
Compiler Construction using LOTOS NT

Hubert Garavel, Frédéric Lang, Radu Mateescu

Inria Rhône-Alpes - Vasy
655, avenue de l’Europe - F-38330 Montbonnot, France

{Hubert.Garavel,Frederic.Lang,Radu.Mateescu}@inria.fr

1 Introduction

Much academic and industrial effort has been invested in compiler construction.
Numerous tools and environments1 have been developed to improve compiler
quality while reducing implementation and maintenance costs.

In the domain of computer-aided verification, most tools involve compilation
and/or translation steps. This is the case with the tools developed by the Vasy
team of Inria Rhône-Alpes, for instance the Cadp2 [5] tools for analysis of
protocols and distributed systems. As regards the lexical and syntax analysis, all
Cadp tools are built using Syntax [3], a compiler generator that offers advanced
error recovery features. As regards the description, construction, and traversal
of abstract syntax trees (Asts), three approaches have been used successively:

– In the Caesar [8] compiler for Lotos [10], Asts are programmed in C. This
low-level approach leads to slow development as one has to deal explicitly
with pointers and space management to encode and explore Asts.

– In the Caesar.Adt [6] and Xtl [13] compilers, Asts are described and
handled using Lotos abstract data types, which are then translated into
C using the Caesar.Adt compiler itself (bootstrap); yet, for convenience
and efficiency, certain imperative processings are directly programmed in
C. This approach reduces the drawbacks of using C exclusively, but suffers
from limitations inherent to the algebraic specification style (lack of local
variables, of sequential composition, etc.).

– For the Traian and Svl 1.0 compilers, and for the Evaluator 3.0 [14]
model-checker, the Fnc-23 [12] compiler generator based on attribute gram-
mars was used. Fnc-2 allows to declare attribute calculations for each Ast
node and evaluates the attributes automatically, according to their depen-
dencies. Although we have been able to suggest many improvements incorpo-
rated to Fnc-2, it turned out that, for input languages with large grammars,
Fnc-2 has practical limitations: development and debugging are complex,
and the generated compilers have large object files and exhibit average per-
formances (slow compilation, large memory footprint due to the creation of
multiple Asts and the absence of garbage collection). Therefore, the Vasy

1 An extensive catalog can be found at http://catalog.compilertools.net
2 http://www.inrialpes.fr/vasy/cadp
3 http://www.inrialpes.fr/vasy/fnc2



team switched to a new technology in order to develop its most recent veri-
fication tools.

2 Using LOTOS NT for compiler construction

E-Lotos (Enhanced Lotos) [11] is a new Iso standard for the specification of
protocols and distributed systems. Lotos NT [9, 16] is a simplified variant of
E-Lotos targeting at efficient implementation. It combines the strong theoret-
ical foundations of process algebras with language features suitable for a wide
industrial use. The data part of Lotos NT significantly improves over the pre-
vious Lotos standard [10]: equational programming is replaced with a language
similar to first-order Ml extended with imperative features (assignments, loops,
etc.).

A compiler for Lotos NT, named Traian,4 translates the data part of
Lotos NT specifications into C. Used in conjunction with a parser generator
such as Lex/Yacc or Syntax, Traian is suitable to compiler construction:

– Lotos NT allows a straightforward description of Asts: each non-terminal
symbol of the grammar is encoded by a data type having a constructor for
each grammar rule associated to the symbol. Traversals of Asts for com-
puting attributes are defined by recursive functions using “case” statements
and pattern-matching.

– Traian generates automatically “printer” functions for each Lotos NT
data type, which enables to inspect Asts and facilitates the debugging of
semantic passes.

– Traian also allows to include in a Lotos NT specification external data
types and functions implemented in C, enabling an easy interfacing of Lotos
NT specifications with hand-written C modules as well as C code generated
by Lex/Yacc or Syntax.

3 Applications

Since 1999, Lotos NT has been used to develop three significant compilers.
For each compiler, the lexer and parser are built using Syntax and the Asts
using Lotos NT. Type-checking, program transformation, and code generation
are also implemented in Lotos NT. Some hand-written C code is added either
for routine tasks (e.g., parsing options) or for some specialized algorithms (e.g.,
model-checking):

– The Svl 2.0 [7] compiler transforms high-level verification scripts into
Bourne shell scripts (see Figure 1).

