitations, many research works

have been led. Thus, as unique standard for describing

the deployment organization of a set of virtual images,

OVF represents a first step toward the full and coherent

formalization of a distributed application deployed in the

cloud. Incidentally some key players like VMWare or Citrix

already offer platforms for deploying OVF packages. In

our opinion, OVF lacks a support for describing distributed

architectures with their configuration, especially the dynamic

configuration of the distributed bindings. The absence of

such a declarative formalism implies that the configuration is

either stuffed in the application code or else is executed with

the help of external and ad-hoc configuration scripts [14].

[15] first discusses the implications of the architectural

definition of distributed applications candidate to be de-

ployed in the cloud. It underlines especially that such

an architecture has to be reified at runtime: this is an

opinion we share. Second, it proposes language elements

for describing software architectures, requirements towards

the underlying execution platforms, architectural constraints

(e.g. concerning placement and collocation) and rules relat-

ing to applications elasticity. We plan to include in future

VAMP extensions the capability to express constraints and

to deal with elasticity, however the formalism presented in

this article does not cover these aspects yet. Concerning

the requirements description towards the underlying IaaS

platforms, both approaches are based on OVF. Nevertheless

they differ regarding the formalism used for describing

the architecture. [15] adopts a model driven approach with

extensions of the Essential Meta-Object Facility (EMOF)

abstract syntax5 whereas the current article suggests to

extend an ADL. Finally, as for the deployment mechanism

(protocol and architecture) -especially concerning the dis-

5This syntax has been defined by the Model Driven Architecture (MDA)
initiative of the Object Management Group (OMG).

ha
l-0

06
65

59
2,

 v
er

si
on

 1
 - 

3 
Fe

b 
20

12



tributed bindings configuration and the activation order of

components that are the core of the present article-, it is not

much detailed in [15].

[16] suggests an extension of SmartFrog [17] that enables

an automated and optimized allocation of cloud resources.

It is based on a declarative description of the components

building up a distributed application and of the available

resources. The descriptions of applicative architectures and

of available resources are defined with the help of the DADL
language. This language allows expressing, on the one

hand, the applications constraints relating to the resources

in terms of Services Level Agreements (SLAs) and, on the

other hand, elasticity constraints. Compared to the present

article, [16] focuses on the language aspects. DADL is an

extension of SmartFrog, which is a Java framework for

deploying distributed systems. SmartFrog is extended thanks

to Java classes inheritance. The language we offer is more

declarative and architecture-centric. It is based on a well

known formalism for describing virtual machines (OVF) and

it integrates an architecture description language (Fractal

ADL). Moreover [16] does not give any details concerning

the deployment process itself, on its performances or its

robustness. Finally [16] intends to address the optimal re-

sources allocation whereas the work described in this article

mainly focuses on the efficiency and the reliability of the

deployment process.

VI. CONCLUSION AND FUTURE WORKS

This article presents a solution for self-configuring legacy

distributed applications in the cloud. A first contribution of

the article is a formalism for describing a legacy application

distributed on a set of virtual machines. It extends the OVF

formalism, addressing virtual machines description, with

an architecture description language (ADL). This extension

allows specifying explicitly and in a declarative way the

components building up an application and the bindings

between these components. A second contribution is a dy-

namic and decentralized self-configuration protocol part of

an automated deployment tool at Orange Labs. This decen-

tralized self-configuration protocol is the core of the article;

we argue that it can be reused for different legacy software

and it improves the efficiency of the deployment process

compared to a sequential approach. A third contribution is

a performance evaluation when deploying a JEE enterprise

web application on a private IaaS platform.

The properties of the proposed mechanism (decentral-

ization and communications asynchronism) open up inter-

esting horizons in terms of reliability of the deployment

process. Beyond the enforcement of the deployment protocol

reliability, which could for instance be implemented on a

compensation-based mechanism, the future extensions of the

work described in this article include (i) the reliability of the

deployed applications, i.e. self-repairing and more generally

other autonomic properties like self-optimization, (ii) the

management of applications elasticity in the description

formalism and in the engine executing the applications.

Finally, the management of multi-IaaS aspects would be a

pertinent extension from an industrial point of view.

REFERENCES

[1] Google App Engine website.
http://code.google.com/appengine/

[2] Puppet Labs website. http://docs.puppetlabs.com/

[3] N. Medvidovic and R. N. Taylor, “A framework for classify-
ing and comparing architecture description languages,” IEEE
Transactions on Software Engineering, vol. 26, pp. 70–93,
January 2000.

[4] E. Bruneton et al., “The fractal component model and its
support in java,” Softw., Pract. Exper., vol. 36, no. 11-12, pp.
1257–1284, 2006.

[5] K. Farooqui et al., “The iso reference model for open dis-
tributed processing: An introduction,” Computer Networks
and ISDN Systems, vol. 27, no. 8, pp. 1215–1229, 1995.

[6] J. de Meer, “The iso reference model for open distributed
processing,” Computer Networks and ISDN Systems, vol. 27,
no. 8, pp. 1211–1214, 1995.

[7] Open Virtualization Format Specification, Distributed Man-
agement Task Force DMTF Standard, Rev. 1.0.0, 2009.

[8] X. Etchevers et al., “Self-configuration of Distributed Ap-
plications in the Cloud,” in 4th International Conference on
Cloud Computing (CLOUD 2011), Washington D.C., U.S.A.,
July 4-9, 2011. IEEE, 2011, p. to be published.

[9] AWS Elastic Beanstalk website.
http://aws.amazon.com/fr/elasticbeanstalk/

[10] Salesforce.com website. http://www.salesforce.com/

[11] N. Chohan et al., “Appscale: Scalable and open appengine
application development and deployment,” in CloudComp,
ser. Lecture Notes of the Institute for Computer Sciences, So-
cial Informatics and Telecommunications Engineering, D. R.
Avresky et al., Eds., vol. 34. Springer, 2009, pp. 57–70.

[12] Microsoft Azure website.
http://www.microsoft.com/windowsazure/

[13] Opscode Chef website.
http://wiki.opscode.com/display/chef/Home

[14] Usharesoft Open Appliance Studio website.
https://www.usharesoft.com/products/oas.html

[15] C. Chapman et al., “Software architecture definition for
on-demand cloud provisioning,” in HPDC, S. Hariri and
K. Keahey, Eds. ACM, 2010, pp. 61–72.

[16] J. Mirkovic et al., “Dadl: Distributed application description
language.”

[17] P. Goldsack et al., “The smartfrog configuration management
framework,” SIGOPS Oper. Syst. Rev., vol. 43, pp. 16–25,
January 2009.

ha
l-0

06
65

59
2,

 v
er

si
on

 1
 - 

3 
Fe

b 
20

12


