Aldébaran: Users’s manual

Jean-Claude Fernandez and Laurent Mounier
IMAG-LGI
BP53X
38041 GRENOBLE Cedex
Tel : 76 51 49 15
e-mail fernand@imag.imag.fr

June 29, 1990

1 Introduction

Aldébaran [2] is a system for verifying communicating systems, represented by transition sys-
tems whose arcs are labelled by action names. It allows the reduction and the comparison
of labeled transition system with respect to equivalence relations such as bisimulation equiv-
alence [6], observational equivalence and safety equivalence [8]. It also allows compositions
of labeled transition systems to be treated by different strategies of reductions. Aldébaran
is written in C and runs on UNIX system. At present, the limit of the size of a labeled
transition system on a SUN 3/60 with 50 Mega-bytes of memory, is one million transitions,
because each transition is represented in twenty bytes. The reduction algorithms are based
on Paige & Tarjan algorithm [7], that solves the relational coarsest partition problem in
O(mlogn) time, where m is the number of transitions and n is the number of states. This
allows to reduce labeled transition systems with hundred thousands of transitions in some
minutes. It has a simple input format which is a list of triples representing the transition re-
lation. Aldébaran may be interfaced with other systems which manipulate labeled transition
systems. For instance, Aldébaran is interfaced with a LOTOS compiler [4] and a common
object code produced by LUSTRE and ESTEREL compilers [1]. In section 2, we briefly
describe the ”silent” use of Aldébaran. For a more complete description of Aldébaran, see
[3] or [2]. In section 3, we present performances of Aldébaran on an example of verification:
a scheduling problem [6].

2 Description of Aldébaran commands

NAME aldebaran - minimize or compare labeled transition systems with respect to an
equivalence relation.

SYNOPSIS aldebaran [options| name; ...name; ...

DESCRIPTION Aldebaran accepts two input file format: ASCII file and binary file
(option -bin). Files whose names end with “.gra” are taken to be binary files whereas
files whose names end with “.aut” are taken to be ASCII files. Each file contains
a labeled transition system which is set up with a descriptor and a set of edges. A
descriptor (resp. an edge) is represented as:

(initial_state, mumber_of_transitions, number_of_states)
(state, name, state)

The following options are processed by Aldébaran.

-help help.

-bin Indicate binary files.

-inv Inverse representation for labeled transition system (default: direct representa-
tion).

-stat Some statistics are displayed.

-step Transformations of labeled transition systems in order to obtain normal form
are interactive.

-fly The equality of the labelled transition systems, contained in name; and names,
with respect to a weak bisimulation equivalence (tau* a) is tested. The result
TRUE or FALSE is displayed.

-bmin
-omin
-amin
-smin FEach labelled transition system, contained in name;, for ¢ = 1, n, is minimized

with respect to bisimulation (resp. observational, acceptance models and safety)
equivalence. The result of minimization is displayed.

-bequ
-oequ
-aequ
-sequ The equality of the labelled transition systems, contained in name; and names,

with respect to bisimulation (resp. observational, acceptance models and safety)
equivalence is tested. The result TRUE or FALSE is displayed.

-bcla
-ocla
-acla

-scla For each labelled transition system, contained in name;, for ¢ = 1, n, equivalence
classes with respect to bisimulation (resp. observational, acceptance models and
safety) equivalence are displayed.

REMARK The last twelve options inhibit the interactive use of Aldébaran.

3 Example

3.1 Scheduler

We give an example of reduction carried out by Aldébaran. The reduction is based on
observational equivalence. Reduction with respect to observational equivalence consists of
transforming the labeled transition system by computing transitive closure of the transition
relation labelled by 7 and finding the coarsest partition with respect to the transition relation
and the universal partition. The example is Milner’s problem of scheduling (see [6], page
33). This example is interesting for evaluation purposes because the numbers of states,
transitions and equivalence classes grow in the same proportion. We give two specifications
in Lotos [4]. We consider a ring of n elementary identical components, called cyclers. A
cycler specification in Lotos is:

process CYCLER[gi, ai, bi, gi+l] : noexit :=

gi ; ai ;
(C bi ; gi+l ; CYCLER[gi, ai, bi, gi+1])
(]
(gi+l ; bi ; CYCLER[gi, ai, bi, gi+1]))
endproc

A cycler should cycle endlessly as follows: (i) Be enabled by predecessor at gi, (ii) Receive
initiation request at ai (iii) Receive termination signal at bi and enable successor at gi + 1
in either order. We give two specifications of scheduler: the first one is such that the ai and
bi are visible ; in the second one only the ai are visibles. (This last specification expresses
that the scheduler is observationally equivalent to (aj...a,)*). In both cases, we give a table
that summarizes the time (in seconds) spent to find the coarsest partition compatible with
the transition relation and the universal partition.

