ISSN 0249-6399  ISRN INRIA/RR--3352--FR+ENG

%I 1N RIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMAIQUE

OPEN/CASAR: An Open Software Architecture for
Verification, Simulation, and Testing

Hubert Garavel

N° 3352
January 1998

THEME 1

apport
de recherche







% I N RIA

RHONE-ALPES

OPEN/CASAR: An Open Software Architecture for
Verification, Simulation, and Testing

Hubert Garavel*

Theme 1 — Réseaux et systemes
Projet VASY

Rapport de recherche n° 3352 — January 1998 — 18 pages

Abstract: This report presents the OPEN/CESAR software architecture, which allows to integrate
in a common framework different languages/formalisms for the description of concurrent systems, as
well as tools with various functionalities, such as random execution, interactive simulation, on-the-
fly and exhaustive verification, test generation, etc. These principles have been fully implemented,
leading to an open, extensible, and well-documented programming environment, which allows tools
to be developed in a modular framework, independently from any particular description language.

Key-words: formal methods, model-checking, on-the-fly verification, reachability analysis, simu-
lation, software, software engineering, test generation, testing, transition systems, validation, verifi-
cation.

Short version of this report in “OPEN/CASAR: An Open Software Architecture for Verification, Simulation, and
Testing”; in Bernhardt Steffen, editor, Proceedings of the First International Conference on Tools and Algorithms for
the Construction and Analysis of Systems TACAS’98 (Lisbon, Portugal), March—April 1998.

* Hubert.Garavel@inria.fr

Unité de recherche INRIA Rhone-Alpes

655, avenue de 'Europe, 38330 Montbonnot-St-Martin (Een
Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52



OPEN/CASAR : une architecture logicielle ouverte pour la
vérification, la simulation et le test

Résumé : Ce rapport présente 'architecture logicielle OPEN/C&ESAR qui permet d’inte’grer dans
un méme environnement différents langages/formalismes pour la description de systeémes distribués,
ainsi que des outils offrant des fonctionnalités diverses, telles que 'exécution aléatoire, la simulation
interactive, la vérification exhaustive et a la volée, la génération de tests, etc. Ces principes ont
été entierement implémentés, conduisant a un environnement de programmation ouvert, extensible
et documenté, qui permet de développer des outils de maniere modulaire, indépendamment de tout
langage de description particulier.

Mots-clés : analyse d’accessibilité, génération de tests, génie logiciel, logiciel, méthodes formelles,
simulation, systemes a transitions, test, validation, vérification, vérification a la volée, vérification
basée sur les modeles.



OPEN/CAHESAR: An Open Software Architecture... 3

Introduction

Research in the area of tools and algorithms for the construction and analysis of systems has been
and remains particularly active. Despite this intense activity, end-users involved in actual system
design do not always receive as much computer-aided assistance as they could expect. Among the
many tools developed, only a few are robust enough to be applied to real-life problems. Moreover, in
many cases, end-users cannot benefit from all these tools, because they are using a different language
than the one supported by the tools.

It seems therefore that a significant part of the effort spent in developing tools is wasted, and that the
global productivity of the research community in formal methods and verification could be increased
through a better coordination.

A large part of these problems could probably be solved if the whole community and industry adopted
a unique language for the specification and design of protocols and concurrent systems. However,
this is not the case: even the standardization efforts undertaken within Iso and ITU-T led to three
different standards (ESTELLE, LOTOS, and SDL), in addition to the many other formalisms that
already exist: Ccs, Csp, uCRL, PROMELA, etc. It seems therefore clear that different specification
languages will continue to exist (as it is already the case for sequential programming languages);
even if the Darwinian selection process exists, it is unlikely that one single language will emerge and
remain.

Taking as a fact the coexistence of multiple languages, this report attempts to lower the corresponding
economic cost. It describes a generic architecture allowing the development of tools (e.g., simulation,
verification, test generation tools, etc.) that can be applied to programs written in different languages
(e.g., LOoTOS, SDL, etc.). These ideas have been entirely implemented in a tool environment named
OPEN/C&ESAR, which has been used for realistic case-studies [CGM™'96, FJJ*t97, GM97, Mat96,
Pec97, SM97], some of them in an industrial context.

The work on OPEN/CESAR was initiated in 1992 as a follow-up to the design of the CESAR compiler
[GS90], a model-checking tool for translating LOTOS programs into Labelled Transition Systems (LTSs
or graphs, for short), a semantic model on which verification can been performed using behavioural
equivalences and/or temporal logic formulas. Because the only functionality provided by CESAR was
graph generation, and due to state explosion, its applicability was restricted to small-size systems.

The initial goal of the OPEN/C&ESAR project was to extend CESAR with additional functionalities
(including random execution, interactive simulation, and partial, on-the-fly verification) needed to
deal with larger systems. It is worth noticing that this goal was a radical departure from previous
approaches, consisting either in:

e Providing an environment dedicated to a given language, by juxtaposition of separate tools,
each tool providing a distinct functionality: graphical or syntax-driven editor, code generator,
interactive simulator, debugger, on-the-fly property checker, test generator, etc. A certain
degree of unification between these tools was often achieved by sharing a compiler front-end,
using a common format for abstract syntax trees, and exchanging information via defined
interfaces (e.g., files). However, the semantical processing parts remained duplicated between
the different tools, possibly limiting interoperability, as each tool could have its own restrictions
(accepting only a particular subset of the source language) or give a different interpretation of
the source language semantics.

On the contrary, the OPEN/C&ESAR project targeted at the greatest possible integration between
the different functionalities by sharing, not only the compiler front-end, but also all semantic
processings, the choice between simulation, verification, etc. being deferred as much as possible.

RR n° 3352



4 Hubert Garavel

e Adapting an existing code generator or simulator in order to perform verification. In most
cases, this approach faced architectural or performance issues: experience proved that it was
very difficult to turn a simulation tool into an efficient verification tool, unless the simulator
had been intentionally designed for this purpose from the beginning.

On the contrary, the OPEN/CESAR project had to adapt the model-checking verification ca-
pabilities of CASAR to simulation and code generation. Not so surprisingly, we found out that
going this direction was much easier than going the opposite way, exactly like turning a multi-
user operating system into a single-user operating system is much easier than the opposite.

