
CADP 2011: A Toolbox for the Construction and Analysis
of Distributed Processes⋆

Hubert Garavel, Frédéric Lang, Radu Mateescu, Wendelin Serwe

Inria / Laboratoire d’Informatique de Grenoble, Vasy team, 655, avenue de l’Europe, 38330 Montbonnot St Martin, France
e-mail: {Hubert.Garavel,Frederic.Lang,Radu.Mateescu,Wendelin.Serwe}@inria.fr

Received: January 29, 2014

Abstract. Cadp (Construction and Analysis of Dis-
tributed Processes) is a comprehensive software tool-
box that implements the results of concurrency theory.
Started in the mid 80s, Cadp has been continuously
developed by adding new tools and enhancing exist-
ing ones. Today, Cadp benefits from a worldwide user
community, both in academia and industry. This paper
presents the latest release, Cadp 2011, which is the re-
sult of a considerable development effort spanning the
last five years. The paper first describes the theoretical
principles and the modular architecture of Cadp, which
has inspired several other recent model checkers. The pa-
per then reviews the main features of Cadp 2011, includ-
ing compilers for various formal specification languages,
equivalence checkers, model checkers, compositional ver-
ification tools, performance evaluation tools, and parallel
verification tools running on clusters and grids. Finally,
the paper surveys some significant case studies.

Key words: asynchronous concurrency, equivalence
checking, formal methods, model checking, performance
evaluation, process calculus, verification.

1 Introduction

Among all the scientific issues related to the reliability
of computer systems, concurrency has a major place, be-
cause the design of parallel systems is a complex, error-
prone, and largely unmastered activity. Thirty years af-
ter the first attempts at building automated verification

⋆ This work has been partly funded by Bull, by the French
National Agency for Research (project OpenEmbedd), by the
French Ministry of Economics and Industry (Aerospace Valley
project Topcased), and by the Conseil Général de l’Isère (Mi-
nalogic project Multival).

tools for concurrent systems, the problem is still there; it
has even gained in relevance because system complexity
has increased, and because concurrency is now ubiqui-
tous, from multicore microprocessors to massively par-
allel supercomputers.

To ensure the reliability of a concurrent system un-
der design, it is understood that the first step consists in
establishing a precise model of the system behavior, this
model usually consisting of several concurrent processes,
together with a description of the data types, constants,
variables, and functions manipulated by these processes.
This opens the debate on the most appropriate languages
to express system models, with a large choice of candi-
dates ranging from semi-formal to formal languages.

Once a precise, if not formal, model is available,
one needs automated methods to prove the correctness
of the system with respect to its specification or, at
least, to search for the presence of certain mistakes.
Without neglecting recent progresses in theorem proving
and static analysis, state space exploration techniques
(among which reachability analysis and model checking)
remain the most successful approaches for dealing with
complex concurrent systems, especially during the de-
sign phase, when system specifications are evolving fre-
quently.

State space exploration techniques are usually grou-
ped in two classes: enumerative (or explicit state) tech-
niques consider each state of the system separately,
whereas symbolic (or implicit state) techniques manipu-
late sets of states represented using either decision di-
agrams (Bdds and their variants) or logical formulas
whose satisfiability is determined using Sat and Smt
solvers. In this paper, we will use the term enumera-
tive instead of explicit-state in order to avoid possible
confusions with the terminology about explicit and im-
plicit models (see Section 2). Enumerative techniques,
which historically were introduced first [124], are based
on a forward exploration of the transition relation be-

2 Hubert Garavel et al.: CADP 2011: A Toolbox for the Construction and Analysis of Distributed Processes

tween states (post function), making them suitable for
the on-the-fly verification of specifications written in lan-
guages with arbitrary data types. Although they enable
exploration of a priori fewer states than their symbolic
counterparts, enumerative techniques prove to be ade-
quate for the analysis of asynchronous parallel systems
containing complex data structures.

Cadp (Construction and Analysis of Distributed
Processes)1 is a toolbox for verifying asynchronous
concurrent systems. The toolbox, whose development
started in 1986, is at the crossroads between sev-
eral branches of computer science: concurrency theory,
formal methods, and computer-aided verification. Ini-
tially, Cadp consisted of only two tools: Cæsar [38],
a compiler and explicit state space generator for the
Lotos language, and Aldébaran [32,35], an equiva-
lence checker based on bisimulation minimization. Over
the past 25 years, Cadp has been continuously improved
and extended [33,47,48]. This paper is an extended ver-
sion of [49] and presents the latest release, Cadp 2011
“Zurich”, which currently contains 45 tools.

Cadp now offers a comprehensive set of function-
alities covering the entire design cycle of asynchronous
systems: specification, interactive simulation, rapid pro-
totyping, verification, testing, and performance evalua-
tion. For verification, it supports the three essential ap-
proaches existing in the field: model checking, equiva-
lence checking, and visual checking. To deal with com-
plex systems, Cadp implements a wide range of verifi-
cation techniques (reachability analysis, on-the-fly veri-
fication, compositional verification, distributed verifica-
tion, static analysis) and provides a scripting language
for describing elaborate verification scenarios. In addi-
tion, Cadp 2011 brings deep changes with respect to
previous releases, especially the support for many differ-
ent specification languages.

Related Work. There are many model checkers de-
veloped in the world. By taking the Wikipedia list of
model checking tools2 and complementing it with the
list of verification tools established at the University of
Brno3, one obtains a cumulated list of 64 tools (as of
January 2012). By considering only those tools that are
still actively maintained (i.e., those for which at least one
new version was released in 2010, 2011, or early 2012),
one can restrict this list to 32 tools only, but this is still
quite a number of tools that should be compared with
Cadp. Moreover, there are plenty of possible criteria for
such comparison. We can mention the following ones.

From an historical perspective, Cadp and Spin [74]
seem to be the two oldest model checkers still available.
The development of both tools was undertaken in the
80s and is still going on with, e.g., support for 64-bit

1 http://cadp.inria.fr
2 http://en.wikipedia.org/wiki/List_of_Model_Checking_Tools
3 http://anna.fi.muni.cz/yahoda

computing platforms, as well as application in recent in-
dustrial case-studies.

From a functionality perspective, Cadp provides
a unique combination of features that no other tool
presently offers. This can be seen by formulating four
essential criteria:

(C1) Does the tool support not only model-checking but
also equivalence checking which, beyond being stan-
dard practice in hardware verification, plays a crucial
role for component-based systems and compositional
verification?

(C2) Does the tool support distributed verification, i.e.
can it use the computing power and memories of a
cluster of machines, rather than a single machine?

(C3) Does the modeling language of the tool support
concurrency, i.e. does it have some builtin notion of
asynchronous parallel composition?

(C4) Does the modeling language support user-defined
(possibly unbounded) data types such as records,
unions, lists, etc. (and not only boolean, integers, and
enumerated types)?

tool name (C1) (C2) (C3) (C4)
Arc no
Alpina no
Cadence Smv no
Cadp yes yes yes yes
Cbmc no
Cpachecker no
EmbeddedValidator no
DiVinE no
Fdr yes no
HSolver no
ImProve no
Jpf no
LTSmin yes yes yes (*)
Mcmas no
mCrl2 yes no
Mrmc yes no
νSmv no
Pat no
Prism no
Pvs yes no
Reactis Tester no
Red/Ompca yes no
Roméo no
Satabs no
Spin no
Tapaal no
Tapas yes no
Temporal Rover no
Tlc no
Uppaal no
Ymer no
[mc]square no

(*) not applicable

http://cadp.inria.fr
http://en.wikipedia.org/wiki/List_of_Model_Checking_Tools
http://anna.fi.muni.cz/yahoda

Hubert Garavel et al.: CADP 2011: A Toolbox for the Construction and Analysis of Distributed Processes 3

To the best of our knowledge, Cadp is the only tool
to satisfy criteria (C1) to (C4). It is followed by the
Ltsmin [7] that is interconnected to Cadp. Let us men-
tion that another distinctive trait of Cadp is the in-
clusion of performance evaluation tools, in addition to
functional verification tools.

A detailed comparison of Cadp with other explicit-
state model checkers will be given in Section 2.

Outline. This paper gives an overview of Cadp 2011,
highlighting new tools and recent enhancements. It is
organized as follows. Section 2 presents the core seman-
tic models of Cadp — namely (explicit and implicit)
labeled transition systems (Ltss), Markov chains, and
(parameterized) Boolean equation systems (Pbess). Sec-
tion 3 describes the four languages now supported by
Cadp — namely Lotos, Fsp, Exp, and Lotos NT —
and lists translations developed for other languages. Sec-
tion 4 presents the visual checking features of Cadp.
Section 5 presents the model checking features of Cadp,
namely the Xtl language, the Evaluator 3.6 model
checker for regular alternation-free µ-calculus, and the
Evaluator 4.0 model checker for Mcl, an extension of
modal µ-calculus with typed variables and data manipu-
lation constructs. Section 6 is devoted to the equivalence
checking features of Cadp — namely the Bcg Min tool
for bisimulation minimization and the Bisimulator
tool for on-the-fly comparison of Ltss. Section 7 presents
the compositional verification features of Cadp. Sec-
tion 8 describes the tools of Cadp for performance
evaluation, in particular steady-state/transient analysis
and simulation of Markov chains. Section 9 outlines the
Cadp tools for parallel and distributed verification. Sec-
tion 10 surveys some significant case studies. Finally,
Section 11 summarizes the achievements and indicates
directions for future work.

