On the Most Suitable
Axiomatization of Signed Integers

Hubert Garavel

INRIA, Grenoble, France
Univ. Grenoble Alpes, LIG, F-38000 Grenoble, France
CNRS, LIG, F-38000 Grenoble, France
Saarland University, Saarbriicken, Germany
E-mail: hubert.garavel@inria.fr
http://convecs.inria.fr

Abstract

The standard mathematical definition of signed integers, based on set
theory, is not well-adapted to the needs of computer science. For this
reason, many formal specification languages and theorem provers have
designed alternative definitions of signed integers based on term alge-
bras, by extending the Peano-style construction of unsigned naturals using
“zero” and “succ” to the case of signed integers. We compare the vari-
ous approaches used in CADP, CASL, Coq, Isabelle/HOL, KIV, Maude,
mCRL2, PSF, SMT-LIB, TLA+, etc. according to objective criteria and
suggest an “optimal” definition of signed integers.
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1 Introduction

It took a few millennia to properly formalize number theory but, at present,
mathematics has sound and well-established concepts for numbers.

In computer science, the situation is different. Following a tradition initiated by
Fortran and Algol 60, most programming languages rely on a set of predefined
data types, among which numerical types (integers, reals, etc.) have finite
domains and usually map to the machine words provided by the underlying
hardware. In many cases, the semantics of these types is not defined formally,
as it depends on the implementation. Even languages with strong semantic
foundations may be incompletely defined if they import predefined types; this
is the case, for instance, with the synchronous languages Lustre [31, Sect. 3.1 and
3.2], Esterel [5, Sect. 4.3.1], and Signal [13, Sect. 2.3], which assume the existence
of predefined signed integers and floating-point reals, presumably imported from
the C language.
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Some specification languages use a similar approach, by assuming the existence
of numerical types rather than defining them formally. Because specification
languages are expected to be more abstract and higher-level than programming
languages, such predefined numerical types are usually infinite and the mapping
to hardware implementation is often left aside. These are four examples of
specification languages in which numbers are taken for granted':

e The VDM language [15] [19, Sect. 3.1.2] has five predefined numerical
types, real numbers being the most general one (natl C nat C int C
rat C real).

e The predefined library of PVS [25, Chap. 7] assumes the existence of a
universal number type, of which the usual numerical types are subsets
(naturalnumber C integer C rational C real C number). Actually,
PVS defines many more types (e.g., posnat, nonneg_int, nzrat, etc.)
that form a lattice, the elements of which are related by PVS judgments
and properties.

e The Z notation [16, Sect. 11.2 and B.7] assumes the existence of an un-
specified number type A (“arithmos”) that contains naturals and integers
(N; € NC Z C A). These sets and their operations are defined using
high-level statements such as: “multiplication on integers is characterised
by the unique operation under which the integers become a commutative
ring with identity element 1”7 [16, Sect. B.7.11].

e The B language [20, Sect. 3.4, 5.3, 5.6, and 7.25.2] assumes the existence
of the set Z, of which Ny and N are subsets (N; C N C Z). The language
also defines a set INT of “concrete integers” that belong to a finite range
MININT...MAXINT, the bounds of which are implementation-dependent, e.g.,
(—231)...(231 — 1), as well as two subsets NAT; and NAT of INT without
negative values (NAT; C NAT C INT C Z A NAT; C N; ANAT C N).

Relying on undefined or externally-defined numerical types makes these lan-
guages closer to programming languages than formal methods. Their semantics
is not entirely defined and properties involving numbers cannot be proven within
these languages, unless some specific theories are imported. We believe that a
unified semantic definition that encompasses numbers is highly preferable.

The present article addresses the following problem: what is the best way to de-
fine the set Z, of integers formally? An ideal definition should be mathematically
elegant and compatible with the needs of computer-aided verification.

Our motivation for this question arose in 1996 when applying the LOTOS lan-
guage [14] to an industrial case study that required signed integers: the prede-
fined library of LOTOS, based on ACT-ONE [9] abstract data types, provided
only natural numbers, but no signed integers. At that time, no obvious solution
could be found in the literature. During the past decades, various approaches
have been devised for this problem and implemented in mainstream specifica-
tion languages and theorem provers. The present article reviews and compares

n the present article, we distinguish between naturals (also: natural numbers), which are
the elements of N (i.e., unsigned), and integers, which are the elements of Z (i.e., signed). We
assume that 0 € N and we write N; =, N'\ {0}.
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these approaches. We restrict our study to arbitrary large naturals and integers
(i.e., the mathematical sets N and Z), thus excluding finite subranges of N and
Z, especially machine numbers (e.g., 32-bit integers) and modular arithmetic.