After completion of its initial goals, the aims of the OPEN/C&ESAR project were reviewed and extended
toward a new target: the architecture was modified so that other languages/formalisms than LOTOS
could be integrated into OPEN/CESAR.

This report describes the technical solutions and achievements of the OPEN/C&ESAR project. It is
organized as follows: Section 1 presents the principles of the OPEN/C£ESAR architecture, which is
based upon a functional decomposition in three modules: the graph module, the library module, and
the exploration module. These modules are described in Sections 2, 3, and 4 respectively. Finally,
the conclusion summarizes the benefits of the OPEN/C&ESAR approach and discusses its limitations,
leaving room for future research.

1 Architecture

The design of the OPEN/CESAR architecture takes its roots in the development of CESAR
[Gar89a, GS90], the first model-checking tool for full LoTos. It was also made possible by the
author’s prior experience in designing the architecture of VESAR [ACDT 93], a protocol engineering
tool for the ESTELLE language, probably the first commercial tool to integrate simulation, on-the-fly
analysis and model-checking capabilities. OPEN/C&ESAR also benefited from ideas implemented in
other verification tools, especially XESAR [GRRV89] and SpIN [Hol91].

Although these tools support different source languages (LOTOS, ESTELLE, and PROMELA), they
offer similar functionalities, among which verification by reachability analysis. The basic idea of the
OPEN/CAESAR architecture was to identify the common functionalities shared by these tools and
to organize them into three distinct modules. The OPEN/C&ESAR architecture improves previous
tools by enforcing a clear separation between these modules using well-defined Apis (Application
Programming Interfaces). The OPEN/C&ESAR architecture is depicted on Figure 1.

The graph module is responsible for encapsulating and hiding all language-dependent aspects.
From the outside of this module, the source program can be seen only as an LTS, whatever
the source language used. The graph module exports a representation for the states and the
labels of the transition system, as well as primitives to handle states and labels. It also provides
primitives to compute the transition relation (i.e., the initial state and the successors of a given
state). These features are accessed through an API named “caesar_graph.h”, which does not
depend on any particular source program, nor any particular language.

The mapping between a given source program and this interface is achieved using an
OPEN/C&ESAR-compliant compiler, which translates the source program into a C program im-
plementing this interface. This C program is compiled separately and linked with the other
OPEN/C&ESAR modules. In this approach, the C language was chosen because efficient compil-
ers for this language are available (C plays the role of a portable assembly language).

INRIA



OPEN/CAHESAR: An Open Software Architecture... 5
| |
| |
source program source program
(language L) (language L,,)
compiler for compiler for
language L4 language L,
y !
graph module graph module exploration modulg libraries
(generated C code)l """ > (interface) "~ 7 7] (Cor C++ code) (interface)
A A
C compiler C compiler
graph module exploration module libraries

(object code)

(object code)

Explanation of symbols

X —= Y : input-output dependency
X --=Y : X uses module Y

X e > Y : X implements interface Y

RR n° 3352

@D

(object code)

7

executable program

results of the execution

i

Figure 1: OPEN/CAESAR architecture




6 Hubert Garavel

A list of available OPEN/C&ESAR-compliant compilers is given in Section 2. The functioning
principles and internal details of these compilers are not constrained by the OPEN/C&ESAR
architecture, provided that implement the “caesar_graph.h” interface properly.

The library module consists in a set of libraries. Each library provides a coherent set of data
structures and associated primitives for handling transition lists, storing visited states during
graph traversals (e.g., stacks, tables, bitmap tables), computing hash functions, displaying
diagnostics, etc. These libraries are independent from any source program and source language.
The available libraries (written in C and pre-compiled) are presented in Section 3, but users
can add new libraries to fit their specific needs.

The exploration module can be considered as the “main” program. It contains the core of the
verification, simulation, or testing algorithm, and determines how the LTS is to be explored.
In most cases, the exploration module is independent from any source program and source
language (however, dedicated exploration modules are possible, for instance, to verify a specific
property). The exploration module uses the primitives exported by the graph and library
modules. It is usually written in C or C++. It can be distributed either in source code form, or
in object code form if its algorithms must be kept private. The available exploration modules
are listed in Section 4.

Figure 1 illustrates the compiling and linking steps needed to merge the different code fragments
(user-written code, library code, and automatically generated code) into a single executable program.
Of course, some programming conventions have to be enforced in order to avoid identifier clashes
between the different modules. Also, shell-scripts are available for chaining all these steps in a
simple, user-friendly way and avoiding unnecessary recompilations.

2 The graph module

As said above, the graph module encapsulates all language-dependent aspects and gives access to
them through a language-independent interface. Therefore, the design of such an interface is subject
to antagonistic constraints:

e It should be general and abstract enough to accommodate a variety of source languages. This
implies not to retain all the particular features of a given language, but to select characteristics
shared by several languages. Therefore, the design of the interface relies on the existence of
a common semantic model into which different source programs, written in different source
languages, can be translated.

e The interface should keep track of the relationship between the semantic model and the corre-
sponding source program, so as to provide enough information for diagnosis: when an error is
detected using simulation or verification, the user should be able to understand the reason of
the error in terms of the source program. This is not always easy to implement, especially if
the compiler uses sophisticated translation algorithms, involving intermediate forms and opti-
mization techniques.

e As verification algorithms have strong efficiency requirements, the interface should be close
enough to existing compilers in order not to introduce unacceptable run-time overhead.

Since 1992, the OPEN/CESAR graph module interface has undergone successive revisions to match
these constraints. The latest version (September 1996) can be seen as a good compromise between
conflicting requirements. We briefly present the main design choices:

INRIA



OPEN/CAHESAR: An Open Software Architecture... 7

e The interface is based upon interleaving semantics (which reduces concurrency to sequential
composition and non-deterministic choice). Its underlying semantic model is a combination
of Labelled Transition Systems and Kripke structures, which was found to be appropriate for
various languages and formalisms. This model consists in a set of states (with an initial state)
and a set of transitions between states. Depending on the source language considered, there
can be additional information attached to each state (these attributes are called state vectors)
and/or to each transition (these attributes are called labels).

o The interface follows the principles of abstract data type specification. It exports two “opaque”
types, the state type and the label type, whose internal representations are left undefined (i.e.,
up to the compiler) and which can be handled using a set of primitives. There are 13 functions
dealing with states and 18 functions dealing with labels.

e As regards states, OPEN/C&ESAR makes the assumption that, for a given system, state vectors
can be stored in a fixed-length byte string. This restriction is meant for handling states efficiently
[GS90], for instance when storing them in tables. However, it can be relaxed as the state vector
can contain pointers to dynamic data structures (lists, FIFO queues, etc.) allocated in the heap.