2 Architecture and Verification Technology

Compared to other explicit-state model checkers (espe-
cially Spin [75]), Cadp has the following principles and
distinctive features (some of which were already present
in precursory tools rooted in concurrency theory, such
as Cwb [24] and Cwb-Nc [23]):

– Cadp supports both high-level languages with a
formal semantics (process calculi) and lower level
formalisms (networks of communicating automata);
it also accepts connections from informal or semi-
formal languages that have a means to compute the
post transition function.

– Contrary to most model checkers supporting only
scalar types, Cadp has from the outset supported
concurrent programs with complex and/or dynamic
data structures (records, unions, lists, trees, etc.) pro-
vided that these data structures are not shared be-
tween concurrent processes.

– Cadp relies on action-based (rather than state-based)
semantic models inherited from concurrency theory,
in which one can only refer to the observable com-
munication actions performed by a system instead of
the internal contents of states, which are supposed
to be hidden and implementation dependent, and
thus are not abstract enough. This encompasses the
classical concepts of Ltss (for verification), discrete-
and continuous-time Markov chains (for performance
evaluation), and extended Markovian models, such as
Interactive Markov Chains (Imcs) [70], which com-
bine Ltss and Markov chains.

– Relying on action-based models enables equiva-
lence checking, i.e., the comparison of specifica-
tions for equality or inclusion; this corresponds to
the notions of bisimulations for Ltss and aggrega-
tion/lumpability for Markov chains. Also, the possi-
bility of replacing a state space by an equivalent but
smaller one is fundamental in compositional verifica-
tion.

– As a consequence, the model checkers of Cadp are
based on branching-time (rather than linear-time)
logics, which are adequate with bisimulation reduc-
tions.

– Cadp is equipped with an original software architec-
ture designed to enable modularity in model check-
ing tools. Early model checkers (such as Cesar [110,
36], Emc [21,22], Xesar [62], and Spin [74]) were
“monolithic” in the sense that they tightly combined
(1) the source language used to specify the concur-
rent system under verification and the compiling al-
gorithms used to generate/explore the state space of
the concurrent system, and (2) the temporal logic
language used to specify correctness formulas and the
verification algorithms that evaluate these formulas
over the state space. Cadp took a different approach
and adopted a modular architecture with a clear sep-
aration between language-dependent and language-
independent aspects. Different verification function-
alities are implemented in different tools, which can
be reused for several languages and which are built
upon well-specified interfaces that enable code fac-
toring.

– Cadp 2011 can manage state spaces as large as 1010

explicit states; by employing compositional verifica-
tion techniques on individual processes, much larger
state spaces can be handled, up to sizes comparable
to those reached using symbolic techniques, such as
Bdds.

Cadp can be seen as a rich set of powerful, inter-
operating software components for manipulating au-
tomata and Markov chains. All these tools are inte-
grated in two ways: for interactive use, a graphical user-
interface (named Eucalyptus) with contextual menus
is provided; for batch use, a user-friendly scripting lan-
guage, Svl, was designed, providing powerful verifica-
tion strategies — to the best of our knowledge, the Svl

4 Hubert Garavel et al.: CADP 2011: A Toolbox for the Construction and Analysis of Distributed Processes

feature of Cadp is unique and there is no equivalent in
competing toolboxes.

Explicit state spaces. In the terminology of Cadp,
an explicit state space is a state-transition graph defined
extensively, meaning that the sets of states and transi-
tions are entirely known, because they have been already
computed.

In the early 90s, most verification tools represented
explicit state spaces using textual file formats, which
were only adequate for small graphs but would not scale
satisfactorily, e.g., to millions of states. To solve this
issue, Cadp was equipped in 1994 with Bcg (Binary-
Coded Graphs), a portable file format for storing Ltss
(with provisions for storing also Kripke structures and
Kripke Transition Systems although these two models
are not used in the setting of Cadp). Bcg is a binary
format, which was designed to handle large state spaces
(up to 108 states and transitions initially — this limit
was raised to 1013 in Cadp 2011 to take into account
64-bit machines). Because the Bcg format is not human
readable, it comes with a collection of code libraries and
utility programs for handling Bcg files.

Two key design goals for Bcg are file compactness
and the possibility to encode/decode files quickly and
dynamically (i.e., without requiring knowledge of the
entire state space in advance); these goals are achieved
using dedicated compression techniques that give signifi-
cant results: usually, two bytes per transition on average,
as observed on Vlts (Very Large Transition Systems)4,
a benchmark suite used in many scientific publications.
A third design goal is the need to preserve in Bcg files
the source-level information (identifiers, line numbers,
types, etc.) present in the source programs from which
Bcg files are generated, keeping in mind that these pro-
grams could be written in a variety of languages.

Implicit state spaces. In the terminology of Cadp,
an implicit state space is a state-transition graph defined
comprehensively, meaning that only the initial state and
the post transition function are given, such that (a frag-
ment of) the graph is progressively explored and dis-
covered on demand, depending on the verification goals.
Handling implicit state spaces properly is a prerequisite
for on-the-fly verification.

In addition to Bcg, which only applies to ex-
plicit state spaces, Cadp provides Open/Cæsar [41],
a software framework for implicit state spaces, which
enforces modularity by clearly separating language-
dependent aspects (i.e., compiler algorithms) from
language-independent aspects (i.e., state-space explo-
ration algorithms). Open/Cæsar is organized around
three components: the graph module (which encapsulates
all language-dependent aspects, typically code generated
from a high-level source program to compute states and
transitions), the library module (which provides useful

4 http://cadp.inria.fr/resources/benchmark_bcg.html

generic data structures, e.g., stacks, tables, hash func-
tions, etc.), and the exploration module (which gathers
language-independent aspects, typically simulation, test-
case generation, and verification algorithms). All the in-
ternal details of the graph module are hidden behind
a programming interface, which provides an abstraction
for states and transition labels (making them available
as opaque types) and implements the transition relation
by means of a higher-order iterator.

Since the introduction of the Open/Cæsar archi-
tecture in 1992, each of its three modules has been pro-
gressively extended. Regarding the graph module, only
Lotos was supported at first, but support for more lan-
guages (Fsp [90], Lotos NT [13], µCrl [66], Sdl [78],
and SystemC/Tlm [112]), more automata-based for-
malisms (Bcg, Exp [84], Fc2 [9], and Seq [50]) and
more external tools (If [11], Kronos [128], Ltsmin [7],
TorX [3]) has been added, either by our or other re-
search teams. Regarding the library module, its data
structures and algorithms have been continuously op-
timized and enriched. Regarding the exploration mod-
ule, many Open/Cæsar tools have been developed for
simulation, random execution, model checking, equiva-
lence checking, and test case generation. The merits of
the Open/Cæsar modular architecture are recognized
(e.g., in [7]: “the Open/Cæsar interface has been un-
derlying the success of the Cadp toolkit”) and a sim-
ilar architecture can be found in several recent model
checkers for concurrent systems, such as DiVinE5 [2],
Ltsmin6 [7], and Pat7 [88].

Boolean equation systems (Bess [89]). These are a
useful low-level formalism for expressing analysis prob-
lems on Ltss, i.e., model checking, equivalence checking,
partial order reductions, test case generation, and behav-
ioral adaptation. A Bes is a collection of equation blocks,
each defining a set of Boolean variables (left-hand sides)
by propositional formulas (right-hand sides). All equa-
tions in a block have the same fixed point sign: either
minimal (µ) or maximal (ν). Bess can be represented
as Boolean graphs [1] and are closely related to game
graphs [116] and parity games [115]. Below is an exam-
ple of Bes in which block B0 depends on variable Y0

defined in block B1:

(B0)

X0 =ν X1 ∧ X2

X1 =ν X0 ∨ X1 ∨ X2

X2 =ν Y0 ∧ X3

X3 =ν true

(B1)

Y0 =µ Y1 ∨ Y2

Y1 =µ false

Y2 =µ Y2 ∧ Y3

Y3 =µ Y0 ∨ Y1 ∨ Y3

5 http://divine.fi.muni.cz/
6 http://fmt.cs.utwente.nl/tools/ltsmin
7 http://www.comp.nus.edu.sg/~pat

http://cadp.inria.fr/resources/benchmark_bcg.html
http://divine.fi.muni.cz/
http://fmt.cs.utwente.nl/tools/ltsmin
http://www.comp.nus.edu.sg/~pat

Hubert Garavel et al.: CADP 2011: A Toolbox for the Construction and Analysis of Distributed Processes 5

The Cæsar Solve library [94,95] of Open/Cæsar
contains a collection of linear-time algorithms for solving
alternation-free Bess using various exploration strate-
gies of its underlying Boolean graph (depth-first search,
breadth-first search, etc.). The resolution works on the
fly, the Bes being constructed (e.g., from the evaluation
of a temporal logic formula on an Lts, or from the com-
parison of two Ltss) at the same time it is solved, new
equations being added to the Bes and solved as soon as
they are discovered. All the algorithms of Cæsar Solve
can generate diagnostics, i.e., compute a minimal (in the
sense of graph inclusion) Boolean subgraph explaining
why a given Boolean variable is true or false [93].

New strategies have been added to Cadp 2011
for solving conjunctive Bess (arising from equivalence
checking) and disjunctive Bess (arising from model
checking), keeping in memory only the vertices (and not
the edges) of the Boolean graphs. Currently, Cadp 2011
offers nine resolution strategies, which can solve Bess
containing 107 variables in ten minutes on a machine
with a 2 GHz Cpu. Recently, a new linear-time algo-
rithm generalizing the detection of accepting cycles in
Büchi automata was added [101], which serves for model
checking fairness properties. For testing and benchmark-
ing purposes, Cadp 2011 provides the new Bes Solve
tool, which can evaluate Bess entirely constructed and
stored in (gzipped) files, or built on the fly randomly
according to fourteen parameters (number of variables,
equation length, percentage of disjunctive and conjunc-
tive operators, etc.).