– The Evaluator 4.0 model-checker transforms a temporal logic formula into
a boolean equation system solver written in C; the solver is then compiled
and executed, taking as input a labelled transition system and producing a
diagnostic (see Figure 2).

4 http://www.inrialpes.fr/vasy/traian



Syntax error

Type error

SVL
Program

Syntax Analysis &
AST construction

(SYNTAX)

LOTOS NT
Term

Type Checking
(LOTOS NT)

LOTOS NT
Term

Shell Interpreter

Output Files

Expansion of
Meta-Operations

(LOTOS NT)

LOTOS NT
Term(LOTOS NT)

Code GenerationBourne
Shell Script

Input Files

IN
PU

T
O

U
T

PU
T

Fig. 1. Architecture of the Svl 2.0 compiler

Logic

SolverC Compiler

System
Transition
Labelled

Transl. to Boolean
Equation Systems

(C)

BES

Temporal

Formula

Diagnostic
File

(LOTOS NT)

Term
LOTOS NT

LOTOS NT
TermAST construction

Syntax Analysis &

(SYNTAX)

Syntax error

Type error Type Checking
(LOTOS NT)

IN
PU

T
O

U
T

PU
T

Model Checker

Fig. 2. Architecture of the Evaluator 4.0 model-checker

– The Ntif tool suite deals with a high-level language for symbolic transition
systems; it includes a front-end, the Nt2if back-end generating a lower-level
format, and the Nt2dot back-end producing a graph format visualizable by
At&t’s GraphViz package.

The table below summarizes the size (in lines of code) of each compiler.

Syntax Lotos NT C Shell Total Generated C

Svl 2.0 1,250 2,940 370 2,170 6,730 12,400
Evaluator 4.0 3,600 7,500 3,900 — 15,000 37,000
Ntif 1,620 3,620 1,200 — 6,440 20,644



4 Related work and conclusions

Alternative approaches exist based upon declarative representations, such as at-
tributed grammars (Fnc-2 [12], SmartTools [1]), logic programming (Ale [4],
Centaur [2]), or term rewriting (Txl5, Kimwitu [18], Asf+Sdf [17]). In these
approaches, Asts are implicit (not directly visible to the programmer) and it
is not necessary to specify the order of attribute evaluation, which is inferred
from the dependencies. On the contrary, our approach requires the explicit Ast
specification and attribute computation ordering. Practically, this is not too re-
strictive, since the user is usually aware of these details.

Lotos NT is an hybrid between imperative and functional languages. Unlike
the object-oriented approach (e.g., JavaCC6), in which Asts are defined using
classes, and visitors are implemented using methods, the Lotos NT code for
computing a given attribute does not need to be split into several classes, but
can be clearly centralized in a single function containing a “case” statement.
Compared to lower-level imperative languages such as C, Lotos NT avoids
tedious and error-prone explicit pointer manipulation. Compared to functional
languages such as Haskell or Caml7 (for which the Happy8 and CamlY-
acc parser generators are available), Lotos NT does not allow higher-order
functions nor polymorphism. In practice, we believe that these missing features
are not essential for compiler construction; instead, Lotos NT provides use-
ful mechanisms such as strong typing, function overloading, pattern-matching,
and sequential composition. Lotos NT external C types and functions make
input/output operations simpler than Haskell/Happy, in which one must be
acquainted with the notion of monads. Contrary to functional languages specif-
ically dedicated to compiler construction such as Puma9 and Gentle [15], Lo-
tos NT is a general-purpose language, applicable to a wider range of problems.

The Lotos NT technology can be compared with other hybrid approaches
such as the App10 and Memphis11 preprocessors, which extend C/C++ with
abstract data types and pattern-matching. Yet, these preprocessors lack the
static analysis checks supported by Lotos NT and Traian (strong typing,
detection of uninitialized variables, exhaustiveness of “case” statements, etc.),
which significantly facilitate the programming activity.

