
DLC: Compiling a Concurrent System Formal

Specification to a Distributed Implementation

Hugues Evrard

Team CONVECS – Inria Grenoble Rhône-Alpes & LIG

Abstract. Formal methods can verify the correctness of a concurrent
system by analyzing its model. However, if the actual implementation is
written by hand, subtle and hard to detect bugs may be unintentionally
introduced, thus ruining the verification effort. In this paper, we present
DLC (Distributed LNT Compiler), a tool that automatically generates
distributed implementation of concurrent systems modeled in the LNT
language, which can be formally verified using the CADP toolbox.

1 Introduction

When designing concurrent systems, the use of formal methods often consists
in verifying a model of a system, and then writing the actual implementation
by hand. The latter is tedious and error-prone, especially in the context of dis-
tributed systems, which are notoriously complex. The automatic generation of
distributed implementations directly from formal models adresses both difficul-
ties, by speeding-up the production of software, and by letting the programmer
operate at the formal model level, with the benefits of formal verification tools.
CADP (Construction and Analysis of Distributed Processes) [7] is a mature ver-
ification toolbox that can analyze concurrent systems modeled in the LNT [3]
formal language. In this paper, we present DLC (Distributed LNT Compiler,
http://hevrard.org/DLC), a tool which enables the automatic generation of
distributed implementations from LNT models. DLC produces several executa-
bles that can be deployed on distinct machines. Moreover, DLC let the end user
optionally define interactions between the implementation and its environment.

2 Formal Design with CADP and LNT

The CADP [7] toolbox gathers more than 25 years of research and development in
formal methods and offers a comprehensive set of tools including a model checker
and a test case generator, among others. The LNT formal language combines a
syntax close to mainstream programming languages with powerful concurrency
primitives inherited from process algebras. We briefly introduce LNT through a
rock-paper-scissors example, illustrated in Fig. 1. For an exhaustive description
of LNT including its formal operational semantics, see its manual [3].

The weapon type declares the three possible weapons, and requires the equal-
ity operator to be defined on its values. Many other types are available in LNT,

http://hevrard.org/DLC

1 type weapon is
2 rock, paper, scissor with ”==”
3 end type
4 channel nat is (nat) end channel
5 channel game is
6 (nat, nat, weapon, weapon)
7 end channel
8

9 function wins over (w0, w1: weapon) : bool is
10 case w0 in
11 rock −> return w1 == scissor
12 | paper −> return w1 == rock
13 | scissor −> return w1 == paper
14 end case
15 end function
16

17 process PLAYER
18 [GAME: game, WINNER: nat] (self: nat)
19 is
20 var mine, hers : weapon in
21 loop

22 mine := any weapon; −− random choice

23 select
24 GAME (self, ?any nat, mine, ?hers)
25 [] GAME (?any nat, self, ?hers , mine)
26 end select ;
27 if wins over (mine, hers) then
28 WINNER (self)
29 elsif wins over (hers , mine) then
30 stop
31 end if
32 end loop
33 end var
34 end process
35

36 process MAIN [GAME: game, WINNER: nat] is
37 par GAME #2 in
38 PLAYER [GAME, WINNER] (0)
39 | | PLAYER [GAME, WINNER] (1)
40 | | PLAYER [GAME, WINNER] (2)
41 end par
42 end process

Fig. 1. A rock-paper-scissors game modeled in LNT.

including array and general first-order constructor types which enable the defini-
tion of records, lists, etc. The function wins over uses the case pattern matching
statement to define the weapons’s circular relation. Again, LNT provides many
other statements, such as variable assignment, while and for loops, etc.