It is known [87] that Bess can encode HornSat, a
particular case of the Sat problem. Thus, Cæsar Solve
can be used to solve large instances of HornSat (con-
taining billions of variables) in linear-time.

Parameterized Boolean equation systems.
Cadp 2011 also uses internally the Pbes (Parameter-
ized Bes) model [92], which extends the Bes model by
adding typed data parameters and arbitrary Boolean
expressions over these parameters. For instance, the
following Pbes checks whether factorial (m) = n:

X(m, n) =µ

(n > 0) ∧
(

(m = 0) ⇒ (n = 1)
)

∧
(

(m > 0) ⇒ n%m = 0 ∧ X(n/m, m − 1)
)

The Pbes model was originally invented as a means
of representing the model checking of Mcl formulas
(µ-calculus extended with typed data), implemented in
the Evaluator 4.0 model checker now available in
Cadp 2011 (see Section 5). Recently, this model received
much attention from the model checking community [67],
which investigates two approaches: symbolic resolution
or instantiations towards Bess followed by on-the-fly res-
olution, the latter being somehow close to Sat-solving.
Beyond verification, Pbess can express other problems
such as evaluation of parameterized Horn-clauses or
Datalog queries over data-bases [87].

3 Specification languages

A major addition to Cadp 2011 compared with ear-
lier versions is the support for several specification lan-
guages, while previously only Lotos was supported.

3.1 Support for the LOTOS language

Lotos [76] is a formal specification language standard-
ized by Iso to describe communication protocols. It is
composed of two different languages in one: a data part,
based on algebraic abstract data types, and a control
part, which is a process calculus combining the best fea-
tures of Ccs [104], Csp [73], and Circal [103]. For this
reason, Cadp provides two Lotos compilers, both shar-
ing a common front-end.

Compiling the data part. The Cæsar.adt com-
piler [39,59] translates the data part of a Lotos pro-
gram (i.e., a collection of sorts, constructors, and func-
tions defined by algebraic equations) into executable
C code. The translation aims at verification efficiency,
by first optimizing memory (which is essential for state
space exploration, where every bit counts), then time.
The compiler automatically recognizes certain classes
of the usual types (natural numbers, enumerations, tu-
ples, etc.), which are implemented optimally. The alge-
braic equations of Lotos are translated using a pattern-
matching compilation algorithm for rewrite systems with
priority. This required deviations from standard Lotos
(e.g., introducing a distinction between constructor and
non-constructor operations, and turning the algebraic
equations into a system of rewrite rules with priorities),
which were found to be acceptable in practice. Amus-
ingly, most of the compiler is itself written using Lotos
abstract data types, so Cæsar.adt is used to bootstrap
itself.

The version of Cæsar.adt included in Cadp 2011
enables values of complex types (such as tuples, unions,
lists, trees, strings, sets, etc.) to be represented “canon-
ically”, meaning that these values are stored in tables,
represented in normal form as table indexes and thus are
stored only once in memory. A technical challenge was
to make this feature optional: the user can selectively
store certain types in tables, while other types remain
implemented as before.

Compiling the control part. The Cæsar compiler
[55,54] translates an entire Lotos program (reusing the
C code generated by Cæsar.adt) into C code that can
be used either for generating an explicit Lts (encoded in
the Bcg format) or an implicit Lts (represented using
the Open/Cæsar programming interface), or for rapid
prototyping (using the Exec/Cæsar programming in-
terface, which enables the connection with a real-world
environment). The subset of Lotos accepted by Cæsar

6 Hubert Garavel et al.: CADP 2011: A Toolbox for the Construction and Analysis of Distributed Processes

must obey certain constraints, which forbid unbounded
dynamic creation of processes and non-terminal recur-
sion in process calls; practically, these constraints are
acceptable in most cases.

The translation is done using several intermediate
steps, so as to perform, for efficiency reasons, as many
computations as possible at compile-time. The Lotos
program is first translated into a simplified language
named SubLotos, then into a (hierarchical) Petri net
extended with atomic transitions, typed local/global
variables, and arbitrary combinations of conditions and
actions attached to Petri net transitions. This Petri net is
then simplified by applying a collection of optimizations
on its control and data flows, and finally transformed
into C code. Cæsar can generate C code for different
purposes, namely an Open/Cæsar graph module, an
optimized stand-alone program for Lts generation, or
C code for co-simulation and rapid prototyping accord-
ing to the Exec/Cæsar framework [60].

In addition to various bug fixes, the version of Cæsar
included in Cadp 2011 delivers increased performance,
particularly by introducing dynamically resizable state
tables and by optimizing the generated C code for the
amount of physical memory available. Also, the reduc-
tion techniques based on data flow analysis [54], which
typically reduce state spaces by several orders of mag-
nitude, have been enhanced by applying data-flow opti-
mizations iteratively, following the hierarchical structure
of the Petri net: for 22% of the benchmarks, the num-
ber of states is divided by 2.4 on average (on certain
benchmarks, it is divided by 25).

3.2 Support for the FSP language

Fsp (Finite State Process) is a concise algebraic no-
tation for concurrent processes [90], supported by the
Ltsa (Labelled Transition System Analyser)8 verifica-
tion tool designed at Imperial College (London, United
Kingdom). Fsp and Ltsa are particularly suited for stu-
dents to practice with academic examples.

Although Fsp and Lotos share many fundamental
concepts, they differ slightly in their expressiveness. On
the one hand, Fsp provides a priority operator that has
no equivalent in Lotos. On the other hand, Lotos en-
ables abstract data types to be defined by the user, while
Fsp provides Booleans, integers, labels, and predefined
numeric functions only. Also, Lotos enables sequential
and parallel composition operators to be combined with
only few restrictions, while Fsp imposes a strict separa-
tion between sequential and parallel processes, so that
parallel processes cannot be composed in sequence.

Cadp 2011 supports the Fsp language, following
the translation approach of [85], implemented in two
new tools. The Fsp2Lotos tool translates each sequen-
tial Fsp process into a Lotos process, and each par-

8 http://www.doc.ic.ac.uk/ltsa

allel Fsp process into an Exp [84] network of commu-
nicating processes with priorities. The Fsp.Open tool
provides a transparent interface between Fsp and the
Open/Cæsar environment, which thus enables every
Fsp specification to be explored using any tool in the
Open/Cæsar exploration module. These tools have
been validated on more than 1000 Fsp examples, for
which the Ltss generated by Cadp were found to be
strongly bisimilar to those generated by Ltsa.

For the Fsp user community, Cadp 2011 brings the
following advantages: it can handle Fsp programs with
non-guarded process recursion; it can handle larger Fsp
programs than Ltsa, due to the particular attention to
performance issues in Cadp and to the support of 64-bit
architectures, whereas Ltsa suffers from Java’s 32-bit
limitations; finally, Cadp offers many tools that com-
plement the functionalities provided by Ltsa.

3.3 Support for the LOTOS NT language

A major new feature of Cadp 2011 is the support of
Lotos NT [13], a specification language derived from
the Iso standard E-Lotos [77]. Lotos NT is an at-
tempt [56,42,43] at merging the most salient features of
process calculi (concurrency, abstraction, congruence re-
sults) into mainstream programming languages (imper-
ative and functional languages for sequential program-
ming). Contrary to Lotos, which gathers two different
languages into one, Lotos NT exhibits a single unified
language, in which the data part can be seen as a subset
of the control part (i.e., functions are a particular case
of processes): absence of such a nice symmetry in Lotos
is a drawback and a cause of its steep learning curve.

Lotos NT has convenient features that Lotos is
lacking: it has a set of predefined data types (Booleans,
natural numbers, integers, reals, characters, and strings);
it provides short-hand notations for lists, sets, arrays,
intervals, and predicate types; it eases the definition
of inductive types by automatically generating com-
mon operations (equality and order relations, field ac-
cessors, etc.); it enables typing of communication chan-
nels [40]; it introduces the notion of modules. Simi-
lar to the Lotos compilers of Cadp, Lotos NT can
import hand-written, external C code that implements
Lotos NT types and functions; under some conditions,
it is also possible to combine Lotos and Lotos NT
code into the same specification.