The functions exported by the interface allow to obtain the size and the alignment (in bytes) of
a state, to create and delete a memory cell to store a state, to copy a state to another one, to
compare two states, to compute a hash-value on a state, to print a state to a text file, to print
the “differences” between two states, etc.

By doing so, the interface provides a somehow “restricted” access to state vectors by converting
them to character strings, which can be obtained when printing a state to a file or printing
the differences between two states. This approach is justified by the fact that state vectors are
highly language- and compiler-dependent (in particular, they often rely upon user-defined types
in the source program, for which character strings provide the simplest portable interface).

Notice that, in the case where state vectors contain pointers or, more generally, if their binary
representation is not a normal form, some primitives (e.g., comparison and hashing) cannot
be simply implemented as bitwise operations between two memory cells. These problems are
addressed in the OPEN/C&ESAR architecture.

e Similarly, labels are assumed to be fixed-length byte strings (possibly containing pointers to the
heap) and functions are available for obtaining the size and the alignment (in bytes) of a label,
for creating and deleting a memory cell to store a label, for copying a label to another one, for
comparing two labels, for computing a hash-value on a label, etc.

State vector restrictions also apply to labels: although label contents depend on the source lan-
guage, the source program and the compiler, they can be accessed using conversion to character
strings. Additional functions are available to decide whether a label is visible or not!, in how
many fields a label is subdivided, from which line of source program a label comes from, etc.

e Asregards the transition relation, which is the crucial point of the graph module, OPEN/CESAR
makes minimal requirements intentionally, in order to give maximal freedom to compiler imple-
mentors. Compilers are only required to generate C code for computing the initial state and
for enumerating the successors of a given state. For the latter purpose, there are many possible
approaches, many of which do not match efficiency or language-independence criteria. The
OPEN/C#&SAR interface solves this problem elegantly, by introducing the concept of callback
mechanism.

i.e., the concept of T-transitions in process algebras

RR n° 3352



8 Hubert Garavel

When generating the graph module, an OPEN/CESAR-compliant compiler has to produce a
successor enumeration function F, which iterates over all the successors of a given state Sj.

For each transition S; £, Sy, where L is a label and Sy a successor state, the successor
enumeration function F will make a function call of the form F(Sy, L, S2), where function F is
passed as a parameter to F and is referred to as the callback function. Function F' can perform

any action, e.g., printing the transition S L, Ss to a file, storing S5 in a state table, etc. It can
be either defined by the user in the exploration module, or imported from the library module,
which provides several predefined callback functions of general interest. The enumeration of
transitions going out of state S; is sequential: no direct access to the ™™ successor is required.
The order in which function F enumerates the successors is left to the compiler. Function
F can do side-effects, but it should not invoke function F recursively (therefore, the iteration
mechanism needs not be reentrant). On top of this primitive (but general and efficient) callback
mechanism, more elaborated facilities can be developed (see the EDGE library in Section 3).

At the time being, there exist 5 different implementations of OPEN/CaSARcompliant compilers,
which we briefly review:

1. After designing the OPEN/CESAR architecture, the author adapted the CESAR compiler
[Gar89a, GS90] accordingly. The core of CESAR’s compiling algorithms (based upon the trans-
lation of LOTOS to an intermediate extended Petri net model) was kept unchanged; only the
back-end of CESAR was modified for compliance with the “caesar_graph.h” interface. In this
implementation, each state is a pair (M, C) where M is a marking of the Petri net, and C is a
context mapping state variables to their values; each transition is generated by the firing of a
corresponding transition in the Petri net; each label consists of a gate name followed by a list
of exchanged values. The algebraic data types contained in the source LOTOS program can be
either translated in C code by the CESAR.ADT compiler [Gar89b| or implemented manually by
the user; in both cases, data structures dynamically allocated in the heap are supported.

2. In 1994, Renaud Ruffiot and the author connected the BcG format for the representation of La-
belled Transition Systems [Gar96] to the OPEN/C&ESAR environment. The resulting BcG_OPEN
tool enabled the application of all OPEN/C&ESAR tools (see Section 4) to graphs entirely gen-
erated and represented in the BcG format. In this implementation (700 lines of C code),
each OPEN/CESAR state (resp. label, transition) is directly mapped to the corresponding Bca
state (resp. label, transition). The development of BCG_OPEN led to a modification of the
“caesar_graph.h” in order to remove some LOTOS-specific aspects.

3. In 1995, Marius Bozga, Jean-Claude Fernandez and Laurent Mounier (VERIMAG, France) de-
veloped the Exp.OPEN compiler, which allows to use OPEN/C&ESAR for the compositional ver-
ification of networks of communicating automata. The input language accepted by Exp.OPEN
consists in a set of automata (entirely generated) connected together using the parallel composi-
tion and hiding operators of LOTOS. In their implementation (3,000 lines of C code, including a
LEX scanner and a YACC parser), each OPEN/C&ESAR state is a tuple of the individual states of
the automata, and transitions are obtained by applying the LOTOS semantics rules for parallel
composition and hiding.

4. In 1997, Khalid Laksiouar and Amar Bouali (INRIA Sophia-Antipolis, France) developed the
Fc20PEN compiler to connect the Fc2 toolset [BRRA96] to OPEN/C&ESAR. FC20PEN takes
as input FC2 models, which are either automata or networks of communicating automata
connected together by means of so-called synchronization wvectors. In their implementation
(3,000 lines of C++ code), each OPEN/CESAR state is either an automaton state or a tuple

INRIA



OPEN/CAHESAR: An Open Software Architecture... 9

of local states, and transitions are determined according to the semantics of synchronization
vectors.

5. In 1997, Alain Kerbrat, Carlos Rodriguez, and Yves Lejeune (VERIMAG/VERILOG, France)
connected VERILOG’s OBJECTGEODE tool [ALH95] for SDL to the CESAR/ALDEBARAN tool-

box.