Our experience in using Lotos NT for developing three compilers demon-
strated the efficiency and robustness of this pragmatic approach. Since 1998, the
Traian compiler is available on several platforms (Windows, Linux, Solaris)
and can be downloaded on the Internet. The three Traian-based compilers are
or will be available soon: Svl 2.0 is distributed within Cadp 2001 “Ottawa”;
Evaluator 4.0 and Ntif will be released in future versions of Cadp. Ntif

5 http://www.thetxlcompany.com
6 http://www.webgain.com/products/java_cc
7 http://caml.inria.fr
8 http://www.haskell.org/happy
9 Puma belongs to the Cocktail toolbox (http://www.first.gmd.de/cocktail)

10 http://www.primenet.com/~georgen/app.html
11 http://memphis.compilertools.net



is already used in a test generation platform for smart cards in an industrial
project with Schlumberger.

References

1. I. Attali, C. Courbis, P. Degenne, A. Fau, D. Parigot, and C. Pasquier. SmartTools:
A Generator of Interactive Environments Tools. In Proc. of CC ’2001, volume 2027
of LNCS, 2001.

2. P. Borras, D. Clément, Th. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and V. Pas-
cual. Centaur: the system. In Proc. of SIGSOFT’88, 3rd Symposium on Software
Development Environments (SDE3), 1988.

3. P. Boullier and P. Deschamp. Le système SYNTAX : Manuel d’utilisation et de
mise en œuvre sous Unix. http://www-rocq.inria.fr/oscar/www/syntax, 1997.

4. B. Carpenter. The Logic of Typed Feature Structures. Cambridge Tracts in The-
oretical Computer Science, 32, 1992.

5. J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and M. Sighire-
anu. CADP (CÆSAR/ALDEBARAN Development Package): A Protocol Valida-
tion and Verification Toolbox. In Proc. of CAV ’96, volume 1102 of LNCS, 1996.

6. H. Garavel. Compilation of LOTOS Abstract Data Types. In Proc. of FORTE’89.
North-Holland, 1989.

7. H. Garavel and F. Lang. SVL: A Scripting Language for Compositional Verifica-
tion. In Proc. of FORTE’2001. Kluwer, 2001. INRIA Research Report RR-4223.

8. H. Garavel and J. Sifakis. Compilation and Verification of LOTOS Specifications.
In Proc. of PSTV’90. North-Holland, 1990.

9. H. Garavel and M. Sighireanu. Towards a Second Generation of Formal Descrip-
tion Techniques – Rationale for the Design of E-LOTOS. In Proc. of FMICS’98,
Amsterdam, 1998. CWI. Invited lecture.

10. ISO/IEC. LOTOS — A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. International Standard 8807, 1988.

11. ISO/IEC. Enhancements to LOTOS (E-LOTOS). International Standard
15437:2001, 2001.

12. M. Jourdan, D. Parigot, C. Julié, O. Durin, and C. Le Bellec. Design, Implemen-
tation and Evaluation of the FNC-2 Attribute Grammar System. ACM SIGPLAN
Notices, 25(6), 1990.

13. R. Mateescu and H. Garavel. XTL: A Meta-Language and Tool for Temporal Logic
Model-Checking. In Proc. of STTT ’98. BRICS, 1998.

14. R. Mateescu and M. Sighireanu. Efficient On-the-Fly Model-Checking for Regular
Alternation-Free Mu-Calculus. In Proc. of FMICS’2000, 2000. INRIA Research
Report RR-3899. To appear in Science of Computer Programming.

15. F. W. Schröer. The GENTLE Compiler Construction System. R. Oldenbourg
Verlag, 1997.

16. M. Sighireanu. LOTOS NT User’s Manual (Version 2.1). INRIA projet VASY.
ftp://ftp.inrialpes.fr/pub/vasy/traian/manual.ps.Z, November 2000.

17. M.G.J. van den Brand, A. van Deursen, J. Heering, H.A. de Jong, M. de Jonge,
T. Kuipers, P. Klint, L. Moonen, P.A. Olivier, J. Scheerder, J.J. Vinju, E. Visser,
and J. Visser. The ASF+SDF Meta-Environment: A Component-Based Language
Development Environment. In Proc. of CC ’2001, volume 2027 of LNCS, 2001.

18. P. van Eijk, A. Belinfante, H. Eertink, and H. Alblas. The Term Processor Gener-
ator Kimwitu. In Proc. of TACAS ’97, 1997.