3.2 First specification

specification SCHEDULER [al, ..., an, bl, ..., bn] : noexit behaviour
hide g1, ..., gn in
(cycler[gl, al, b1, g2]
| [g1l, g2]l
(

cycler[gi, ai, bi, gi+l]
| [gi+1] |

(cycler[gn, an, bn, gi] ||| gi; stop)

)

where library cycler endlib

endspec

numbers of cyclers | number of states | number of transitions | number of classes time
2 13 35 9 0.017s
3 37 139 25 0.05s
4 97 453 65 0.26s
5 241 1321 161 0.88s
6 577 3595 385 2.6s
7 1345 9339 897 7.28
8 3073 23465 2049 20.5s
9 6913 57687 4663 56.3s
10 15361 138111 10241 159.8s
3.3 Second specification
specification SCHEDULER [al, ., an] : noexit behaviour
hide gil, ., gn, bl, ..., bn in
(cycler[gl, al, b1, g2]
| [gl, g2]|
(
cycler[gi, ai, bi, gi+1]
| [gi+1] |
(cycler[gn, an, bn, gi] ||| gi; stop)
)
where library cycler endlib
endspec

numbers of cyclers | number of states | number of transitions | number of classes | time
2 13 35 3 0.01s
3 37 325 4 0.05s
4 97 1465 5 0.15s
5 241 5851 6 0.6s
6 577 21853 7 1.9s
7 1345 78247 8 6.9s
8 3073 272209 9 24s
9 6913 927451 10 80s

Notice that in both cases, time increases quasi linearly with the number of transitions.

3.4 Other Results

In this section, we give the results obtained by applying the decision procedure “on the fly”
(produce of labeled transition systems) to labeled transition systems.

The labeled transition systems are previously generated from LOTOS specifications by using
CESAR ([4,9]) and stored, and consequently the results can be compared with the classical
verification procedure.

Two examples are described here: the first one is the scheduler described by Milner and the
second one is an alternating bit protocol called Datalink protocol [10].

The following notations are used:

n; and m; denote the number of states and transitions of the two labeled transition
systems (i = 1, 2).

n denotes the number of states of the product which have been effectively analyzed.

t1 is the time needed by the classical decision procedure of Aldébaran.

t2 is the time need by the decision procedure “on the fly”.

The times given here are elapsed times, obtained on a SUN 3-80 Workstation. Only the
verification phase is taken into account.

3.4.1 Milner’s scheduler

The results are given for different values of V.

N nl ml | n2 | m2 n tl t2
7 1345 | 5377 | 7 7 449 | 0:14 | 0:11
8 3073 | 13825 8 8 | 1025 | 0:46 | 0:34
9 6913 | 34561 9 9| 2305 | 2:50 | 1:44
10 || 15361 | 84481 | 10 | 10 || 5121 | 13:07 | 5:25

3.4.2 Datalink protocol

The Datalink protocol is an example of an alternating bit protocol. The LOTOS specification
provided to CESAR is described in [10].

By varying the number of the different messages which can be transmitted (noted V), labeled
transition systems of various sizes can be obtained. However, for N > 40, the memory re-
quired by the classical decision procedure of Aldébaran becomes too large, and consequently
the verification can no longer be performed with this procedure.

N nl ml | n2 m2 n tl t2
20 7241 10560 | 41 | 440 1661 | 0:24 | 0:19
30 15661 | 23040 | 60 | 930 3691 | 0:57 | 0:55
40 27281 | 40320 | 80 | 1640 6521 | 2:07 | 1:45

50 42101 62400 | 101 | 2600 || 10151 — | 2:27

60 60121 89280 | 121 | 3720 || 14581 — | 3:42

70 81341 | 120960 | 140 | 4970 || 19811 — | 6:42

80 || 105761 | 157440 | 161 | 6560 || 25841 — 1 9:23
References

[1] P. Couronné, J.A. Plaice, and J.B. Saint. The lustre esterel portable format. unpub-

2]

[3]

[4]

lished, 1986.

J. C. Fernandez. Aldébaran, Un systéme de vérification par réduction de processus
communicants. PhD thesis, Université de Grenoble, 1988.

J. C. Fernandez. Aldébaran: User’s Manual. Technical Report, LGI-IMAG Grenoble,
1988.

H. Garavel. Compilation et vérification de programmes LOTOS. PhD thesis, Université
Joseph Fourier de Grenoble, 1989.

S. Graf and J. Sifakis. Readiness Semantics for Regular Processes with Silent Action.
Technical Report Projet Cesar RT-3, LGI-IMAG Grenoble, 1986.

R. Milner. A calculus of communication systems. In LNCS 92, Springer Verlag, 1980.

R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM J. Comput., No.
6, 16, 1987.

C. Rodriguez. Spécification et validation de systéemes en XESAR. PhD thesis, Institut
National Polytechnique de Grenoble, 1988.

Hubert Garavel and Joseph Sifakis. Compilation and verification of lotos specifications.
In L. Logrippo, R. L. Probert, and H. Ural, editors, Proceedings of the 10th Interna-
tional Symposium on Protocol Specification, Testing and Verification (Ottawa), TFIP,
Amsterdam, June 1990.

[10] Juan Quemada, Santiago Pavén, and Angel Ferndndez. Transforming lotos specifica-
tions with lola: the parametrized expansion. In Kenneth J. Turner, editor, Proceedings
of the 1st International Conference on Formal Description Techniques FORTE’88 (Stir-
ling, Scotland), pages 45-54, North-Holland, Amsterdam, September 1988.