2 Definitions of N

In mathematics, natural numbers can be constructed in two main ways:

e Construction based on set theory: assuming that the concept of set pre-
exists, we know from the works of Zermelo, Fraenkel, and Von Neumann
that natural numbers can be defined as the following sequence of sets:

0 =. @

1 =, 0U{0}= {0} ={o}

2 =u  10{1} ={0,1} ={o,{2}}

3 T def 2U{2} = {0’172} = {Q,{QL{@’{@}}}
and so on, where number n+1 is defined as the set nU{n}, i.e., {0,1,...,n}.
We are not aware of any computer language that uses this approach to

define natural numbers. Even formal methods based on set theory, such
as VDM, Z, B, or TLA+ [18] do not define their naturals this way.

e Construction based on algebraic terms: we know from Peano axioms that
natural numbers can be represented as algebraic terms built with two
constructors [zero : — N] and [succ : N — NJ]. Because this approach
lends itself well to machine execution and automated reasoning, it has been
adopted by most computer languages that formally define their numbers.

The simplicity of this approach fits theoretical needs well but faces prac-
tical limitations: Peano-style naturals are encoded in base one (unary
representation), which is cumbersome when writing large numbers, and
inefficient when directly executing algebraic specifications by giving them
as input to some rewrite engine or encoding them into some language
(e.g., a functional programming language) that supports inductive types
and pattern matching; in practice, unary representation often causes stack
overflow for naturals larger than 10°.

For this reason, refined approaches have been proposed to represent natu-
rals more compactly and reduce the amount of rewrite steps; this is usually
done by encoding numbers in a base different from one, e.g., two [2] [4],
three [8], four [7], ten [32] [17] [2] [4] [29], sixteen [2], or in some arbitrary
base [33, Systems DA and JP]. In this article, we stick to the unary rep-
resentation, since it is used by a majority of specification languages and
software tools.

The choice between set theory and algebraic terms for defining unsigned naturals
can also be found in the construction of signed integers. In the sequel, we
examine each approach in turn.
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3 Approach 1: Definition of Z Using Set Theory

In mathematical textbooks, the set of integers is defined as Z = (N x N)/ ~;
where X is the cartesian product and ~ the equivalence relation such that
(LU,y) ~ (xl>yl) — a:+y’ =a +y.

This approach has been retained for defining integers in CASL [23, Sect. V:2,
page 381] and Isabelle/HOL [28, Sect. 52 page 586]. It has the merit of exhibiting
a nice analogy with rational numbers, whose set can be similarly defined as
Q = (Z x (Z\ {0}))/ ~, where ~ is another equivalence relation such that
(x,y) ~ (¢/,y) < x -y’ = 2’ - y — but the analogy does not hold beyond this
point, as the set R of real numbers cannot be defined as a quotient set of Q x Q.

Such a set-theoretic definition of integers has various drawbacks: (i) it relies
on cartesian product and quotient set, which are involved notions, compared
to the simplicity of Peano axioms; (ii) it makes the definition of integers very
different from that of naturals; (iii) it goes against the intuition as it builds a
two-dimensional surface where a half line towards negative integers would be
sufficient; (iv) it does not support reasoning by induction on integers, as pointed
out, e.g., in [24, Sect. 8.4 page 165]; (v) it is not optimal computationally, neither
in memory (the cartesian product suggests that it takes two naturals to build
one integer) nor in time (the quotient operation requires two additions and an
equality test to compare two integers).

Having mentioned this approach, we now consider, in the remainder of this
article, alternative definitions based upon algebraic terms rather than set theory.

4 Formal definitions

4.1 Syntactic notations

Following the established terminology of algebraic specification, we define a
sort” to be a collection of algebraic terms. These terms should be well-typed,
meaning all the usual constraints arising from the arity of operations, the sorts
of operation arguments, and the sorts of operation results must be taken into
account.