As an example, Figures 1 and 2 give an excerpt of
a Lotos NT model of the Mcs queue lock [102, Fig-
ure 5] for N processes trying to access a common re-
source; this model is part of a study of mutual exclusion
protocols [99]. The Mcs queue lock ensures mutual ex-
clusion by means of a queue of waiting processes imple-
mented in shared memory. A global variable (modeled as
process “Lock”) contains the index of the last element of
the queue (or “nil” if the resource is free); this variable is

http://www.doc.ic.ac.uk/ltsa

Hubert Garavel et al.: CADP 2011: A Toolbox for the Construction and Analysis of Distributed Processes 7

type Index is -- interval type
range 0 .. N of Nat with “==”, “!=”

end type

function nil: Index is
return Index (0)

end function

type Pid is -- valid Process IDentifier (predicate type)
pid: Index where pid != nil

end type

type Qnode is
Qnode (next: Index, locked: Bool) with “get”, “set”

end type

type Memory is -- shared memory (array type)
array [1 .. N] of Qnode

end type

type Operation is -- memory access (enumerated type)
Read next, Read locked, Write next, Write locked,
Fetch and Store, Compare and Swap

end type

channel CS Access is -- channel for Pid communication
(Pid)

end channel

channel Memory Access is -- access to shared memory
(Operation, Pid, Index, Pid), -- read/write field next
(Operation, Pid, Bool, Pid) -- read/write field locked

end channel

channel Lock Access is -- access to global variable
(Operation, Index, Index, Pid), -- fetch-and-store
(Operation, Index, Index, Bool, Pid) -- compare-and-swap

end channel

process P [NCS, ENTER, LEAVE: CS Access,
L: Lock Access, M: Memory Access]
(pid: Pid) is

loop
NCS (pid);
acquire [L, M] (pid);
ENTER (pid); LEAVE (pid);
release [L, M] (pid)

end loop
end process

process acquire [L: Lock Access, M: Memory Access]
(pid: Pid) is

var predecessor: Index, locked: Bool in
M (Write next, pid, nil, pid);
L (Fetch and Store, ?predecessor, Index (pid), pid);
if (predecessor != nil) then

M (Write locked, pid, true, pid);
M (Write next, Pid (predecessor), Index (pid), pid);
loop L in

M (Read locked, pid, ?locked, pid);
if not (locked) then break L end if

end loop
end if

end var
end process

process release [L: Lock Access, M: Memory Access]
(pid: Pid) is

var next: Index, swap: Bool in
M (Read next, pid, ?next, pid);
if next == nil then

L (Compare and Swap, Index (pid), nil, ?swap, pid);
if swap == false then
loop L in

M (Read next, pid, ?next, pid);
if next != nil then break L end if

end loop;
M (Write locked, Pid (next), false, pid)

end if
else

M (Write locked, Pid (next), false, pid)
end if

end var
end process

process Lock [L: Lock Access] is
var i, new i, j: Index in

i := nil;
loop
select

L (Fetch and Store, i, ?new i, ?any Pid);
i := new i
[]
L (Compare and Swap, ?j, ?new i, true, ?any Pid)
where i == j;

i := new i
[]
L (Compare and Swap, ?j, ?new i, false, ?any Pid)
where i != j

end select
end loop

end var
end process

process Memory [M: Memory Access] is
var m: Memory, pid: Pid, next: Index, locked: Bool in

m := Memory (Qnode (nil, false));
loop
select

M (Read next, ?pid, ?next, ?any Pid)
where next == m[Nat (pid)].next

[]
M (Read locked, ?pid, ?locked, ?any Pid)
where locked == m[Nat (pid)].locked

[]
M (Write next, ?pid, ?next, ?any Pid);
m[Nat (pid)] := m[Nat (pid)].{next => next}
[]
M (Write locked, ?pid, ?locked, ?any Pid);
m[Nat (pid)] := m[Nat (pid)].{locked => locked}

end select
end loop

end var
end process

Fig. 1. Lotos NT model of the Mcs queue lock (excerpt — an instantation of the Mcs queue lock for five processes is shown in Figure 2)

8 Hubert Garavel et al.: CADP 2011: A Toolbox for the Construction and Analysis of Distributed Processes

modifiable by atomic fetch-and-store and compare-and-
swap operations. The elements of the queue are pairs of
the index of the next element and a Boolean flag indicat-
ing whether the resource is still locked by some preceding
process; all elements are modeled as a shared array “m”,
accesses to which are managed by process “Memory”. To
acquire the lock, process “P” with identifier “pid” mod-
ifies the index of the last element to point to “m[pid]”,
initialized to “(nil, false)”, and then waits until the re-
source is released by the immediately preceding process
(by setting the flag to true). Each access to a shared
variable is modeled by a rendezvous communication on
one of the gates “L” or “M”, using four or five offers
(i.e., data parameters): in all cases, the first offer defines
the operation to be executed, and the last offer indicates
the executing process.

The feedback received about Lotos NT from both
academia and industry is highly positive: it is observed
that people quickly start writing meaningful Lotos NT
specifications without the need for a long prior training.
As of January 2010, the Vasy team has switched from
Lotos to Lotos NT for all its modeling activities, and
Lotos NT is used internally in companies such as Bull,
Cea/Leti, and STMicroelectronics.

Cadp 2011 includes a set of tools (Lpp prepro-
cessor, Lnt2Lotos translator, and Lnt.Open connec-
tor to Open/Cæsar) that implement Lotos NT by
translation to Lotos, which enables one to reuse the
Cæsar and Cæsar.adt compilers to analyze and ex-
ecute Lotos NT specifications. To reduce the transla-
tion complexity, many semantic checks are deferred to
the Cæsar.adt and Cæsar compilers that will run on
the generated, possibly incorrect Lotos code.

The translation of Lotos NT data part into Lotos
(which is, to some extent, the reverse of the transla-
tion performed by Cæsar.adt) requires compilation of
functions defined in imperative-style into rewrite sys-
tems with priorities. It reuses an existing algorithm [108]
for translating a subset of the C language into Horn
clauses, but largely extends this algorithm to handle
reference-passing parameters, pattern matching (“case”
statements), loop interruptions (“break” statements),
multiple “return” statements within function bodies,
uncatchable exceptions (“raise” statements), and over-
loading of function names.

The translation of the Lotos NT control part into
Lotos process algebraic terms borrows from a prior
translation of Chp into Lotos [53], which was adapted
and optimized for Lotos NT. The translation is tricky
because Lotos is much less “regular” than Lotos NT
for certain aspects (sequential composition, functional-
ity typing for process termination) and because Lotos
lacks certain concepts (graphical parallel composition
[57], type checking for communication channels). Sur-
prisingly, the state spaces generated from Lotos NT
programs are in general not larger than those generated
from “equivalent” Lotos programs, due to the precise

process Protocol [NCS, ENTER, LEAVE: CS Access,
L: Lock Access, M: Memory Access] is

par M, L in
par -- processes trying to access the critical section

P [NCS, ENTER, LEAVE, L, M] (Pid (1))
||

P [NCS, ENTER, LEAVE, L, M] (Pid (2))
||

P [NCS, ENTER, LEAVE, L, M] (Pid (3))
||

P [NCS, ENTER, LEAVE, L, M] (Pid (4))
||

P [NCS, ENTER, LEAVE, L, M] (Pid (5))
end par

||
par -- shared variables

Lock [L] || Memory [M]
end par

end par
end process

Fig. 2. Instantiation of the Mcs queue lock for five processes

analysis and sharing of program continuations during the
translation.

3.4 Support for the EXP language

Exp is a language for describing a network of commu-
nicating Ltss, represented as a set of Bcg files. In its
current version, 2.0 [84], Exp offers an expressive syn-
tax for handling compositions of processes in various lan-
guages. It provides the parallel composition, hiding, re-
naming, and cutting operators of Ccs [104], Csp [111],
Lotos [76], E-Lotos [77], Lotos NT, and µCrl [66],
as well as synchronization vectors and priorities. Hiding,
renaming, and cutting operators are generalized, so that
gate and/or label sets can be represented using regular
expressions.

Figure 3 illustrates an Exp network of Ltss cor-
responding to an instance of the Mcs queue lock for
five processes, where only the gates “ENTER” and
“LEAVE” are made observable. Each of “Pi.bcg” (i ∈
1..5), “Lock.bcg”, and “Memory.bcg” is a Bcg file en-
coding the Lts corresponding respectively to one of the
five concurrent processes or to a shared variable.

3.5 Support for other languages

Numerous other languages have been connected to
Cadp 2011. Figure 4 gives a global picture; dark grey
boxes indicate the languages and software components
included in Cadp 2011; light grey boxes indicate the
languages for which Vasy has developed translators and
connections to Cadp 2011, these translators being dis-
tributed separately from Cadp 2011; arcs are labeled

Hubert Garavel et al.: CADP 2011: A Toolbox for the Construction and Analysis of Distributed Processes 9

[13]

[58]

[81]

[98]

[85]

[68]

[53]

[39,55,54]

[5]

[120]

[69,109]

[5][20]

[84]

Open/Cæsar

Exp

Fiacre Chp

Sdl Aadlπ-calculusWsdl-Bpeleb3

Fsp Lotos NT

Lotos SystemC/Tlm

Sam

Bip

Fig. 4. Connection of the input languages of Cadp 2011

hide all but “ENTER”, “LEAVE” in
par M, L in
par in
“P1.bcg” || “P2.bcg” || “P3.bcg” || “P4.bcg” || “P5.bcg”

end par
||
par in
“Lock.bcg” || “Memory.bcg”

end par
end par

end hide

Fig. 3. Mcs queue lock for five processes in the Exp 2.0 language

with bibliographic references; arcs without labels corre-
spond to work in progress; dotted arcs correspond to
manual translations.

These translation approaches have the merit of uni-
fying the landscape of concurrent languages, which is
currently scattered among multiple, incompatible pro-
posals. Also, they significantly help to progress the devel-
opment of the Lotos and Lotos NT compilers, by pro-
viding Vasy with many programs, different from those
that humans usually write; these programs reveal com-
piler mistakes and suggest new compiler optimizations
for state space reduction and/or better performance.

4 Visual Checking

Cadp contains tools to visualize explicit and implicit
state spaces.

For explicit state spaces, the Bcg Draw and
Bcg Edit (see Figure 5) tools enable Ltss encoded in
the Bcg format to be visualized and edited interactively.