The PLAYER process defines a player behavior. Processes are a superset
of functions, they additionally enable communication actions, non-determinism
and parallel composition. The observable events of a process are actions on
gates. An action contains zero or more data offers, whose types form a profile. A
channel lists the profiles supported by a gate. Here, a player, identified by its self
argument, performs actions on gates GAME and WINNER, which are restricted
by channels game and nat, respectively. A player starts by assigning a random
weapon to its mine variable. Then, the select nondeterministic choice statement
introduces several possible behaviors, separated by “[]”: a player is ready to
perform either action on gate GAME—actions differ whether the player’s weapon
is first or second, identifiers are used for distinction. A player subsequently calls
the wins over function: if it wins, it performs an action on gate WINNER before
looping on a new game; if its opponent wins, then the player stops. Otherwise,
it is a draw, and both players loop on a new game.

In LNT, processes interact bymultiway rendezvous with value matching, rem-
iniscent of process algebras: one, two or more (multiway) processes synchronize
on an action, with the same profile. The value of data offers in received mode
(prefixed by “?”) of some process is set by other processes. For instance, players
can exchange values of type nat and weapon by a rendezvous on gate GAME. The
par statement in the MAIN process defines which rendezvous are allowed in a
parallel composition of three players: an action on gate WINNER can be realized
by any player independently, while an action on gate GAME must synchronize
any pair among the player processes (m-among-n synchronization [8]).

3 Automatic Distributed Code Generation with DLC

DLC takes as input a parallel composition of LNT processes and generates a
corresponding distributed implementation. Each process, also named task, is
compiled to a distinct executable. Moreover, DLC produces one executable per
gate to handle task interactions. Finally, the implementation also contains a
starter executable that manages the deployment of other executables. For in-
stance, when we apply DLC on our example, we obtain an executable per player,
plus two executables for the gates, and the starter executable.

The starter deploys other executables according to a configuration file which
associates executables to machine names. By default, DLC produces a configu-
ration file which can be used as a template, where all executables are required
to run on the local host. The configuration file adopts a classical UNIX config-
uration syntax, which makes it easy to be either written by hand or generated
by scripts. For instance, here is a configuration file excerpt:

edel-12.grid5000.fr # machine name
directory = /tmp/task0_PLAYER0 # working directory on the remote node
files = dlc_task0_PLAYER0 # name of the executable

edel-36.grid5000.fr
... etc ...

3.1 Environment Interaction with Hook Functions

More often than not, the end user wants the generated implementation to in-
teract with other existing systems in its environment, such as a local file system
or some web service. DLC enables such interactions through hook functions :
user-defined C functions that are called upon action events.

We want hook functions to enable not only the monitoring of actions, but
also their control. Within the distributed implementation, tasks and gates use
a protocol [4] to handle synchronizations while preserving the mutual exclusion
of conflicting (i.e., targeting the same tasks) rendezvous: when a gate detects a
possible action, it starts a negotiation that either succeeds and enables the action
realization, or fails. Therefore, we distinguish between pre-negotiation hooks that
are triggered before a negotiation is started, and post-negotiation hooks that are
called once the action is achieved. Moreover, each action is both a global event
of the system and a local event for each task involved in it. Accordingly, we also
distinguish between global hooks that are executed by gate processes, and local

hooks that are executed by task processes. From these categories, DLC provides
the three following types of hook functions.

pre-negotiation-global: each gate has a pre-negotiation-global hook that is
called before a negotiation starts for an action on that gate. This hook returns
a boolean to indicate whether a negotiation must be started for this action.

post-negotiation-global: each gate has a post-negotiation-global hook that
is called after a negotiation succeeds for an action on that gate. This hook
returns a boolean to indicate whether the action must be realized.

1 /* Function defined in file GAME.gatehook.c */
2 bool DLC_HOOK_PRE_NEGOTIATION_GLOBAL (DLC_TYPE_ACTION *act) {
3 printf ("Allow game between %d and %d ?[y/n] ", act->offers[0], act->offers[1]);
4 switch (getchar()) {
5 case ’y’: return TRUE;
6 case ’n’: return FALSE;
7 default : return FALSE; /* Disallow by default */
8 }
9 }

1 /* Function defined in file WINNER.gatehook.c */
2 bool DLC_HOOK_POST_NEGOTIATION_GLOBAL (DLC_TYPE_ACTION *act) {
3 play_sound (act->offers[0]); /* Plays the winner’s sound */
4 return TRUE;
5 }

Fig. 2. Hook functions enables interactions with the environment

post-negotiation-local: each task has a post-negotiation-local hook that is
called when the task realizes an action. This hook returns nothing.