If ¢ is a term of sort S, if f is a unary operation [f : S — S], and if n is a
natural number, let f"(¢) be the term defined inductively by f°(t) =, t and
Frr(t) =4 F(f(t)). For instance, succ®(zero) = succ(succ(succ(zero))).

As often as possible, we try to split the set of operations into constructors, which
determine the set of possible values of a sort, and non-constructors, which are
defined functions specified using algebraic equations or term rewrite rules. We
define the constructors of a sort S to be all constructors that return a result of
sort S. For instance, the constructors of natural numbers defined in the Peano
style are zero and succ; all other operations also returning a natural number
(e.g., addition, subtraction, multiplication, etc.) are seen as non-constructors.

We define a ground normal form to be any well-typed term built using con-
structors only; consequently, a ground normal form cannot contain free vari-

2We prefer using sort rather than type, which is often given a different meaning.
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ables or non-constructors. We define the domain of a sort S to be the set,
noted dom(S), of all ground normal forms of sort S. We define the image
of a constructor f to be the set, noted img(f), of all ground normal forms
whose top-level constructor is f. For instance, if nat is the sort defined by
the two constructors [zero : — nat] and [succ : nat — nat], its domain
is dom(S) = {succ”(zero) | n € N} and the images of its constructors are
img(zero) = {zero} and img(succ) = {succ™(zero) | n € N\ {0}}.

4.2 Semantic denotations

Our goal is to study how mathematical integers can be conveniently represented
by sorts, constructors, and algebraic terms. We thus carefully distinguish be-
tween notations (i.e., terms) and denotations (i.e., numbers from Z).

If f is a constructor, we write [f] its intended denotation, which we conveniently
formulate as a A-expression, in which all the trivial conversions between sorts or
types (i.e., from Peano-like terms to N, or from N to Z) are implicitly performed.
For instance, [zero] = 0 and [succ] = An.(n + 1).

Having defined the denotation [f] of a constructor f, we extend this notion to
define the denotation [t] of a ground normal form ¢ by induction on the syntax
of terms: [f(t1,...,tn)] = [f1([t1]; -, [tn]). For instance, [succ(zero)] =
[succ]([zero]) = (An.(n +1))(0) = 1.

A necessary condition for a sort S to represent Z is that [.] is a surjection from
dom(S) to Z, i.e., (Vn € Z) (3t € dom(S) | [t] = n), meaning that each integer
can be denoted by at least one ground normal form of sort S.

Additionally, we say that the constructors of sort S are free if [.] is an injection®
from dom(S) to Z, i.e., (Vt1,t2 € dom(S)) ([t1] = [t2] = t1 = t2), where t; = to
means the syntactic identity of terms ¢; and t5. Thus, if the constructors are
free, each integer is denoted by exactly one ground normal form of S. This
definition remains compatible with the usual, more general definition stating
that constructors are free if any two syntactically different ground normal forms
cannot be proven equal (or be rewritten one into the other, or both into a
common third term).

Let S be a sort intended to represent Z, and fi, ..., f, its constructors (with
n > 1). It follows from the above definitions that these constructors are free iff
all functions [f;] are injective and the sets of denotations of the images img(f1),
<oy img(fy) form a partition® of Z, i.e., Z = {[t] | t € img(f1)} W .. {[t] | t €
img(fn)}, where W denotes the disjoint union. Notice that if a sort has a single
constructor, this constructor is not necessarily free, as it may be non-injective;
various examples will be seen below.

To compare the various definitions of Z based on algebraic terms, we quantify
the complexity of each approach using two natural numbers (m,n) defined as
follows: given a sort S that represents Z, n is the number of constructors (noted
fis ety fn) of S, and m is the number of different sorts that occur in the argu-
ments of f1, ..., fn; in particular, m is equal to one if sort S is defined directly,
without referencing another sort. The number n of constructors adversely im-

3and, hence, a bijection.
4in particular, are pairwise disjoint.
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pacts the conciseness of non-constructor operations having arguments of sort S:
a unary function is likely to require n equations or rewrite rules; a binary func-
tion is likely to require n? equations or rewrite rules, etc. We write NF7' (resp.
F7') an approach based on m sorts and n non-free (resp. free) constructors.