For implicit state spaces, the Ocis (Open/Cæsar In-
teractive Simulator, see Figure 6) tool enables step-by-
step simulation with backtracking. Simulation scenar-
ios, which are trees describing the execution paths fol-

Fig. 5. Bcg Edit

Fig. 6. Open/Cæsar Interactive Simulator

lowed by the user, can be stored in the Bcg format and
reloaded for further exploration.

10 Hubert Garavel et al.: CADP 2011: A Toolbox for the Construction and Analysis of Distributed Processes

5 Model Checking

Cadp contains three model checkers operating on ex-
plicit and implicit Ltss.

Xtl (eXecutable Temporal Language) [96] is a functional
language dedicated to the exploration and querying of
an explicit Lts encoded in the Bcg format. Xtl han-
dles (sets of) states, labels, and transitions as basic data
types, enabling temporal logic operators to be imple-
mented using their fixed point characterizations. Tem-
poral logic operators can be mixed with non-standard
properties (e.g., counting states, transitions, etc.) and,
more generally, with arbitrary computations described
as recursive functions exploring the Lts. Xtl specifica-
tions can include reusable libraries of operators (15 such
libraries are available in Cadp) and can also be inter-
faced with external C code for specific computations.

Evaluator 3.x [100] evaluates formulas of Rafmc (the
regular alternation-free µ-calculus) on an implicit Lts
on the fly. Rafmc incorporates the Pdl [37] modalities
containing regular formulas over transition sequences,
which are much more concise and intuitive than their
fixed point counterparts: for instance, safety properties
are simply expressed using the modality “[R] false”,
which forbids the transition sequences characterized by
the regular formula R. The tool works by reformulating
the model checking problem as a Bes resolution, which
is performed using the linear-time local algorithms of
the Cæsar Solve library [95]. According to the shape
of the formula, the most memory-efficient algorithm of
the library is selected automatically: e.g., all formulas
of Actl [105] or Pdl are evaluated using algorithms
optimized to store only states, and not transitions, of
the Lts. The tool produces examples and counterexam-
ples, which are general Lts subgraphs (i.e., may contain
branches and/or cycles), and also enables the definition
of reusable libraries of property patterns, such as [30]9.

Evaluator 4.0 [101] is a new model checker handling
formulas written in Mcl (Model Checking Language),
which conservatively extends Rafmc with two kinds of
features. First, Mcl adds data-handling mechanisms to
parse and exploit structured transition labels (contain-
ing a channel/gate name and a list of values exchanged),
generated from value-passing specification languages.
Mcl contains action predicates with value extraction,
fixed point operators parameterized with data values,
quantifiers over finite data domains, regular formulas ex-
tended with counters, and constructs inspired from func-
tional programming languages (“let”, “if-then-else”,
“case”, “while”, “repeat”, etc.).

Second, Mcl adds fairness operators, inspired from
those of Pdl-∆ [117], which characterize complex, un-
fair cycles consisting of infinite repetitions of regular

9 http://cadp.inria.fr/resources/evaluator/rafmc.html

subsequences. These operators belong to Lµ2, the µ-
calculus fragment of alternation depth two and were
shown to subsume Ctl∗ [125]. Although Lµ2 has, in
the worst case, a quadratic model checking complex-
ity [31], the fairness operators of Mcl are evaluated in
linear-time using an enhanced resolution algorithm of
Cæsar Solve [101].

We illustrate below the features of Mcl by means of
two data-based temporal properties related to the Mcs
protocol described in Figure 1. The first property ex-
presses that processes access the shared resource in mu-
tual exclusion, i.e., after a process i entered its critical
section, it is impossible that another process j also en-
ters its critical section as long as process i does not leave
its critical section. This can be expressed in Mcl using
a necessity modality that forbids the occurrence of un-
desirable execution sequences:

[true* .
{ ENTER ?i:Nat } .
(not { LEAVE !i })* .
{ ENTER ?j:Nat where j <> i }

] false

Note how the process identifier i is captured by the
first action predicate and is reused later in the formula
in the “where” clause. This formula is fully parametric,
in the sense that it does not depend on the number N

of processes, and therefore it can be reused as it is for
verifying any instantiation of the Mcs.

The second property specifies the absence of starva-
tion for each process i, i.e., the absence of cycles on which
every process executes at least one action, but process i

does not enter its critical section. This can be expressed
in Mcl by using the saturation operator “[R]-|”, which
forbids the infinite repetition of a transition sequence
characterized by the regular formula R:

[true*] forall i:Nat among {1...N} .
[for j:Nat from 1 to N do

(not { ENTER ... !i })* .
{ ?G:String ... !j

where (j = i) implies (G <> “ENTER”) }
end for

]-|

Note the usage of the “for” regular formula to de-
scribe the concatenation of N subsequences correspond-
ing to each process j. The fact that the formula uses a
precise order of the occurrence of actions executed by
processes j (from 1 to N) does not restrict its general-
ity, because the absence of a cycle containing a partic-
ular ordering of the actions is equivalent to the absence
of cycles containing any ordering of these actions (this
is similar to the counting construction used for trans-
forming a generalized Büchi automaton into a standard
one).

http://cadp.inria.fr/resources/evaluator/rafmc.html

Hubert Garavel et al.: CADP 2011: A Toolbox for the Construction and Analysis of Distributed Processes 11

6 Equivalence checking

Equivalence checking is useful to guarantee that some
properties verified on one graph are also satisfied by
another. Alternatively, equivalence checking can be
used to minimize a graph by collapsing its equiva-
lent states. Concurrency theory produced many graph
equivalence relations, including strong bisimulation [104]
and branching bisimulation [123], as well as stochas-
tic/probabilistic extensions of strong and branching
bisimulations (which take into account the notion of
lumpability [80]) for models combining features from
Ltss and Markov chains. From the beginning, equiva-
lence checking has been a key feature of Cadp, first with
the Aldébaran tool [32,35] and, since 1999, with the
Bcg Min 1.0 tool for minimization of explicit graphs
using various partition-refinement algorithms ([79] for
strong bisimulation, [65] for branching bisimulation,
and [72] for stochastic/probabilistic extensions). The
functionalities of these two tools have been progressively
subsumed by improved tools, namely Bcg Min 2.0 and
Bisimulator, available in Cadp 2011.

Bcg Min 2.0 enables an explicit Lts to be minimized
according to various equivalence relations. It imple-
ments partition-refinement algorithms based on the no-
tion of state signature, originally designed for strong and
branching bisimulations [6]. Intuitively, the signature of
a state is the set of all couples “(transition label, block
of the target state)” of the outgoing transitions (possi-
bly following some compressed sequence of internal tran-
sitions in the case of branching bisimulation). Refine-
ment of the state partition consists in dispatching states
with different signatures to different blocks until the fix-
point has been reached, each block thus corresponding
to a class of equivalent states. Bcg Min 2.0 extends
this algorithm to the stochastic/probabilistic extensions
of strong and branching bisimulations, by incorporating
lumpability in the computation of signatures.

For strong and branching bisimulations, tests on
more than 8000 Bcg graphs show that Bcg Min 2.0
is 20 times faster and uses 1.3 times less memory
than Bcg Min 1.0. For stochastic/probabilistic bisim-
ulations, Bcg Min 2.0 is more than 500 (occasionally,
8500) times faster and uses 4 times less memory. Large
graphs of more than 108 states and 109 transitions have
been minimized in just a few hours, using less than
100 Gbytes Ram.

Bisimulator [4,95,97] compares an implicit Lts (usu-
ally, describing a protocol) with an explicit Lts (usually,
describing the expected service) on the fly, by encod-
ing the problem as a Bes, which is solved using the
linear-time local algorithms of the Cæsar Solve [95]
library of Cadp. This encoding generalizes and, because
of optimizations applied on the fly depending on the Lts
structure, outperforms the pioneering on-the-fly equiv-
alence checking algorithms [35]. For typical cases, e.g.,

when the service Lts is deterministic and/or free of hid-
den/invisible (τ) actions, the tool automatically chooses
an appropriate memory-efficient Bes resolution algo-
rithm, which stores only the states, and not the tran-
sitions.

Bisimulator implements seven equivalence re-
lations (strong, observational, branching, τ∗.a [35],
safety [8], trace, and weak trace [12]) and their asso-
ciated preorders, thus being one of the richest on-the-
fly equivalence checkers available. For non-equivalent
Ltss, the tool can generate a counterexample, i.e., a
directed acyclic graph containing the minimal set of
transition sequences that, if traversed simultaneously
in the two Ltss, lead to couples of non-equivalent
states. Minimal-depth counterexamples can be obtained
using breadth-first strategies for Bes resolution. The
tool is also equipped with on-the-fly reductions mod-
ulo τ -compression (collapse of τ -cycles) and τ -confluence
(elimination of redundant interleavings), which preserve
branching equivalence and can improve performance by
several orders of magnitude.

Besides the classical usage as equivalence checker,
Bisimulator is also employed by the Ocis graphical
simulator of Cadp in order to check on the fly whether
a given execution scenario (represented as an Lts) is
accepted or not by the specification under simulation.

7 Compositional Verification

Compositional verification is a way to avoid state ex-
plosion for the enumerative verification of complex con-
current systems which can be expressed as collections of
sequential processes composed in parallel, either in a flat
or hierarchical manner.

In its simplest form [32,91,113,127,118,119,122],
compositional verification consists in replacing each se-
quential process by an abstraction, simpler than the orig-
inal process but still preserving the properties to be ver-
ified on the whole system. In Cadp, abstracting a pro-
cess is done by minimizing its corresponding Lts modulo
an appropriate equivalence or preorder relation (e.g., a
bisimulation relation, such as strong or branching equiv-
alence). If the system has a hierarchical structure, mini-
mization can also be applied at every intermediate level
in the hierarchy. This approach is possible as long as the
equivalence or preorder relation is a congruence for the
parallel composition operator.

