
CADP

A Protocol Validation and Verification Toolbox
?

Jean-Claude Fernandez, Hubert Garavel, Alain Kerbrat,
Laurent Mounier, Radu Mateescu, and Mihaela Sighireanu

Inria/Vérimag, Miniparc Zirst, rue Lavoisier, 38330 Montbonnot St-Martin, France

1 Introduction

Cadp (Cæsar/Aldébaran Development Package) is a toolbox for protocol engi-
neering. It offers a wide range of functionalities, ranging from interactive simulation
to the most recent formal verification techniques. A first presentation of Cadp can
be found in [FGM+92]. Work on Cadp started in 1985 and the first version of the
toolbox (version A) was released in 1990. The latest official version (version Y) was
released in May 1994. An improved version (version Z) is in preparation, for which
beta-releases are available.

The Cadp toolbox contains several closely interconnected components:
Aldébaran, Bcg, Cæsar, Cæsar.adt, Open/Cæsar and Xtl. All these compo-
nents are accessible through a unified graphical user-interface developed in the Eu-
calyptus project. We first present the overall functionalities of the toolbox, followed
by individual presentations of each component.

More recently, a prototype, named Tgv (Test Generation using Verification tech-
niques) [FJJ+96], for the automatic generation of test suites has been developed within
the Cadp toolbox.

The Cadp toolbox has been installed in 130 sites2 and used for a number of
case studies, e.g. [KB95, GM96], including several industrial applications, such as the
verification of the bus arbiter of Bull’s PowerScaleTM architecture.

2 Description languages and compilers

The Cadp toolbox accepts three different input formalisms:

– It accepts high-level protocol descriptions written in the Iso language Lotos
[International Standard 8807]. The toolbox contains two compilers Cæsar and
Cæsar.adt. They translate Lotos descriptions into C code which can be used
for simulation, verification and testing purpose.

? This work has been supported in part by the European Commission, under project ISC-
CAN-65 “EUCALYPTUS-2: A European/Canadian Lotos Protocol Tool Set”.

2 The toolbox is distributed free of charge to universities and academic research centers
(under a license agreement). E-mail: caesar@imag.fr



– It accepts low-level protocol descriptions specified as Labelled Transition Systems
(Lts, for short), i.e., finite state machines with transitions labelled by action
names.

– As an intermediate step, the Cadp toolbox accepts networks of communicating
automata, i.e., finite state machines running in parallel and connected together
using Lotos parallel composition and hiding operators.

The latest releases of the Cadp toolbox devote a growing importance to the con-
cept of intermediate formats and programming interfaces, which allow the Cadp tools
to be applied to protocol description written in other languages than Lotos (e.g.,
Sdl with the Geode compiler, etc.).

3 Validation and verification functionalities

The Cadp toolbox allows to cover most of the development cycle of a protocol by
offering an integrated set of functionalities. These functionalities (and tools) are inter-
active or random simulation (Open/Cæsar), partial and exhaustive deadlock detec-
tion (Open/Cæsar and Aldébaran), test sequences generation (Tgv), verification
of behavioural specifications with respect to a bisimulation relation (Aldébaran),
verification of branching-time temporal logic specifications (Evaluator and Xtl).

All the validation and verification tools are based on a same principle consisting
in the exploration of an Lts describing the exhaustive behaviour of the protocol
under analysis. This Lts can be accessed through several representations: The explicit

representation consists in the exhaustive list of the states and transitions of the Lts. A
compact format (Bcg) is available to encode explicit representations efficiently. The

implicit representation consists in a C library providing a set of functions allowing a
dynamic exploration of the Lts. It is well adapted to perform “on the fly” verification,
avoiding the generation of the whole Lts. The symbolic representation consists in a
set of Binary Decision Diagrams (Bdd) encoding the transition relation of the Lts.
It can be built from program’s description of higher level than the Lts level, thus
allowing to take advantage of the Bdd structure sharing capabilities.

4 Presentations of the toolbox components

1. Aldébaran [FKM93] allows the comparison and the reduction of Ltss modulo
various equivalence relations (such as strong bisimulation, observational equiv-
alence, delay bisimulation, τ

∗a bisimulation, branching bisimulation, and safety
equivalence) and preorder relations (such as simulation preorder and safety pre-
order). The verification algorithms used in Aldébaran are based either on the
Paige-Tarjan algorithm for computing the relational coarsest partition, or on the
“on-the-fly” techniques proposed by Fernandez-Mounier, or on symbolic Lts rep-
resentation using Binary Decision Diagrams (Bdds). Aldébaran has diagnosis
capabilities that provide the user with explanations when two Ltss are found not
to be related.



2. Bcg (Binary-Coded Graphs) is both a format for the representation of explicit
Ltss and a collection of libraries and programs dealing with this format. Com-
pared to Ascii-based formats for Ltss, the Bcg format uses a binary represen-
tation with compression techniques resulting in much smaller (up to 20 times)
files. Bcg is independent from any source language but keeps track of the objects
(types, functions, variables) defined in the source programs. The following tools
are currently available for this format: Bcg Io performs conversions between the
Bcg format and a dozen of other formats; Bcg Open establishes a gateway
between the Bcg format and the Open/Cæsar environment; Bcg Draw pro-
vides a 2-dimension graphical representation of Bcg graphs with an automatic
layout of states and transitions; Bcg Edit is an interactive editor which allows
to modify manually the display generated by Bcg Draw.