9 Definitions of Z Using Non-Free Constructors

In this section, we review four approaches that quickly come to mind when
trying to define integers using algebraic terms. However, these approaches lead
to non-free constructors which, we believe, are not optimal. The merit of an
approach is inversely proportional to its number of collisions, i.e., the maximal
number of distinct ground normal forms that can denote the same integer value.

5.1 Approach 2: NF? — Two Sorts and One Non-Free Constructor

Interestingly, the set-theoretic approach of Sect. 3 can be reformulated in
algebraic style by defining a sort Int built upon the preexisting sort Nat
using a single constructor [pair : Nat,Nat — Int| such that [pair] =
Am.An.(m — n). Clearly, this unique constructor is not free: for instance,
[pair(succ(zero),zero)] = [pair(succ(succ(zero)),succ(zero)] = 1. More
generally, each integer n > 0 can be represented by an infinite number of terms
{pair(succk*"(zero), succk(zero)) | k € N} and each integer n < 0 can be rep-
resented by an infinite number of terms {pair(succ¥(zero), succ*~"(zero)) |
k € N}; the number of collisions is thus Xg, which is a most undesirable property.

5.2 Approach 3: NF} — One Sort and Three Non-Free Constructors

To define a sort Int representing Z, an intuitive idea, used in the library® of
the KIV tool [10, p. 8 and Sect. 5.1 page 42], is to take the Peano system
[zero :— Int| and [succ : Int — Int] and extend it with a third constructor
[pred : Int — Int] such that [pred] = An.(n — 1), while zero and succ keep
their usual denotations: [zero] = 0 and [succ] = An.(n 4+ 1). Definitions
of integers involving such a predecessor operation have been studied in [33,
System SP] [29], and also in [4] [3], where the predecessor operation is a non-
constructor. The fact that [pred] = [succ]~! gives an appealing symmetry, as
pred and succ progress in opposite directions.

Unfortunately, these constructors are not free, the simplest counterexample be-
ing [pred(succ(zero))] = [succ(pred(zero))] = 0. Each integer n > 0 can be
represented by an infinite number of terms, e.g., {pred”(succ"**(zero)) | k €
N} or, more generally, any combination (in any order) of k applications of pred
mixed with (k + n) applications of succ — a dual remark holds if n < 0. The
number of collisions is thus Ng.

Shttps://swt.informatik.uni-augsburg.de/swt/projects/lib/basic/specs/
int-basicl/export/unit.xml
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5.3 Approach 4: NF; — Three Sorts and One Non-Free Constructor

Another approach, used in the type library of PSF [30, Sect. 8] [21, Sect. 2.5], is
based on the idea that an integer is a natural with a sign. Assuming the existence
of a sort Sign with two free constructors [plus :— Sign] and [minus :— Sign],
the sort Int can be defined using a constructor [pair : Sign,Nat — Int] such
that [pair] = As.An.(if s = plus then n else —n).

This unique constructor is not free, because of the collision [pair(plus,zero)] =
[pair(minus, zero)] = 0, a situation that we will refer to as the double-zero
issue’. This is the only collision in this approach.

5.4 Approach 5: NF3 — Two Sorts and Two Non-Free Constructors

A variant of the previous approach NF$ of Sect. 5.3 does not rely on the sort
Sign but uses instead two constructors [pos : Nat — Int| and [neg : Nat — Int]
such that [pos] = An.n and [neg] = An.(—n). This approach is used in TLA+
[18, Sect. 18.4 page 347], where Int is defined as Nat U {Zero —n | n € Nat}.
Other variants in which neg is the unary-minus operator [neg : Int — Int] have
been studied in, e.g., [7] [32] [17] [34] [4] [3].