Although this simple form of compositional verifica-
tion has been applied successfully to some complex sys-
tems (e.g., [34,14] in the case of the Lotos language),
it may be counter-productive in some other cases: gen-
erating the Lts of each process separately may lead to
state explosion, whereas the generation of the whole sys-
tem of concurrent processes might succeed if processes
constrain each other when composed in parallel.

12 Hubert Garavel et al.: CADP 2011: A Toolbox for the Construction and Analysis of Distributed Processes

This issue has been addressed by refined compo-
sitional verification approaches [63,17,126,18,19,64,82,
16,61], which enable the Lts of each separate process
to be generated by taking into account interface con-
straints (also known as environment constraints or con-
text constraints). These constraints express the behav-
ioral restrictions imposed on each process by synchro-
nization with its neighbor processes. Taking into account
the environment of each process enables the elimination
of states and transitions that are not reachable in the
Lts of the whole system. Depending on the approach,
interface constraints can be either written by the user or
generated automatically.

The Cadp toolbox contains various tools ded-
icated to compositional verification, among which
Exp.Open 2.0, Projector 3.0, and Svl play a cen-
tral role (in addition to Bcg Min already presented in
Section 6).

Exp.Open 2.0 is a compiler that takes a network of com-
municating Ltss in the Exp language, compiles it into
an intermediate model based on synchronization vectors,
and finally produces an Open/Cæsar graph module.
Exp.Open 2.0 implements partial order reductions pre-
serving either (stochastic) branching bisimulation, weak
traces, or deadlocks.

Projector 3.0 implements behaviour abstraction [64,
82] of a process given as an Open/Cæsar graph module,
by taking into account interface constraints provided in
the form of an Lts (the environment of the process)
and a set of labels (on which the graph module interacts
with its environment). The output is an Lts in the Bcg
format. If the interface constraints are written by the
user, then validation predicates are generated in the Lts
and checked afterwards by Exp.Open, when composing
the resulting Lts with its environment.

Svl (Script Verification Language) [46,83] is both a high
level language for expressing complex verification scenar-
ios and a compiler dedicated to this language. Svl can
be seen as a process algebra extended with operations
on Ltss, e.g., minimization (also called reduction), ab-
straction, comparison, deadlock/livelock detection, etc.,
which orchestrates calls to the Cadp tools.

The order in which processes are composed and min-
imized influences the efficiency of compositional verifica-
tion. Svl thus implements various compositional verifi-
cation strategies, in which the order can be either speci-
fied by the user (explicitly, or implicitly through the hier-
archy of the concurrent processes), or determined auto-
matically using heuristics such as “smart reduction” [28]
(also enabling orders that are independent of the hierar-
chy of concurrent processes).

Figure 7 illustrates the compositional Lts genera-
tion of “mcs.bcg”, an instance of the Mcs queue lock
for five processes where only the gates “ENTER” and
“LEAVE” are made observable, followed by its compar-
ison with the expected service modulo branching bisim-

% DEFAULT PROCESS FILE=“mcs.lnt”
% DEFAULT SMART LIMIT=7

“mcs.bcg” = smart branching reduction of
hide all but ENTER, LEAVE in
par M, L in
par in

P1 [NCS, ENTER, LEAVE, L, M]
||

P2 [NCS, ENTER, LEAVE, L, M]
||

P3 [NCS, ENTER, LEAVE, L, M]
||

P4 [NCS, ENTER, LEAVE, L, M]
||

P5 [NCS, ENTER, LEAVE, L, M]
end par

||
par in

Lock [L]
||

Memory [M]
end par

end par;

“mcs diag branching.bcg” = branching comparison
“mcs.bcg” == Service;

Fig. 7. Compositional generation and verification with Svl

ulation. A diagnostic of the comparison is stored in file
“mcs diag branching.bcg”. The file “mcs.lnt” contains
the code shown in Figure 1, where in addition each pro-
cess “Pi [NCS, ENTER, LEAVE, L, M]” (i ∈ 1..5) is
defined as the instance “P [NCS, ENTER, LEAVE, L,
M] (Pid (i))” and where the process “Service” mod-
els the expected service. The value 7 of variable DE-
FAULT SMART LIMIT indicates that any combination
of no more than seven processes can be selected at each
step of compositional Lts generation. In this example,
all seven processes are first minimized and then com-
posed all together in a single step, producing an Lts
with 408, 762 states and 2, 043, 810 transitions. By con-
trast, direct generation produces an Lts that is about
ten times larger (4, 231, 969 states and 21, 159, 845 tran-
sitions). The Lts “mcs.bcg” reduces finally to 651 states
and 1295 transitions.

8 Performance Evaluation

During the last decade, Cadp has been enhanced for per-
formance evaluation operating on extended Markovian
models encoded in the Bcg format (see details in [26]).
In the example of the Mcs queue lock, an interactive
Markov chain [70] can be obtained by first inserting
symbolic delay transitions “Lambda”, “Mu”, and “Nu”
in the Lotos NT model, for instance by parallel com-
position with a dedicated process “Latency” shown in

Hubert Garavel et al.: CADP 2011: A Toolbox for the Construction and Analysis of Distributed Processes 13

channel Latency is (Pid), (Operation) end channel

process Latency [NCS, ENTER, LEAVE: CS Access,
L: Lock Access, M: Memory Access,
Lambda, Mu, Nu: Latency] is

var pid: Pid, op: Operation in
loop
select

NCS (?pid);
Lambda (pid)

[]
L (?op, ?any Index, ?any Index, ?pid);
Mu (op)

[]
L (?op, ?any Index, ?any Index, ?any Bool, ?pid);
Mu (op)

[]
M (?op, ?any Pid, ?any Index, ?pid);
Mu (op)

[]
M (?op, ?any Pid, ?any Bool, ?pid);
Mu (op)

[]
ENTER (?pid);
Nu (pid)

[]
LEAVE (?any Pid) -- no delay

end select
end loop

end var
end process

process Main [NCS, ENTER, LEAVE: CS Access,
L: Lock Access, M: Memory Access,
Lambda, Mu, Nu: Latency] is

par NCS, ENTER, LEAVE, L, M in
Protocol [NCS, ENTER, LEAVE, L, M]

||
Latency [NCS, ENTER, LEAVE, L, M,

Lambda, Mu, Nu]
end par

end process

Fig. 8. Delay insertion for the Mcs queue lock

Figure 8, and subsequently instantiating these symbolic
transitions with concrete rates by renaming the corre-
sponding transitions in the generated Lts.

Besides Bcg Min (which supports stochas-
tic/probabilistic extensions of strong and branching
bisimulations), the Exp.Open tool [84] now supports
also the parallel composition of extended Markovian
models, implementing maximal progress of internal
transitions in choice with stochastic transitions. New
tools have been added, namely Determinator [71],
which eliminates stochastic nondeterminism in extended
Markovian models on the fly using a variant of the
algorithm presented in [29], and the Bcg Steady and
Bcg Transient tools, which compute, for each state
s of an extended Markovian model, the probability of

being in s either on the long run (i.e., in the “steady
state”) or at each time instant t in a discrete set
provided by the user. These tools can also compute the
throughputs of transitions chosen by the user.

More recently, the new Cunctator on-the-fly
steady-state simulator for extended Markovian models
has been added to Cadp. The tool explores a random
execution sequence in the model until a non-Markovian
transition or a deadlock state is found, or the sequence
length or virtual time (obtained by summing up the
Markovian information present on transitions) reaches
a maximum value specified by the user, or the user in-
teractively halts the simulation. Upon termination, the
throughputs of labeled transitions chosen by the user are
displayed, together with information such as the number
of τ -transitions encountered and the presence of nonde-
terminism (i.e., states with more than one outgoing τ -
transition). The context of a simulation can be saved
and restored for starting subsequent simulations, en-
abling one to implement convergence criteria (e.g., based
on confidence intervals) by executing series of increas-
ingly long simulations in linear time. For nondetermin-
istic models, Cunctator selects between conflicting τ -
transitions according to one of three scheduling policies
(the first, the last, or a randomly chosen transition).
Thus, launching simulations using different scheduling
policies provides more insight about the stochastic be-
havior of the model. Compared to Bcg Steady, which
computes exact throughputs, Cunctator consumes less
memory but achieving the same accuracy may require
more time.

In the Mcs example, Bcg Steady or Cunctator
can be used to study the performance by computing the
throughput of the transitions labeled with “ENTER”
(see [99] for more details).

9 Parallel and Distributed Methods

Verification algorithms based on state space exploration
have high computing and memory requirements and,
thus, are often limited by the capabilities of one single
sequential machine. However, the limits can be pushed
out by new algorithms capable of exploiting processing
resources offered by networks of workstations, clusters,
grids, etc.

Cadp was among the first toolboxes to release tools
for distributed model checking. The first step was to par-
allelize the state space construction, which is a bottle-
neck for verification because storing all reachable states
requires a considerable amount of memory. For this pur-
pose, the Distributor and Bcg Merge tools [52,51]
split the generation of an Lts across several machines,
each machine building only a fragment of the entire
Lts. Interestingly, certain essential Distributor fea-
tures, such as the Pbg (Partitioned Bcg Graph) format
and the graphical monitor that displays in real-time the

14 Hubert Garavel et al.: CADP 2011: A Toolbox for the Construction and Analysis of Distributed Processes

progress of generation across all the machines, have been
replicated in competing verification toolsets.