The action under consideration is passed as an argument to all the three
types of hooks. Note that the pre-negotiation-global hook can decide whether a
negotiation shall be started or not, but a positive response does not guarantee
that the subsequent negotiation is successful. When the negotiation does succeed,
it is up to the post-negotiation-global hook to eventually decide to realize the
action (now that it is certain to be doable) or to abort the negotiation. All hooks
can interact with the environment to make choices or perform side effects.

Hook functions are optional, as DLC can produce a stand-alone implementa-
tion without them. Hook functions for a gate g (resp. a task t) must be defined
in the file named g.gatehook.c (resp. t.taskhook.c). DLC automatically detects
such files and embeds the hook functions into the implementation. Besides, DLC
has an option to generate hook function templates for a particular gate or task.

Figure 2 illustrates hook functions on the rock-paper-scissors example. The
pre-negotiation-global hook of gate GAME let the user decide, at runtime, which
games she allows. The post-negotiation-global hook of gate WINNER is used to
play some particular sound depending on which player wins a game.

3.2 Overview of Compilation Internals

Figure 3 gives an overview of how DLC proceeds to generate a distributed im-
plementation. DLC relies on the EXEC/CÆSAR [9] tool of CADP to obtain a
sequential implementation (in C) of each task process. However, the implemen-
tation produced by EXEC/CÆSAR is not complete: it can list the currently
possible actions of a process, but does not decide which action shall be realized.
This decision is made by the synchronization protocol, and DLC automatically
interfaces the code generated by EXEC/CÆSAR with the protocol. Both task
and gate protocol logic are implemented once for all in isolated libraries, which
nonetheless require information about the specification, such as the interactions

interface

extract info

starterLNT
specification

config
...||

||

hooks

starter
EXEC/CAESAR

hook.c implem.

DLC

specinfo
user input

generic lib.

generated lib.

protocol task gate

task

gate

task

task

Fig. 3. Overview of DLC architecture.

allowed on each gate with respect to the parallel composition. DLC extracts and
gathers this information into the “specinfo” library, which is also used by the
starter to know who is who. Moreover, DLC detects and embeds the optional
hook functions. Finally, DLC invokes a C compiler to produce the executables.

Implementation Correctness. The sequential implementation of each task is
obtained by the existing EXEC/CÆSAR tool of CADP, which has already been
employed in a formal context [9]. Interaction between tasks is achieved by a
synchronization protocol [6] that we verified [4] using a formal approach that
detected possible deadlocks in other protocols of the literature [5]. The actual
implementation of the protocol logic is done by hand, but it is isolated in generic
modules that can be thoroughly tested. The writing of these modules is a one-
time effort, since they are reused in all generated implementations. Therefore,
for a given LNT specification, the specific code produced by DLC comes down to
the task-protocol interface which is glue code, and the “specinfo” library which
only represents information in data structures. Finally, hook functions can avoid
some valid actions to happen, but they cannot lead the system into an invalid
action. All these considerations let us have a decent confidence in the correctness
of implementations generated by DLC.

Current Restrictions. DLC presents two main restrictions. First, values ex-
changed during an action must fit into a 64bits integer, thus records, lists, and
arrays must not appear in action data offers. To be removed, this restriction
requires serialization primitives for any LNT types, and we look toward CADP
tools to provide them. Second, an action can be guarded by a boolean function,
i.e., the action is allowed only if its offers let the guard function evaluate to true.
Since the code generated by EXEC/CÆSAR does not give access to guard func-
tions, DLC currently ignores the restrictions on data offers possibly induced by
them. To be removed, this restriction requires to modify EXEC/CÆSAR such
that the generated code gives access to guard functions.