Again, these constructors are not free, since [pos(zero)] = [neg(zero)] = 0.
Some tool designers are aware of this double-zero issue and propose to address
it in various ways:

e Dependent types: One may wish to rule out undesirable terms such as
pair(minus, zero) or neg(zero). This is the approach followed in the
SMT-LIB standard [1, Fig. 3.3 page 34, and page 35], which states: “The
set of values for the Int sort consists of all numerals and all terms of
the form (—n) where n is a numeral other than 0”. Prohibiting the
algebraically-closed term (—0) can be done trivially, at the level of syntax,
but things are far less easy with general terms of the form (—e), where
e is an expression containing free variables and/or arbitrary user-defined
functions. Deciding whether such terms belong to Int is equivalent to
answer the question e = 0, which is undecidable in the general case and
would anyway require involved proofs in each particular case. Alternative
approaches with efficient decision procedures are thus preferable.

e Fquations relating constructors: Other approaches use equations or
rewrite rules in order to formalize the relations that may exist between
constructors. For instance, [4] and [3] handle the double-zero issue by
adding two equations —0 = 0 and — — n = n, which eliminate unwanted
terms by bringing them under a suitable normal form. However, this ap-
proach weakens the difference between constructors and non-constructors
and often raises termination issues. There exists a classical technique (see
[27, Sect. 3], [11, Sect. 3.3], etc.) to eliminate non-free constructors by
replacing each of them with two distinct operations: a free constructor

6Notice that the IEEE 754 standard for floating-point numbers also defines two zeros, -0.0
and 0.0, which are equivalent in most cases but can still be distinguished, e.g., using the
signbit primitive.
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and a non-constructor. Unfortunately, such a dissociation of roles does
not give exploitable results when applied to the construction of Z.

e Subtypes: Another approach relies on subtyping and operator overloading
to avoid the double-zero issue. For instance, the predefined type library of
Maude [6, pages 45—46, 116, and 248-251] makes plain use of order-sorted
specifications to define integers as follows: (i) it first defines the sort Nat
of naturals, together with the subsort NzNat of Nat, which contains all
naturals different from zero; (ii) it then defines the sort Int of integers,
together with the subsort NzInt of Int, which contains all integers dif-
ferent from zero and is also a supersort of NzNat; (iii) a “unary-minus”
constructor [— : NzNat — NzInt] is defined, such that [—] = An.(—n); (iv)
this constructor is extended to integer sorts by introducing two subsort-
overloaded non-constructors [— : NzInt — NzInt] and [— : Int — Int];
(v) these non-constructors are defined by adding two equations —0 = 0
and — —n = n. This approach is the only one in which values of sort Nat
are also values of sort Int; such implicit type conversion closely reflects
the mathematical fact that N C Z, but might become a nuisance when
turning an algebraic specification with arbitrary large numbers into a con-
crete implementation written in a programming language with bounded
numbers (e.g., the C language with its int and unsigned int types): to
avoid silent, yet unsafe numeric overflows, the programmer will have to
detect all implicit type conversions in the formal specification and make
them explicit in the program.

These various approaches, even if correct, are heavy. Lighter approaches using
only the same basic concepts as for the Peano-style definition of naturals are de-
sirable. All in one, we believe that definitions based on non-free constructors are
sub-optimal. Therefore, in the next section, we investigate simpler approaches
genuinely based on free constructors.

6 Definitions of Z Using Free Constructors

Free constructors obviously lead to simpler mathematics. On the practical side
too, free constructors are desirable, for at least three reasons: (i) terms defined
using free constructors have a unique representation, so that, in principle, no
memory bit is wasted due to the existence of multiple representations of the same
value; (ii) because each term has a unique representation, comparison of values
relies upon syntactic identity, which can be efficiently implemented using bit-
string comparison and/or hashing; no extra computation is required to compare
multiple representations of the same value or to bring terms under a canonical
form first; (iil) increasingly many computer languages (e.g., functional, object-
oriented, etc.) are supporting pattern matching with free constructors, whereas
the number of tools (e.g., term rewrite engines, tools for algebraic specifications,
etc.) that can handle non-free constructors is shrinking, as many tools are no
longer maintained’.

7See http://rewriting.loria.fr/systems.html to learn about such halted tools.
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6.1 Approach 6: F3 — Three Sorts and Two Free Constructors

The approaches NF? of Sect. 5.3 and NF3 of Sect. 5.4 (i.e., defining an integer
as the combination of a sign and a natural) can be reused and adapted to a
free-constructor setting. This requires to introduce a new sort and to break the
symmetry between the negative and positive cases, so as to forbid, by means of
statically-decidable type checking, one of the two zero values.