3. Cæsar [GS90] is a compiler which translates Lotos descriptions into Ltss.
Cæsar proceeds in several steps, first translating the Lotos description to com-
pile into an intermediate Petri Net model, which provides a compact represen-
tation of the control and data flows. Then, the Lts is produced by performing
reachability analysis on this Petri net. Cæsar only handles Lotos specifications
with static control features, which is usually sufficient for most applications. The
current version of Cæsar allows the generation of large Ltss (some million states)
within a reasonable lapse of time. The efficient compiling algorithms of Cæsar
can also be exploited in the framework of the Open/Cæsar environment.

4. Cæsar.adt [Gar89] is a compiler that translates the data part of Lotos de-
scriptions into libraries of C types and functions. Each Lotos sort or opera-
tion is translated into an equivalent C type or function. One must indicate to
Cæsar.adt which Lotos operations are “constructors” and which are not (fairly
obvious, in practice). Cæsar.adt does not allow non-free constructors (“equa-
tions between constructors”). Translation of large programs (several hundreds of
lines) is usually achieved in a few seconds. Cæsar.adt can be used in conjunction
with Cæsar, but it can also be used separately to compile and execute efficiently
large abstract data types descriptions.

5. Open/Cæsar is an extensible programming environment for the design of appli-
cations working with the implicit representation of Ltss. Currently, several lan-
guages/compilers are connected to the Open/Cæsar environment, including: the
Cæsar and Cæsar.adt compilers, the Bcg Open gateway for explicit graphs,
the Exp.Open gateway for networks of communicating automata, etc. Various
application programs have already been written in the Open/Cæsar framework,
including two interactive simulators (with shell-like and X-window interfaces), a
random execution tool, a deadlock detection tool based on G. Holzmann’s tech-
nique, a reachability analysis tool (with τ

∗a on-the-fly reduction), a sequence-
searching tool, an on-the-fly evaluator for branching-time µ-calculus, etc.

6. Xtl (eXecutable Temporal Language) is a functional-like programming language
designed to allow an easy, compact implementation of various temporal logic op-
erators. These operators are evaluated over an Lts encoded in the Bcg format.
Besides the usual predefined types (booleans, integers, etc.) The Xtl language
defines special types, such as sets of states, transitions, and labels of the Lts.



It offers primitives to access the informations contained in states and labels, to
obtain the initial state, and to compute the successors and predecessors of states
and transitions. The temporal operators can be easily implemented using these
functions together with recursive user-defined functions working with sets of states
and/or transitions of the Lts. A prototype compiler for Xtl has been developed,
and several temporal logics like Hml, Ctl, Actl and Ltac have been easily
implemented in Xtl.

References

[FGM+92] Jean-Claude Fernandez, Hubert Garavel, Laurent Mounier, Anne Rasse, Carlos
Rodŕıguez, and Joseph Sifakis. A Toolbox for the Verification of LOTOS Pro-
grams. In Lori A. Clarke, editor, Proceedings of the 14th International Conference
on Software Engineering ICSE’14 (Melbourne, Australia), pages 246–259. ACM,
May 1992.

[FJJ+96] Jean-Claude Fernandez, Claude Jard, Thierry Jéron, Laurence Nedelka, and César
Viho. Using On-the-Fly Verification Techniques for the Generation of Test Suites.
In R. Alur and T. A. Henzinger, editors, Proceedings of the 8th International
Conference on Computer-Aided Verification (Rutgers University, New Brunswick,
NJ, USA), volume 1102 of Lecture Notes in Computer Science. Springer Verlag,
1996. Also available as INRIA Research Report RR-29XX.

[FKM93] Jean-Claude Fernandez, Alain Kerbrat, and Laurent Mounier. Symbolic Equiva-
lence Checking. In C. Courcoubetis, editor, Proceedings of the 5th Workshop on
Computer-Aided Verification (Heraklion, Greece), volume 697 of Lecture Notes in
Computer Science. Springer Verlag, June 1993.

[Gar89] Hubert Garavel. Compilation of LOTOS Abstract Data Types. In Son T. Vuong,
editor, Proceedings of the 2nd International Conference on Formal Descrip-
tion Techniques FORTE’89 (Vancouver B.C., Canada), pages 147–162. North-
Holland, December 1989.

[GM96] Hubert Garavel and Laurent Mounier. Specification and Verification of various
Distributed Leader Election Algorithms for Unidirectional Ring Networks. Sci-
ence of Computer Programming, 1996. Special issue on Industrially Relevant
Applications of Formal Analysis Techniques. Full version available as INRIA Re-
search Report RR-29XX.

[GS90] Hubert Garavel and Joseph Sifakis. Compilation and Verification of LOTOS
Specifications. In L. Logrippo, R. L. Probert, and H. Ural, editors, Proceedings
of the 10th International Symposium on Protocol Specification, Testing and Ver-
ification (Ottawa, Canada), pages 379–394. IFIP, North-Holland, June 1990.

[KB95] Alain Kerbrat and Slim Ben Atallah. Formal Specification of a Framework for
Groupware Development. In G. v. Bochmann, R. Dssouli, and O. Rafiq, editors,
Proceedings of the 8th International Conference on Formal Description Tech-
niques for Distributed Systems and Communication Protocols FORTE’95 (Mon-
treal, Quebec, Canada), October 1995. Short paper.

This article was processed using the LaTEX macro package with LLNCS style