4 Conclusion

In this paper, we presented the DLC tool, which enables the automatic genera-
tion of a distributed implementation from the LNT formal model of a concurrent
system. From an LNT parallel composition of processes, DLC produces several
executables that can be easily deployed on distinct machines. We underline the
fact that DLC does not require any special annotations in the LNT source. Pro-
cess interactions by multiway rendezvous with data exchange are managed by a

formally verified protocol [4]. The end user can also set up interactions with the
environment thanks to the hook functions.

We measured the performance of implementations generated by DLC on sev-
eral examples [6,4]. Our biggest case study so far is the Raft consensus algorithm:
from an LNT specification of about 500 lines, DLC produces more than 9000
lines of C code for a Raft server. Across all examples, results illustrate that
implementations generated by DLC can achieve more than 1000 rendezvous in
sequence per second (and of course much more when rendezvous are realized
concurrently on different gates). Hence, we consider implementations generated
by DLC to qualify at least for rapid prototyping.

As regards related work, BIP [11] and Chor [1] come with deadlock analysis
tools and a distributed compiler. Erlang programs can be verified with McEr-
lang [2], and Dreams [10] generates distributed implementations of Reo models.

Thanks to DLC, a concurrent system can now be modeled in LNT, formally
verified with CADP, and automatically compiled to an efficient distributed im-
plementation which is easily deployable and which can interact with its environ-
ment. In future work, we plan to get rid of the remaining restrictions of DLC,
such that it can handle any LNT specification.

Acknowledgments: the author warmly thanks Frédéric Lang for reviews of
this paper, and all other members of the CONVECS team for their support.

References

1. Carbone, M., Montesi, F.: Deadlock-Freedom-by-Design: Multiparty Asynchronous
Global Programming. POPL ’13, pp. 263–274, ACM (2013)

2. Castro, D., Guĺıas, V.M., Earle, C.B., Fredlund, L., Rivas, S.: A Case Study on
Verifying a Supervisor Component using McErlang. ENTCS 271 (2011)

3. Champelovier, D., Clerc, X., Garavel, H., Guerte, Y., McKinty, C., Powazny, V.,
Lang, F., Serwe, W., Smeding, G.: Reference Manual of the LNT to LOTOS Trans-
lator (Version 6.1). INRIA/VASY and INRIA/CONVECS (Aug 2014)

4. Evrard, H.: Génération automatique d’implémentation distribuée à partir de
modèles formels de processus concurrents asynchrones. Ph.D. thesis, Université
de Grenoble (Jul 2015)

5. Evrard, H., Lang, F.: Formal Verification of Distributed Branching Multiway Syn-
chronization Protocols. FORTE/FMOODS’2013, LNCS 7892 (2013)

6. Evrard, H., Lang, F.: Automatic Distributed Code Generation from Formal Models
of Asynchronous Concurrent Processes. PDP’2015, IEEE (2015)

7. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: A Toolbox for the
Construction and Analysis of Distributed Processes. STTT 15(2), Springer (2013)

8. Garavel, H., Sighireanu, M.: A Graphical Parallel Composition Operator for Pro-
cess Algebras. FORTE/PSTV’99, IFIP (1999)

9. Garavel, H., Viho, C., Zendri, M.: System Design of a CC-NUMA Multiprocessor
Architecture using Formal Specification, Model-Checking, Co-Simulation, and Test
Generation. STTT 3(3), Springer (2001)

10. Proenca, J., Clarke, D., de Vink, E., Arbab, F.: Dreams: a Framework for Dis-
tributed Synchronous Coordination. SAC, ACM (2012)

11. Quilbeuf, J.: Distributed Implementations of Component-based Systems with Pri-
oritized Multiparty Interactions. Ph.D. thesis, Université de Grenoble (2013)

	DLC: Compiling a Concurrent System Formal Specification to a Distributed Implementation