For instance, mCRL2 [12, Appendices B.2, B.3, B.4, and D.5] has three prede-
fined sorts: Pos, which denotes N\ {0} and is encoded in binary form, Nat, which
denotes N and is defined in Peano style using two free constructors [@c0 :— Nat]
and [@cNat : Pos — Nat|, and Int, which denotes Z and is also defined using
two free constructors [@cInt : Nat — Int] and [@cNeg : Pos — Int| such that
[ecInt] = An.n and [@cNeg] = An.(—n). The elements of Z are thus encoded
as follows: n > 0+ @cInt(n) and n < 0 — @cNeg(—n).

As with Maude, the double-zero issue is avoided by a deliberate dissymmetry
between both constructors @cInt and @cNeg, whose arguments have sorts Nat
and Pos, respectively. But, contrary to Maude, Nat and Pos are distinct sorts,
not subtypes; this requires explicit type conversions and may create confusion
for users, who must carefully distinguish between natural and positive values.

6.2 Approach 7: F3 — Two Sorts and Three Free Constructors

A different approach can be found in the standard library of the Coq theorem
prover® (see [26] for confirmation). To construct natural numbers, this library
defines a sort” nat built in Peano style using two constructors [0 :— nat| and
[S : nat — nat]. In an alternative approach, the Coq library also contains
a sort positive that represents N\ {0}, i.e., all natural numbers greater or
equal to one — such numbers are encoded in binary form, as unbounded strings
of bits inductively defined by three free constructors [xH :— positive], [x0 :
positive — positive|, and [xI : positive — positive]. Finally, Coq defines
a sort N (also intended to represent N) as the union of all positive values
and of a constant NO denoting 0; this is done using two constructors [Npos :
positive — N] and [NO :— NJ.

To construct integer numbers, the Coq library defines a sort Z that only uses
the sort positive, but neither nat nor N. The sort Z is built using three free
constructors [Z0 :— Z|, [ZPos : positive — Z], and [ZNeg : positive — Z] such
that [Z0] = 0, [ZPos] = An.n, and [ZNeg] = An.(—n). The elements of Z are
thus encoded as follows: 0+ Z0, n > 0 — ZPos(n), and n < 0 — ZNeg(—n).

Notice that this approach could be slightly adapted to define Z using sort N
(or nat) rather than positive. In such case, the three constructors would
become [Z0 :— Z], [ZPos : N — Z|, and [ZNeg : N — Z] such that [Z0] = 0,
[ZPos] = An.(n+1), and [ZNeg] = An.(—n—1). The elements of Z would be thus
encoded as follows: 0 — Z0, n > 0 +— ZPos(n — 1), and n < 0 — ZNeg(—n — 1).

Contrary to some aforementioned approaches, the Coq library handles negative
and positive numbers symmetrically. Even if this approach is modified (as

8http://coq.inria.fr/library
9i.e., a datatype in the terminology of Coq.
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explained in the previous paragraph) to use only two sorts, it still relies upon
three constructors, which increases the length of definitions and proofs for most
operations on integers; in particular, the usual binary operators are likely to
require nine equations (rather than four when only two constructors are used).

6.3 Approach 8: F3 — Two Sorts and Two Free Constructors

We have seen so far two definitions of Z based on free constructors: one with
three sorts and two constructors (i.e., F3 of Sect. 6.1), another one with two
sorts and three constructors (i.e., F3 of Sect. 6.2). At this point, a natural
question is: is there a simpler definition with two sorts and two constructors
only?

The answer is: yes. Such a solution was found in 1996 when trying to extend
the standard library of LOTOS with signed integers, and it has been distributed
as part of the CADP toolbox since February 1997.

This approach uses two sorts Nat, which denotes N, and Int, which denotes Z.
The sort Int is built from Nat, without the need for a third sort, using two free
constructors [pos : Nat — Int] and [neg : Nat — Int] such that [pos] = An.n
and [neg] = An.(—n — 1). The elements of Z are thus encoded as follows:
n >0 — pos(n) and n < 0 — neg(—n — 1).

Although this approach does not handle negative and positive numbers symmet-
rically, it enjoys a nice symmetry property, as the denotations of constructors
are both involutive functions, i.e., [pos] = [pos]~! and [neg] = [neg]~!, or
also [pos]([pos](n)) = n and [neg]([neg](n)) = n, which seems a counterpart
of the algebraical identities +(+n) = n and —(—n) = n.