One aspect of this connection was the developement of a gateway between OBJECTGEODE

and OPEN/Ca&sAR [KRLI7].

3 The library module

OPEN/CA&ESAR provides a library of useful, generic facilities. We give an overview of them:

e First, there are two small libraries: the STANDARD library, which provides basic programming
utilities, and the VERSION library, which checks whether the various binary fragments to be
linked together (see Figure 1) are mutually compatible: this allows to detect version mismatch
problems, which are likely to occur when interfaces, compilers and/or libraries are modified.

e The

EDGE library is built on top of the graph module. It extends the callback mechanism

described in Section 2 with higher-level functionalities:

e The

The callback mechanism enumerates sequentially the successors of a given state Sp, but
does not store them in memory. Moreover, as the callback mechanism is not supposed to be
reentrant, it does not allow depth-first traversals algorithms to be programmed recursively.
The EDGE library solves this problem by building transition lists, which can be used for
programming depth-first traversals. Transition lists are linked lists of tuples (S, L, Sa, M),
where L is a label, Ss a successor state and M a byte-string in which users can put any
information they want. All fields Sy, L, S2, and M are optional and can be omitted if not
relevant to the exploration algorithm under consideration.

The order in which the callback mechanism enumerates the successors is left unspecified,
but the EDGE library can sort transition lists according to various criteria (e.g., lexico-
graphic order over the L fields). This can be useful, for instance, in an interactive simulator,
for displaying to the user an alphabetically-sorted list of transitions.

The EDGE library also exports many primitives to create, delete, copy, print, and reverse
transition lists; to compute the length and access directly the ith element of transition lists;
to access the different tuple fields Sy, L, S2, and M of a given element. It also provides
iterators over transition lists and automatically truncates the transition lists if the available
memory is unsufficient to store all successors of a given state.

HasH library provides various predefined hash-functions which can be applied to states

and labels considered as byte strings. These functions are needed for accessing hash-tables and
for Holzmann’s algorithm [Hol91]. OPEN/C&ESAR users can add their own hash-functions: see
for instance [CH94], where OPEN/CESAR is used for a comparative analysis of various hashing
techniques.

e The STACK_1 library is built on top of the EDGE library and provides primitives for managing
one or several stacks?. Depth-first search algorithms rely on stacks to store the execution path

2The number “1” occurring at the end of the name STACK_1 denotes the fact that this library is a particular
implementation of the stack, and that alternative implementation could be offered in future versions of OPEN/CESAR;
this is also the case for the other data structures presented below.

RR n° 3352



10

Hubert Garavel

taken from the initial state. These stacks are not merely stacks of states: it is also necessary to
store the transitions between states for characterizing an execution path entirely. Also, depth-
first search algorithms require to store the list of states remaining to be explored at each stack
depth. Therefore, each element in a stack consists of three fields: a state field S, a label field
containing the label of the last transition performed before reaching state S (or a null pointer
if S is the initial state), and an edge field containing the list of transitions going out of state
S that have not been explored yet. For a given stack, the label and edge fields are optional: if
none of them are present, the stack behaves as a simple stack of states.

The STACK_1 library provides a set of classical primitives for dealing with stacks. These prim-
itives allow to create, delete, copy, and print stacks; to erase the contents of a stack; to check
whether a stack is empty; to compute the depth of a stack; to access the fields of the element
on top of a stack; to push or pop an element on top of a stack; etc.

There are also specific primitives for depth-first search. They allow to deal with the list of
successors of the state on top of the stack and, more specifically to create or delete this list; to
check whether it is empty; to compute its length; to remove its first element; to extract its first
element and to push it on top of the stack; etc.

The STACK-1 library provides additional features suitable for on-the-fly verification. For in-
stance, when creating a stack, one can specify a maximal depth not to be exceeded, as well as
the action to be taken if this maximal depth is reached or when the stack overflows because of
a memory shortage (e.g., stopping the exploration, backtracking to the previous state, etc.).

The TABLE_1 library for managing one or several state tables, i.e., tables for storing the states
of a program which are visited during a graph traversal. Each element in a given table is a byte
string, subdivided into two fields, the “base” field and the “mark” field. The sizes of these fields
is specified when the table is created and it is the same for all the elements in the table. More
often than not, base fields contain states of the graph being explored (these states are those
produced by the graph module). However, the base fields can be used to store other data. The
contents of mark fields (possibly empty) are determined by the user. During graph traversals,
mark fields are generally used to store additional attributes attached to states (i.e., base fields).
To allow fast access, each table is equipped with an auxiliary hash table that allows to retrieve
an element having a given base field. For this reason, it is required that the base fields of all
elements in a table are pairwise distinct (this condition does not hold for mark fields). The hash
function is specified by the user when the table is created, and remains constant afterwards.
For simplicity, it is not allowed to remove an element already entered in the table. Also, it is
possible to modify the mark fields of the element entered in the table, but not their base fields.

Each element entered in the table is associated a unique index (between 0 and 22* — 1). Thus,
an element in the table can be retrieved in three different ways: by its index, by its base field
(using the hash table), or by a pointer to its memory location.

Auxiliary variables are attached to a given table: the put index gives the index of the last
element entered into the table; the get index gives the index of the last element consulted in
the table (in the case of a breadth-first search algorithm); the success counter and the failure
counter are used for statistics purpose: they record how many searches (for a state with a given
base field) have succeeded and failed, respectively.

The primitives offered by the TABLE_1 library reflect these design choices: they allow to create
and delete tables; to erase their contents and to print it under various formats; to access the
base and mark fields of an element given its index; to put or get an element; to search an element
given its base field, optionally inserting it in the table if not already present; to determine if a
table is empty or full; to consult the value of auxiliary variables. Additionally, when creating

INRIA



OPEN/CAHESAR: An Open Software Architecture... 11

4

a table, one can specify its maximal size, as well as the action to be taken if this maximal size
is reached or when the table overflows because of a memory shortage.