The second step was the integration into Cadp 2011
of a collection of new software tools (Pbg Cp, Pbg Mv,
Pbg Rm, and Pbg Open) to manipulate an Lts in the
Pbg format, and their connection to Open/Cæsar.

The third step was the parallelization of on-the-fly
verification itself. Therefore we designed a distributed
version of the Cæsar Solve library to solve Boolean
equation systems on the fly using several machines, thus
enabling the development of parallel model and equiva-
lence checkers.

10 Applications

As much as possible, we try to confront Cadp with com-
plex (often industrial) case studies in several domains.

Distributed systems. In collaboration with academic
teams and industrial companies, we have used Cadp for
modeling and analysing various distributed middleware
protocols and systems. We can mention the following:

– the consensus protocol used by the CO4 distributed
knowledge system [106]

– a cluster file system built on top of Arias, a virtual
shared memory across distributed machines running
Aix [107]

– a dynamic reconfiguration protocol for agent-based
applications [25]

– the deployment of the Scalagent platform for dis-
tributed Java agents [121], in the framework of a
collaborative project aimed at the implementation
of a safe, flexible architecture (based on Java com-
ponents) enabling the remote management of unin-
terruptible power supplies

– the Synergy reconfiguration protocol [10]
– a self-configuration protocol for distributed applica-

tions in the cloud [114]

In addition to verification, the performance evalua-
tion features of Cadp have been applied to compare 27
mutual exclusion protocols in the shared memory set-
ting [99].

High-performance computing. High-performance
computing, particularly cache coherency protocols [14],
has been a recurrent topic since 1996 in the framework
of a collaboration with Bull, the European leader in
this field. Notably, we have used Cadp to verify criti-
cal parts of the Tera 10 super-computer (installed at
Cea), which was Europe’s most powerful computer in
2006.10

We have also used Cadp to evaluate the performance
of the Scsi-2 bus arbitration protocol [45] and of Mpi
implementations on Cc-Numa architectures [15].

10 http://vasy.inria.fr/doc/inedit-69-en.pdf

Embedded systems on chip. The formal model-
ing, functional verification, and performance evaluation
of hardware architectures with a high degree of asyn-
chronous concurrency have been the subject of collabo-
rations with Bull, STMicroelectronics, and the Cea/Leti
laboratory (Grenoble, France) since 2004. A first step
was the development of a translation from the Chp de-
scription language for asynchronous circuits into Lotos,
subsequently enabling verification with Cadp [53]. We
have used Cadp to study the performance prediction
of the xSTream architecture [27], a complex graphical
processing unit described in SystemC/Tlm [44], and
the dynamic task dispatcher of the Platform 2012 archi-
tecture [86].

Avionics. We have used Cadp in the framework of
collaborations with Airbus since 2005. In particular, we
have developed a connection from the Fiacre intermedi-
ate language [5] to Cadp. We have also verified several
avionics systems using Cadp, namely a ground/plane
communication protocol based on Tftp [58], an equip-
ment failure management protocol and an air-traffic con-
trol subsystem11.

The Cadp Web site also provides 40 properly pack-
aged and documented case studies12. Other researchers
from many institutions worldwide have also applied
Cadp to real case studies; a comprehensive database
of 152 such case studies (from 1990 to 2011) pub-
lished in the scientific literature is available on line13.
The case studies cover application domains as di-
verse as the following (in alphabetical order): avion-
ics, bioinformatics, business processes, cognitive sys-
tems, communication protocols, component-based sys-
tems, constraint programming, control systems, co-
ordination architectures, critical infrastructures, cryp-
tography, database protocols, distributed algorithms,
distributed systems, e-commerce, e-democracy, embed-
ded software, grid services, hardware design, hard-
ware/software co-design, healthcare, human-computer
interaction, industrial manufacturing systems, middle-
ware, mobile agents, model-driven engineering, net-
works, object-oriented languages, performance evalua-
tion, planning, radiotherapy equipment, real-time sys-
tems, security, sensor networks, service-oriented comput-
ing, software adaptation, software architectures, stochas-
tic systems, systems on chip, telephony, transport safety,
and Web services.

11 Conclusion

Concurrency theory is now 40-year old; formal methods
are 35-year old; model checking verification is nearly 30-

11 http://gforge.enseeiht.fr/docman/view.php/52/4316/

B4-INRIA_VASY.pdf
12 http://cadp.inria.fr/demos.html
13 http://cadp.inria.fr/case-studies

http://vasy.inria.fr/doc/inedit-69-en.pdf
http://gforge.enseeiht.fr/docman/view.php/52/4316/
B4-INRIA_VASY.pdf
http://cadp.inria.fr/demos.html
http://cadp.inria.fr/case-studies

Hubert Garavel et al.: CADP 2011: A Toolbox for the Construction and Analysis of Distributed Processes 15

year old. To push theoretical ideas into reality and to
obtain new scientific results, significant effort must be
put into software development and confrontation with
industrial applications.

This was indeed the case with Cadp 2011 which, be-
sides all aforementioned new tools and major enhance-
ments, also required large amounts of programming
work: porting to various processors (Itanium, PowerPC,
Sparc, x86, x64), operating systems (Linux, Mac OS X,
Solaris, Windows) and C compilers (gcc 3, gcc 4, In-
tel, and Sun); careful code cleanup to remove all com-
piler and lint warnings, not only in the C code of the
Cadp tools themselves, but also in the C code that they
may generate (this ensures that all compiler warnings re-
ceived by end-users are related to some mistakes in their
Lotos or Lotos NT code); significant documentation
effort; intensive nonregression testing using thousands of
Lotos and Lotos NT programs, Bcg files, temporal
logic formulas, Boolean equation systems, etc. together
with a new tool named Contributor that will allow
Cadp users to send such test cases to the Vasy team.

The relevance of these efforts and the maturity of
Cadp can be estimated from its dissemination and im-
pact figures. Cadp is distributed free of charge to uni-
versities and public research centers (academic licenses)
and commercially to companies (professional licenses).
As of July 2011, academic and commercial licences have
been signed with more than 441 universities, public re-
search institutes, and global corporations. Since July
2011, the academic distribution scheme was simplified: a
signed license contract is no longer required, and Cadp
is now immediately available to (1) any scientist who
can demonstrate employment in a university or a public
research center by providing a valid professional e-mail
address and Web page, and (2) any student who matches
the above conditions or who is recommended by a pro-
fessor.

As of January 2012, 152 case-studies have been tack-
led using Cadp (see Section 10); 61 research software
applications have been developed using Cadp14; numer-
ous academic courses are using Cadp to teach concur-
rency15; the Cadp user forum currently gathers more
than 200 registered members with 1340 messages ex-
changed.

Regarding future work, we plan to develop a native
Lotos NT compiler, to connect even more concurrent
languages to Cadp, and add new verification tools that
exploit massively parallel computing platforms. The lat-
ter research area is especially difficult, because it super-
poses the algorithmic complexities of verification and of
distributed programming; yet this is the only way to ex-
ploit parallel computing resources, which are becoming
pervasive.

14 http://cadp.inria.fr/software
15 http://cadp.inria.fr/training

Acknowledgments. The authors are grateful to H.
Hermanns (Saarland University) and to I. Bellicot, S.
Bouland, D. Champelovier, X. Clerc, N. Coste, J. Fer-
eyre, Y. Genevois, Y. Guerte, C. Helmstetter, J. Henri,
R. Hérilier, A. Kaufmann, R. Lacroix, N. Lépy, C. McK-
inty, S. Mériot, J. Merle, E. Oudot, L. Paternault, O.
Ponsini, V. Powazny, S. Robert, G. Salaün, G. Smed-
ing, J. Stöcker, D. Thivolle, M. Vidal, A. Wijs, and
M. Zidouni (Inria/Vasy), who contributed during the
past five years to software development, porting, test-
ing, and/or maintenance of Cadp. The authors are also
grateful to the 40 scientists outside Vasy who reported
bugs and suggestions for enhancements during that pe-
riod.

References

1. H. R. Andersen. Model checking and boolean graphs.
Theoretical Computer Science, 126(1):3–30, Apr. 1994.

2. J. Barnat, L. Brim, M. Češka, and P. Ročkai”. DiVinE:
Parallel Distributed Model Checker (tool paper). In
Proceedings of Parallel and Distributed Methods in Ver-
ification and High Performance Computational Systems
Biology HiBi/PDMC 2010 (Twente, The Netherlands),
pages 4–7. IEEE Computer Society Press, Sept. 2010.

3. A. Belinfante, J. Feenstra, R. G. de Vries, J. Tretmans,
N. Goga, L. Feijs, S. Mauw, and L. Heerink. Formal
Test Automation: A Simple Experiment. In Proceed-
ings of the IFIP 12th International Workshop on Test-
ing of Communicating Systems IWTCS’99 (Budapest,
Hungary). Kluwer Academic, Sept. 1999.

4. D. Bergamini, N. Descoubes, C. Joubert, and R. Ma-
teescu. BISIMULATOR: A Modular Tool for On-the-
Fly Equivalence Checking. In Proceedings of the 11th
International Conference on Tools and Algorithms for
the Construction and Analysis of Systems TACAS’2005
(Edinburgh, Scotland, UK), volume 3440 of Lecture
Notes in Computer Science, pages 581–585. Springer
Verlag, Apr. 2005.