The constructor pair (pos, neg) is unique in this respect, and there is no
simpler solution: consider the set ® of involutive functions ¢ over Z, i.e.,
(Vn) (p(e(n)) = n); consider the “simple” elements of ®, namely affine functions
such that (¥n) (¢(n) =,s an+ b), where a and b are constants; the “simple” in-
volutive solutions are either An.n or all functions of the form An.(—n-+b); among
the restrictions to N of these solutions, the only pair of free constructors is pos
(which corresponds to a =1 and b = 0) and neg (which corresponds to a = —1
and b = —1), thus ensuring that Z = {[pos](n) | n € N} W {[neg](n) | n € N}.

It is worth noting that this approach supports straightforward induction on in-
tegers, which is lacking in some other approaches — see, e.g., [24, Sect. 8.4 and
8.4.3] for a discussion concerning Isabelle/HOL. Using the pos and neg con-
structors, induction on integers can be achieved by two inductions on naturals:
firstly, one proves that the property P hold for pos(0) and that, if P holds for
pos(n), it also holds for pos(n+1); secondly, one proves that P holds for neg(0)
and that, if P holds for neg(n), it also holds for neg(n + 1).

6.4 Approach 9: F? — Two Sorts and One Constructor

Given that Z can be defined as Z =,,; (N x N)/ ~ and that there exist bijections
from N2 to N (e.g., diagonal enumeration), it is possible to define the sort int
using a single constructor [map : nat — int] that is a bijection from N to
Z. There are various choices for map; the simplest definition is likely to be

10
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the following one: [map] =,; An.(if even(n) then n/2 else — (n + 1)/2), where
[even : nat — bool] is the predicate characterizing even natural numbers. This
definition gives, as n increases, the following sequence of values for map(n): 0,
—1,1, =2, 2, =3, 3, —4, 4, etc. The elements of Z are thus encoded as follows:
n > 0 — map(2n) and n < 0 — map(—2n — 1).

This approach F? is related to the approach F3 of Sect. 6.3 by two identities:
pos(n) = map(2n) and neg(n) = map(2n + 1). But, even if having a single con-
structor map is a form of minimality, it does not make the definitions of the usual
non-constructors (4, <, etc.) more concise than using the two constructors of
approach F%. Indeed, most definitions still need to distinguish two cases, de-
pending whether some argument is odd or even; approach F7 checks this using
conditional equations, whereas approach F3 uses pattern matching. For in-
stance, the incrementation function [incr : int — int] requires two conditional
equations:

map (x + 2) if even (x) = true
map (x - 2) if even (x) = false

incr (map (%))
incr (map (%))

Such a systematic reliance on conditional equations, parity tests, and divisions
by two has, at least, three drawbacks: (i) the definitions are neither elegant nor
intuitive; (ii) reasoning by induction is not easy; (iii) direct implementation in
algebraic or functional languages is not efficient, since parity tests cost O(n) in
time (before deciding if a number is odd or even, one needs to visit all its cons
subterms).

6.5 Approach 10: F — One Sort and Three Free Constructors

After the WADT’2016 presentation in Gregynog, Lutz Schréder suggested to the
author yet another approach, in which the sort int is defined using three free
constructors: [zero :— int|, [nego :— int]'’, and [succ : int — int] such that
[zero] = 0, [nego] = —1, and [succ] = An.(if n > 0 then n+1 else n—1). The
elements of Z are thus encoded as follows: 0 — zero, n > 0 — succ”(zero),
—1+ nego, and n < —1 + succ™ " !(nego).

At first sight, this approach looks truly beautiful, as it is the simplest possible
extension of the Peano system, to which only one constructor nego of null arity
is added. Morever, the definition of sort int is self-contained and does not rely
on the existence of a sort nat. A similar approach appears in [8, Sect. 4], where
integers are written in base 2 starting from two constants 0 and -1.