The BITMAP library provides primitives for managing one or several bitmap tables (i.e., large
bit arrays) such as those used in Holzmann’s bit-space algorithm [Hol91]. In addition to the
basic test-and-set primitives, it provides convenient features, such as automatical dimensioning
of the table size to the greatest prime number less than the requested size, dump of the bitmap
table to a text file under various formats, usage statistics recording and display, etc.

The DIAGNOSTIC-1 is built on top of the STACK_1 library and provides primitives for dealing
with diagnostic sequences (e.g., execution sequences leading to deadlock states). It allows to
specify which diagnostic sequences will be displayed to the user and to control the exploration
algorithm according to various strategies (for instance, to find the shortest possible diagnostic
sequence).

There are other libraries under development. For instance, Mats Kindahl (University of Up-
psala, Sweden) and the author wrote a FILTER-1 for hiding transitions and renaming labels
dynamically; Laurent Mounier Christian Schneiter (VERIMAG, France) and the author wrote an
OBSERVER library to compute the synchronous automaton product between an OPEN/CESAR
graph and an Biichi automaton, etc.

The exploration module

On top of the graph and library modules, the exploration module plays the role of the main program:
it determines how and why the graph will be explored. There are many different possibilities for
exploring a graph G. In an attempt to establish a taxonomy, we list below the essential parameters
(“degrees of freedom”) that can be tuned by the exploration module:

Definition of states and transitions: it is often the definition exported by the graph module;

however, in some cases, this definition has to be modified. For instance, when evaluating
temporal logic or p-calculus formulas on G, or when checking behavioural equivalences (e.g.,
bisimulation equivalences, preorders, trace inclusion, etc.) between G and some other graph,
one often uses “product states” of the form (5,S’), where S is a state of G and S’ a state of
another graph (or observer, or Biichi automaton, or linear trace, etc.) noted G’; the transition
relation must also be extended to reflect concurrency and synchronization constraints between

G and G'.

Selection of successor states: when at a given state S of G, the exploration program must decide

how many successors of S (if any), and which, should be visited. There are several possible
answers: none of them (i.e., backtracking if some boolean condition is false or if the available
memory is exhausted); one of them (e.g., chosen randomly in the case of random execution,
or by prompting the user in the case of interactive simulation); all of them (in the case of
reachability analysis); some of them, according to various heuristics related to the level of
coverage expected. If several successors of S are selected, the order in which they should be
enumerated must also be specified.

Storage policy: the exploration program must also decide how many states, and which, should be

stored in memory. There are many choices: only the current state (e.g., in random execution),
only the states on the path leading from the initial state to the current state (e.g., in interactive
simulation allowing unbounded backtracking facilities), all the states (e.g., when constructing

RR n° 3352



12

Hubert Garavel

the entire graph to perform model-checking at a later stage), all the states up to a mazimal
number, etc.

There are even more sophisticated strategies [JJ91] allowing to discard states stored in memory
when some upper limit on the number of states is reached, or when no more memory is available,
with again a choice between various replacement policies inspired from garbage collecting (e.g.,
discarding first the most recent states, the oldest ones, etc.).

Instead of storing states under the exact representation exported by the graph module, it
is also possible to store only a “condensed” form of them by using some compression function
mapping states to a smaller bit string (typical examples of such functions are hash-functions and
cryptographic message digest functions). The classical approach is known as “bitstate hashing”
[Hol91], but more elaborate variants exist [Hol97]. Of course, as the compression function is not
injective, the exploration algorithm must take into account the fact that two different states
may have the same condensed form. Again, the choice of the compression function is left open.

Traversal algorithm: the exploration module has also to decide which type of algorithm should

be used (depth-first search, breadth-first search, etc.), as well as many other parameters (for
instance, having a maximal exploration depth).

Many exploration modules have been developed within the OPEN/C&ESAR framework3; most of them
are distributed within the CADP toolbox. We review them briefly:

DECLARATOR is a debugging tool that exercises all the primitives exported by the
“caesar_graph.h” interface. This tool is used to check and validate OPEN/CESAR-compliant
compilers.

EXECUTOR is a random execution tool, which produces a random trace starting from the initial
state. Various options are available, e.g., to control the seed of the random number generator,
to report non-deterministic choices, to display or not invisible transitions, to have an upper
limit on the number of transitions fired, etc.

SIMULATOR is an interactive simulator allowing step-by-step execution (with backtracking) con-
trolled from a command-line interface. XSIMULATOR is a graphical, T'cL/TK-based extension
of SIMULATOR developed by Mark Jorgensen, Jean-Michel Frume and the author.

GENERATOR performs reachability analysis to generate exhaustively the LTs (represented in the
Bea format) corresponding to a source program. REDUCTOR is similar to GENERATOR, but
performs on-the-fly reduction modulo the 7*a equivalence (which preserves all safety properties).

TERMINATOR is a deadlock detection tool implementing Holzmann’s “bitstate” (or “super-
trace”) algorithm [Hol91], with various improvements regarding the generation of diagnostic
sequences.

EXHIBITOR searches on-the-fly for execution sequences starting from the initial state and whose
labels match a given “pattern”. The language used to describe patterns combines boolean
operators and (a subset of) regular expressions with an extension to characterize deadlock states.
EXHIBITOR implements a depth-first search algorithm and a breadth-first search algorithm, the
latter being able to find the shortest sequence(s) matching a given pattern.

3All these tools have been developed by the author, unless specified otherwise by bibliographic reference or explicit

mention of the author(s)

INRIA



OPEN/CAHESAR: An Open Software Architecture... 13

e EVALUATOR [FM95] is an on-the-fly model-checking tool for branching-time p-calculus devel-
oped by Marius Bozga, Jean-Claude Fernandez and Laurent Mounier. It implements two dif-
ferent model-checking algorithms: a global one and a local one.

e ALBATOR is a tool developed by Laurent Mounier and Laurent Aublet-Cuvelier to check on-
the-fly whether two LirSs are equivalent modulo strong bisimulation.

e PROJECTOR [KM97] is a tool for compositional verification. For each process of the source
program, PROJECTOR allows to generate the corresponding LTS in a constrained manner, by
taking into account an interface, i.e., an LTS expressing (a superset of) the set of execution
sequences permitted for this process by its environment.

e TGV [FJJ197] is a test generation tool based on verification technology. Given a source pro-
gram and an automaton formalizing the behavioural part of a test purpose, TGV produces the
behaviour description and constraints definitions of a test case in the standard TTCN format.

Concluding remarks and future work

In this report, we have presented the motivations and achievements of a long-term project, which
spanned over the last five years.

We have defined the principles of the OPEN/C&ESAR architecture, a software framework for developing
tools that integrate simulation, verification and test generation functionalities in an coherent way.
The main principles underlying this architecture are:

Modularity: a clear separation is established between the language-dependent part (definition of
states and labels, and computation of the transition relation) and language-independent parts
(exploration algorithms themselves). This separation is achieved using the OPEN/C&ESAR API,
whose design has been continuously reviewed and improved during the past years. Technically,
this interface realizes a good tradeoff between various (conflicting) requirements: expressiveness,
language independence, efficiency, portability, genericity, etc.

Reusability: in addition to the modularity principle, the OPEN/C&ESAR also promotes reusabil-
ity, by providing a library of predefined utilities (thus avoiding to users the tedious process
of implementing and debugging data structures such as stacks, state tables, etc.). These li-
braries are accessible using well-defined interfaces and follow established software engineering
methodologies (namely abstract data types and object-orientation).

Orthogonality: within the OPEN/C&ESAR framework, any verification or testing algorithm can
be applied to any source language. Thus, in the specialized area of protocol engineering,
OPEN/CESAR achieves goals similar to those of UNCOL [Ste61], the universal intermediate
language, a most inspiring paradigm, discussed but never implemented. This orthogonality
property is especially of interest when designing user interfaces: in particular, the EUCALYPTUS
graphical user-interface [Gar96] takes advantage of it to present the available operation for each
type of source program in a uniform, regular manner.

Openness: as the exploration module can be written in a general-purpose programming language
(e.g., C or C++) and relies upon the link edition mechanism offered by the operating system, the
user is free to write any possible algorithm. This approach strongly contrasts with more limited
solutions in which the user is only given access to a few parameters for controlling the simulation
and reachability analysis, but not to a full-fledged programming interface [ACDT93, ALH95].

RR n° 3352



14 Hubert Garavel

As time passed, the OPEN/C&ESAR approach proved to be superior, so that industrial tools
recently switched to the OPEN/C&ESAR principles by developing a similar API, including a
direct connection to OPEN/CESAR [KRLIT].

Extensibility: the OPEN/C&ESAR environment can be extended in three ways: by adding new con-
nections to source languages, by adding new exploration algorithms, and by adding new libraries
to fit specific needs.

The idea of integrating various techniques within a single tool is becoming increasingly popular. Prior
to OPEN/CA&SAR, there have been many attempts at turning a simulation tool into a verification or
test generation tool. In particular, the SPIN tool [Hol91] allowed to combine simulation and model-
checking several years before the first version of OPEN/C&ESAR; however, as SPIN is designed for a
single language, PROMELA, its internal architecture remains rather monolithic. Also, some of the
OPEN/C#&SAR principles were already present when the author designed the internal architecture of
VESAR [ACDT93], but not in such a systematic way.

It was the intrinsic merits of OPEN/CESAR to formulate the principle of a radical separation between
three modules (graph, exploration and libraries), to design and specify the corresponding APIs, and
to prove the feasibility of these ideas by providing a complete implementation (the first version of the
OPEN/CESAR environment was distributed in April 1992 as a part of version R of CADP).

As regards the development of verification tools applicable to different source languages, we can also
mention the Process Algebra Compiler (PAC) [CMS95], a compiler generation tool for process alge-
bras specified by their BNF syntax and their SOS semantics. The main difference between PAC and
OPEN/CZESAR relies in the fact that PAC provides an implementation for a well-defined class of lan-
guages, whereas OPEN/CESAR leaves implementation matters to OPEN/C&SAR compliant compilers.
As OPEN/CESAR only assumes the existence of states, labels, and transitions, it raises less constraints
on the source language, the way it is defined, and the way it is executed: thus, OPEN/C&ESAR can
accomodate a wider class of languages (i.e., value-passing process algebras, imperative languages,
etc.). Nevertheless, both approaches are not mutually exclusive and could interoperate, as the PAC
approach could be used to generate OPEN/CAESAR compliant compilers automatically.

We believe that the OPEN/C&SAR environment should be of interest to several categories of people:

Language/compiler designers, who connect their compilers to the OPEN/C&ESAR API can im-
mediately reuse for their language all the existing OPEN/CESAR tools available for simulation,
verification, and testing. The connection task consists in providing an implementation for
the primitives defined in the graph module, which should be straightforward, as all language-
dependent features have been gradually lifted out from OPEN/C&SAR’s API. At the time being,
five different formalisms are already connected to OPEN/C&ESAR: two standardized high-level
languages (LoTOS and SDL), two formalisms for describing networks of communicating finite-
state machines (ExXp and Fc2), and a formalism for representing Lrss (Bca). Our experience
indicates that such a connection can be established in 4-6 weeks by a computer-science student
without prior knowledge in verification theory.

Algorithm designers, who propose new algorithms for verification and testing will find in
OPEN/CAESAR a rapid prototyping platform for experimenting their ideas. At present, many
tools have already been developed within OPEN/C&SAR, which cover many aspects of protocol
engineering (random execution, interactive simulation, reachability analysis, on-the-fly verifi-
cation of bisimulation and p-calculus, test generation, etc.) and demonstrate the applicability
of OPEN/CZESAR for a wide spectrum of problems. OPEN/C#&SAR allows to bridge the gap
between theoretical research and practical applications by providing a “programming kit” to
implement concisely, quickly, and efficiently new algorithms, under a form close to the way these

INRIA



OPEN/CAHESAR: An Open Software Architecture... 15

algorithms are specified on paper. It is worth noticing that these algorithms can be written in
a fully language-independent way, without the need to develop a compiler from scratch (nor to
adapt the code of an existing compiler, if available); yet, they can still be applied to real-life
examples, by simply using one of the existing OPEN/C&ESAR-compliant compilers. In this re-
spect, OPEN/C&ESAR could play the role of a common framework for comparing and assessing
the performances of different algorithms.