However, the definitions of non-constructors can be algorithmically involved
with this approach, due to the dual nature of succ (which means either in-
crementation on positive numbers or decrementation on negative numbers, and
might thus complicate induction proofs) and because the sign of a number can-
not be immediately determined without traversing all succ constructors until
a terminal constant (zero or nego) is reached. Some operations are never-
theless easy to express; this is the case, for instance, of the two predicates
[isneg : int — bool] and [ispos : int — bool] that check whether an integer
is strictly negative or positive-or-null:

10We name so this constructor, as a shorthand for NEGative One.
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isneg (zero) = false ispos (zero) = true
isneg (nego) = true ispos (nego) = false
isneg (succ (x)) = isneg (x) ispos (succ (x)) = ispos (x)

But other operations, even the simplest ones, are much less intuitive. For in-
stance, incrementation [incr : int — int] is tricky because it requires either
to insert one succ if the argument is positive or to delete one succ if the argu-
ment is negative. We believe that this cannot be done without introducing an
auxiliary operation [buff : int — int] that keeps one succ in a virtual buffer
until the terminal constant gets known, an information that is required to take
an insertion-or-deletion decision:

incr (zero) = succ (zero) buff (zero) = succ (succ (zero))
incr (nego) = zero buff (nego) = nego
incr (succ (x)) = buff (x) buff (succ (x)) = succ (buff (x))

To avoid, such intricacies, one can resort to conditional equations, the premises
of which use the aforementioned isneg and ispos predicates. This way, incre-
mentation could be defined more concisely:

incr (x) = succ (x) if ispos (x)
incr (nego) = zero
incr (succ (x)) = x if isneg (x)

Such equations would be very similar to those of approach F3 of Sect. 6.3. Ac-
tually, both approaches are related by the two identities pos(succ™(zero)) =
succ™(zero) = n and neg(succ”(zero)) = succ”(nego) = —n — 1. The ap-
proach F3 is yet simpler: it uses normal equations rather than conditional ones,
and determines the sign of a number in time O(1) by pattern matching on the
top-level constructor of the term, rather than in time O(n) by invoking the pred-
icates isneg and ispos that visit all subterms to reach an innermost terminal
constant.

As a final remark, any sort S defined by (k + 1) constructors consisting of k
constants [f; :— S]ieqo,... k—1} and one successor function [succ : S — S| also
represents N, which can be seen by taking (Vi € {0,....;.k — 1}) ([f:] =u ©) and
[succ] =, An.(n + k); under these definitions, the constructors of S are free.

7 Conclusion

We have shown that the standard definition of signed integers found in mathe-
matical textbooks (namely, Z =,.; (N x N)/ ~) is not well-adapted to the needs
of computer science. It has been argued, e.g. in [22, p. 86], that this stan-
dard definition, although less straightforward and natural than a term-algebra
approach'?, should nevertheless be preferred because it leads to shorter defi-
nitions and proofs by avoiding subdivision into a large number of cases. This

1 This definition generalizes the Peano system (for kK = 1) and the approach presented in
this section (for k = 2).
12[22] suggests here the approach NF% of Sect. 5.2 based on three non-free constructors.
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argument predates the computer era: it might have been valid when all proofs
had to be done manually, but is less relevant today, as interactive or automated
theorem provers play an ever-increasing role and handle case disjunctions much
better than humans. Moreover, it is unsure that the definitions of arithmetic
and relational operators are significantly longer when integers are defined in
Peano style with only a few constructors.

In computer science, there is consensus to specify naturals using the Peano
constructors zero and succ, but no consensus at all on how integers should
be specified. Leaving aside languages that assume the existence of predefined
integers, we reviewed ten different ways of defining integers formally: the set-
theoretical approach, four approaches based on non-free constructors (NF%,
NFi, NF3, and NF%)7 and five approaches based on free constructors (Fg’, F2,

F3, F3, and F3).

Such a diversity is enjoyable, but too many diverging approaches can be a
nuisance. Given the practical usefulness of integers, a common approach would
be desirable, so as to ease tool interoperability and enable formal specifications
and proofs to be reused. In this respect, the approach F3 of Sect. 6.3 would be
the best candidate: it is simple, enjoys elegant mathematical properties, allows
induction over integers, leads to concise definitions for the usual operations on
integers, and has been implemented in the CADP toolbox since 1997.

Finally, considering the alternative approaches that propose more efficient rep-
resentations for unsigned naturals than the Peano-style unary representation,
F3 is orthogonal to some of these approaches, e.g., [2], and could be combined
with them to provide efficient representations for signed integers as well.
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