Protocol designers, who are concerned by applicative aspects (but are not interested in develop-
ing new languages, compilers, or algorithms) can benefit from a complete set of robust tools,
covering almost all aspects of protocol engineering. These tools can easily be accessed from
a graphical-user interface [Gar96] and have been field-tested on several real-life applications
[CGMT96, GM97, Mat96, Pec97, SMIT].

Naturally, the design choices of OPEN/C&ESAR induce several limitations and drawbacks. Although
these limitations are not considered to be crippling by OPEN/C&ESAR users (especially, industrial
users), they leave room for further research and improvements. We briefly discuss the main ones:

e As a counterpart for modularity and reusability, there is a price to pay in terms of performance.
For instance, when constructing the state graph of a LoTos description, the OPEN/CESAR
GENERATOR tool is slightly less efficient than the dedicated C&£SAR tool. However, this overhead
is felt acceptable.

e To achieve language independence, OPEN/CESAR operates at the level of a Labelled Transition
System model. This creates a gap between the source level program (usually written in a
language involving some form of concurrency) and the model of this program, as it is made
available by the graph module. There are already some “hook” primitives to keep track of
the correspondence between the model and the source program, but they could be enhanced
in several ways. For instance, the interface could give more information about the concurrent
processes that exist at the source program level, e.g., by indicating in which state a given process
is, which processes participate in a given transition, etc. This kind of information is needed
by verification algorithms using partial orders and symmetries. Also, it would be desirable
to have a more accurate access to the values contained in states and labels (at present, state
contents and label contents are represented as character strings). This would be useful for
debugging purpose (for instance, to inspect the value of a variable). However, such facilities
are often language-dependant, and require to keep track of the types and functions defined in
the source program. A proper treatment of user-defined types and functions* would definitely
make OPEN/CESAR a much more complex system.

e At present, the interface of the graph module allows on-the-fly exploration for a single source
program only. This interface could be extended to handle several graphs simultaneously. How-
ever, we have not found yet a practical situation where such an enhancement would be needed.
Even algorithms for computing bisimulations on-the-fly between two graphs [FM91] assume that
one graph is small enough for being generated exhaustively, so that only one graph remains to
be explored on-the-fly.

e When computing the transition relation, OPEN/C&ESAR only gives access to the successors of
a given state, but not to the predecessors. Although this is a limitation for some verification
algorithms (e.g., [PT87]), it is justified, as the computation of state predecessors for high-level
languages is undecidable in the general case (because of user-defined data types, user-defined
functions over these data types, assignment to variables and boolean conditions).

4Such an approach has already been investigated in the context of the BcG format.

RR n° 3352



16

Hubert Garavel

e OPEN/CAESAR’s graph module interface deals with states one by one. This interface remains to
be extended in order to deal with symbolic methods (e.g., methods based upon binary decision
diagrams or polyhedra) that deal with sets of states, for which they often provide a more efficient
representation than lists of isolated states.

e Finally, it is planned to extend the graph module interface with a notion of quantitative time.
This is needed for applying OPEN/CESAR to timed languages (e.g., the forthcoming IsoO stan-
dard Extended-LoTOS) that rely upon timed Labelled Transition Systems.

OPEN/CAESAR can be obtained free of charge as a component of the CADP toolset. See the CADP
Web page (http://www.inrialpes.fr/vasy/cadp.html) for further information.

Acknowledgements

The author would like to thank all the computer scientists who used or developed OPEN/CAESAR tools,
and provided him with useful feedback; hopefully, many of them should find their names mentioned
in this report or cited in the bibliography. The author is also grateful to Lars-Ake Fredlund (S1cs,
Sweden) and Mats Kindahl (University of Uppsala) for their suggestions about OPEN/C&ESAR, and
to Mark Jorgensen and Radu Mateescu (INRIA/VASY) for their comments about this report.

References

[ACD™93]

[ALH95]

[BRRAY6]

[CGM*96]

[CHO4]

[CMS95]

[FJJT97]

B. Algayres, V. Coelho, L. Doldi, H. Garavel, Y. Lejeune, and C. Rodriguez. VESAR: A Prag-
matic Approach to Formal Specification and Verification. Computer Networks and ISDN Systems,
25(7):779-790, February 1993.

B. Algayres, Y. Lejeune, and F. Hugonnet. GOAL: Observing SDL behaviors with GEODE. In
Proceedings of the Tth SDL Forum (Oslo, Norway), pages 26-29, September 1995.

Amar Bouali, Annie Ressouche, Valérie Roy, and Robert de Simone. The Fc2Tools set: a Toolset
for the Verification of Concurrent Systems. In Rajeev Alur and Thomas A. Henzinger, editors,
Proceedings of the 8th Conference on Computer-Aided Verification (New Brunswick, New Jersey,
USA), volume 1102 of Lecture Notes in Computer Science. Springer Verlag, August 1996.

Ghassan Chehaibar, Hubert Garavel, Laurent Mounier, Nadia Tawbi, and Ferruccio Zulian. Spec-
ification and Verification of the PowerScale Bus Arbitration Protocol: An Industrial Experiment
with LOTOS. In Reinhard Gotzhein and Jan Bredereke, editors, Proceedings of the Joint Inter-
national Conference on Formal Description Techniques for Distributed Systems and Communica-
tion Protocols, and Protocol Specification, Testing, and Verification FORTE/PSTV’96 (Kaiser-
slautern, Germany), pages 435-450. IFIP, Chapman & Hall, October 1996. Full version available
as INRIA Research Report RR-2958.

B. Cousin and J. Helary. Performance Improvement of State Space Exploration by Regular
and Differential Hashing Functions. In Proceedings of the 6th Conference on Computer-Aided
Verification (Stanford, USA), volume 818 of Lecture Notes in Computer Science. Springer Verlag,
1994.

Rance Cleaveland, Eric Madelaine, and Steve Sims. A Front-End Generator for Verification Tools.
In Uffe H. Engberg, Kim G. Larsen, and Arne Skou, editors, Proceedings of TACAS’95 Tools and
Algorithms for the Construction and Analysis of Systems (Aarhus, Denmark), May 1995. Also
available as INRIA Research Report RR-2612.

Jean-Claude Fernandez, Claude Jard, Thierry Jéron, Laurence Nedelka, and César Viho. An
Experiment in Automatic Generation of Test Suites for Protocols with Verification Technology.
Science of Computer Programming, 29(1-2):123-146, July 1997. Special issue on Industrially

INRIA



OPEN/CAHESAR: An Open Software Architecture... 17

Relevant Applications of Formal Analysis Techniques. Also available as INRIA Research Re-
port RR-2923.

[FM91] Jean-Claude Fernandez and Laurent Mounier. “On the Fly” Verification of Behavioural Equiv-
alences and Preorders. In K. G. Larsen and A. Skou, editors, Proceedings of the 3rd Workshop
on Computer-Aided Verification (Aalborg, Denmark), volume 575 of Lecture Notes in Computer
Science, Berlin, July 1991. Springer Verlag.

[FM95] Jean-Claude Fernandez and Laurent Mounier. A Local Checking Algorithm for Boolean Equation
Systems. Rapport SPECTRE 95-07, VERIMAG, Grenoble, March 1995.

[Gar89a]  Hubert Garavel. Compilation et vérification de programmes LOTOS. These de Doctorat, Univer-
sité Joseph Fourier (Grenoble), November 1989.

[Gar89b]  Hubert Garavel. Compilation of LOTOS Abstract Data Types. In Son T. Vuong, editor, Proceed-
ings of the 2nd International Conference on Formal Description Techniques FORTE’89 (Vancou-
ver B.C., Canada), pages 147-162. North-Holland, December 1989.

[Gar96] Hubert Garavel. An Overview of the Eucalyptus Toolbox. In Z. Brezo¢nik and T. Kapus, editors,
Proceedings of the COST 247 International Workshop on Applied Formal Methods in System
Design (Maribor, Slovenia), pages 76-88. University of Maribor, Slovenia, June 1996.

[GM97] Hubert Garavel and Laurent Mounier. Specification and Verification of Various Distributed Leader
Election Algorithms for Unidirectional Ring Networks. Science of Computer Programming, 29(1—
2):171-197, July 1997. Special issue on Industrially Relevant Applications of Formal Analysis
Techniques. Full version available as INRIA Research Report RR-2986.

[GRRV89] Susanne Graf, Jean-Luc Richier, Carlos Rodriguez, and Jacques Voiron. What are the Limits of
Model Checking Methods for the Verification of Real Life Protocols? In Joseph Sifakis, editor,
Proceedings of the 1st Workshop on Automatic Verification Methods for Finite State Systems
(Grenoble, France), volume 407 of Lecture Notes in Computer Science, pages 275-285. Springer
Verlag, June 1989.

[GS90] Hubert Garavel and Joseph Sifakis. Compilation and Verification of LOTOS Specifications. In
L. Logrippo, R. L. Probert, and H. Ural, editors, Proceedings of the 10th International Symposium
on Protocol Specification, Testing and Verification (Ottawa, Canada), pages 379-394. IFIP, North-
Holland, June 1990.

[Hol91] Gerard J. Holzmann. Design and Validation of Computer Protocols. Software Series. Prentice
Hall, 1991.
[Hol97] Gerard J. Holzmann. State Compression in SPIN: Recursive Indexing and Compression Training

Runs. In Proceedings of SPIN97 the 3rd SPIN Workshop (Twente University, Enschede, The
Netherlands), April 1997.

[JJ91] Claude Jard and Thierry Jéron. Bounded-Memory Algorithms for Verification On-the-Fly. In
K. G. Larsen and A. Skou, editors, Proceedings of the 3rd Workshop on Computer-Aided Verifi-
cation (Aalborg, Denmark), volume 575 of Lecture Notes in Computer Science, Berlin, July 1991.
Springer Verlag.

[KMOT7] Jean-Pierre Krimm and Laurent Mounier. Compositional State Space Generation from LOTOS
Programs. In Ed Brinksma, editor, Proceedings of TACAS’97 Tools and Algorithms for the Con-
struction and Analysis of Systems (University of Twente, Enschede, The Netherlands), volume
1217 of Lecture Notes in Computer Science, Berlin, April 1997. Springer Verlag. Extended version
with proofs available as Research Report VERIMAG RR97-01.

[KRL97]  Alain Kerbrat, Carlos Rodriguez, and Yves Lejeune. Interconnecting the ObjectGEODE and
CAESAR/ALDEBARAN Toolsets. In Ana Cavalli and Amardeo Sarma, editors, Proceedings of
the 8th SDL Forum (Evry, France), September 1997.

[Mat96] R. Mateescu. Formal Description and Analysis of a Bounded Retransmission Protocol. In
Z. Brezo¢nik and T. Kapus, editors, Proceedings of the COST 247 International Workshop on Ap-
plied Formal Methods in System Design (Maribor, Slovenia), pages 98-113. University of Maribor,
Slovenia, June 1996. Also available as INRIA Research Report RR-2965.

RR n® 3352



18

Hubert Garavel

[Pec97]

[PT87]

[SM97]

[Ste61]

Charles Pecheur. Specification and Verification of the CO4 Distributed Knowledge System Using
LOTOS. In Michael Lowry and Yves Ledru, editors, Proceedings of the 12th IEEE Interna-
tional Conference on Automated Software Engineering ASE-97 (Incline Village, Nevada, USA),
November 1997. Extended version available as INRIA Research Report RR-3259.

Robert Paige and Robert E. Tarjan. Three Partition Refinement Algorithms. SIAM Journal of
Computing, 16(6):973-989, December 1987.

Mihaela Sighireanu and Radu Mateescu. Validation of the Link Layer Protocol of the IEEE-1394
Serial Bus (“FireWire”): an Experiment with E-LOTOS. In Ignac Lovrek, editor, Proceedings of
the 2nd COST 247 International Workshop on Applied Formal Methods in System Design (Zagreb,
Croatia), June 1997. Full version available as INRIA Research Report RR-3172.

T. B. Steel. A First Version of UNCOL. In Proceedings of the Western Joint Computer Conference,
pages 371-378, May 1961.

INRIA



/<

Unité de recherche INRIA Rhdne-Alpes
655, avenue de I'Europe - 38330 Montbonnot-St-Martin (Eedn

Unité de recherche INRIA Lorraine : LORIA, Technopdle daridy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lesidyaCedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitde Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluce@ocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route Hasioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 hesbay Cedex (France)
http://www.inria.fr

ISSN 0249-6399