5. B. Berthomieu, J.-P. Bodeveix, P. Farail, M. Filali,
H. Garavel, P. Gaufillet, F. Lang, and F. Vernadat. FI-
ACRE: An Intermediate Language for Model Verifica-
tion in the TOPCASED Environment. In Proceedings
of the 4th European Congress on Embedded Real-Time
Software ERTS’08 (Toulouse, France). SIA (the French
Society of Automobile Engineers), AAAF (the French
Society of Aeronautic and Aerospace), and SEE (the
French Society for Electricity, Electronics, and Infor-
mation & Communication Technologies), Jan. 2008.

6. S. Blom and S. Orzan. Distributed state space min-
imization. Software Tools for Technology Transfer,
7(3):280–291, 2005.

7. S. Blom, J. van de Pol, and M. Weber. LTSmin: Dis-
tributed and Symbolic Reachability. In Proceedings of
the 22nd International conference on Computer Aided
Verification CAV 2010 (Edinburgh, UK), volume 6174
of Lecture Notes in Computer Science, pages 354–359.
Springer Verlag, July 2010.

8. A. Bouajjani, J.-C. Fernandez, S. Graf, C. Rodŕıguez,
and J. Sifakis. Safety for Branching Time Semantics. In
Proceedings of 18th ICALP. Springer Verlag, July 1991.

http://cadp.inria.fr/software
http://cadp.inria.fr/training

16 Hubert Garavel et al.: CADP 2011: A Toolbox for the Construction and Analysis of Distributed Processes

9. A. Bouali, A. Ressouche, V. Roy, and R. de Simone.
The Fc2Tools set: a Toolset for the Verification of Con-
current Systems. In Proceedings of the 8th Conference
on Computer-Aided Verification (New Brunswick, New
Jersey, USA), volume 1102 of Lecture Notes in Com-
puter Science. Springer Verlag, Aug. 1996.

10. F. Boyer, O. Gruber, and G. Salaün. Specifying and
Verifying the Synergy Reconfiguration Protocol with
LOTOS NT/CADP. In Proceedings of the 17th Interna-
tional Symposium on Formal Methods FM’2011 (Limer-
ick, Ireland), volume 6664 of Lecture Notes in Computer
Science, pages 103–117. Springer Verlag, June 2011.

11. M. Bozga, J.-C. Fernandez, L. Ghirvu, S. Graf, J.-P.
Krimm, and L. Mounier. IF: An Intermediate Repre-
sentation and Validation Environment for Timed Asyn-
chronous Systems. In Proceedings of World Congress on
Formal Methods in the Development of Computing Sys-
tems FM’99 (Toulouse, France). Springer Verlag, Sept.
1999.

12. S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe.
A Theory of Communicating Sequential Processes.
J. ACM, 31(3):560–599, July 1984.

13. D. Champelovier, X. Clerc, H. Garavel, Y. Guerte,
C. McKinty, V. Powazny, F. Lang, W. Serwe, and
G. Smeding. Reference Manual of the LOTOS NT to
LOTOS Translator (Version 5.4). INRIA/VASY, 149
pages, Sept. 2011.

14. G. Chehaibar, H. Garavel, L. Mounier, N. Tawbi, and
F. Zulian. Specification and Verification of the Power-
Scale Bus Arbitration Protocol: An Industrial Experi-
ment with LOTOS. In Proceedings of the Joint Inter-
national Conference on Formal Description Techniques
for Distributed Systems and Communication Protocols,
and Protocol Specification, Testing, and Verification
FORTE/PSTV’96 (Kaiserslautern, Germany), pages
435–450. IFIP, Chapman & Hall, Oct. 1996. Full version
available as INRIA Research Report RR-2958.

15. G. Chehaibar, M. Zidouni, and R. Mateescu. Modeling
Multiprocessor Cache Protocol Impact on MPI Perfor-
mance. In Proceedings of the 2009 IEEE International
Workshop on Quantitative Evaluation of Large-Scale
Systems and Technologies QuEST’09 (Bradford, UK).
IEEE Computer Society Press, May 2009.

16. K. H. Cheung. Compositional Analysis of Complex Dis-
tributed Systems. PhD thesis, Department of Computer
Science, Hong Kong University of Science and Technol-
ogy, Hong Kong, 1998.

17. S. C. Cheung and J. Kramer. Enhancing Composi-
tional Reachability Analysis with Context Constraints.
In Proceedings of the 1st ACM SIGSOFT International
Symposium on the Foundations of Software Engineering
(Los Angeles, CA, USA), pages 115–125. ACM Press,
Dec. 1993.

18. S. C. Cheung and J. Kramer. Compositional Reach-
ability Analysis of Finite-State Distributed Systems
with User-Specified Constraints. In Proceedings of the
3rd ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (Washington, DC,
USA), pages 140–150. ACM Press, Oct. 1995.

19. S. C. Cheung and J. Kramer. Context Constraints
for Compositional Reachability. ACM Transactions on
Software Engineering Methodology TOSEM, 5(4):334–
377, Oct. 1996.

20. R. Chossart. Évaluation d’outils de vérification pour
les spécifications de systèmes d’information. Mémoire
mâıtre ès sciences, Université de Sherbrooke, Canada,
Mar. 2010.

21. E. Clarke, E. A. Emerson, and A. P. Sistla. Automatic
Verification of Finite-State Concurrent Systems using
Temporal Logic. In 10th Annual Symposium on Prin-
ciples of Programming Languages. ACM, 1983.

22. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Au-
tomatic Verification of Finite-State Concurrent Sys-
tems using Temporal Logic Specifications. ACM
Transactions on Programming Languages and Systems,
8(2):244–263, Apr. 1986.

23. R. Cleaveland, T. Li, and S. Sims. The Concurrency
Workbench of the New Century (Version 1.2). User’s
manual, July 2000.

24. R. Cleaveland, J. Parrow, and B. Steffen. The Concur-
rency Workbench. In Proceedings of the 1st Workshop
on Automatic Verification Methods for Finite State Sys-
tems (Grenoble, France), volume 407 of Lecture Notes in
Computer Science, pages 24–37. Springer Verlag, June
1989.

25. M. A. Cornejo, H. Garavel, R. Mateescu, and
N. de Palma. Specification and Verification of a Dy-
namic Reconfiguration Protocol for Agent-Based Ap-
plications. In Proceedings of the 3rd IFIP WG 6.1 In-
ternational Working Conference on Distributed Appli-
cations and Interoperable Systems DAIS’2001 (Krakow,
Poland), pages 229–242. IFIP, Kluwer Academic Pub-
lishers, Sept. 2001. Full version available as INRIA Re-
search Report RR-4222.

26. N. Coste, H. Garavel, H. Hermanns, F. Lang, R. Ma-
teescu, and W. Serwe. Ten Years of Performance Evalu-
ation for Concurrent Systems Using CADP. In Proceed-
ings of the 4th International Symposium on Leveraging
Applications of Formal Methods, Verification and Vali-
dation ISoLA 2010 (Amirandes, Heraclion, Crete), Part
II, volume 6416 of Lecture Notes in Computer Science,
pages 128–142. Springer Verlag, Oct. 2010.

27. N. Coste, H. Hermanns, E. Lantreibecq, and W. Serwe.
Towards Performance Prediction of Compositional
Models in Industrial GALS Designs. In Proceedings of
the 21th International Conference on Computer Aided
Verification CAV’2009 (Grenoble, France), volume 5643
of Lecture Notes in Computer Science, pages 204–218.
Springer Verlag, July 2009.

28. P. Crouzen and F. Lang. Smart Reduction. In Proceed-
ings of Fundamental Approaches to Software Engineer-
ing FASE’2011 (Saarbrücken, Germany), volume 6603
of Lecture Notes in Computer Science, pages 111–126.
Springer Verlag, Mar. 2011.

29. D. D. Deavours and W. H. Sanders. An Efficient Well-
Specified Check. In Proceedings of the 8th Interna-
tional Workshop on Petri Nets and Performance Mod-
els PNPM’99 (Zaragoza, Spain), pages 124–133. IEEE
Press, 1999.

30. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Pat-
terns in Property Specifications for Finite-State Veri-
fication. In Proceedings of the 21st International Con-
ference on Software Engineering ICSE’99 (Los Angeles,
CA, USA), May 1999.

31. E. A. Emerson and C.-L. Lei. Efficient Model Checking
in Fragments of the Propositional Mu-Calculus. In Pro-

Hubert Garavel et al.: CADP 2011: A Toolbox for the Construction and Analysis of Distributed Processes 17

ceedings of the 1st International Symposium on Logic in
Computer Science LICS’86, pages 267–278, 1986.

32. J.-C. Fernandez. ALDEBARAN : un système de
vérification par réduction de processus communicants.
Thèse de Doctorat, Université Joseph Fourier (Greno-
ble), May 1988.

33. J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Ma-
teescu, L. Mounier, and M. Sighireanu. CADP
(CÆSAR/ALDEBARAN Development Package): A
Protocol Validation and Verification Toolbox. In Pro-
ceedings of the 8th Conference on Computer-Aided Ver-
ification (New Brunswick, New Jersey, USA), volume
1102 of Lecture Notes in Computer Science, pages 437–
440. Springer Verlag, Aug. 1996.

34. J.-C. Fernandez, H. Garavel, L. Mounier, A. Rasse,
C. Rodŕıguez, and J. Sifakis. A Toolbox for the Ver-
ification of LOTOS Programs. In Proceedings of the
14th International Conference on Software Engineering
ICSE’14 (Melbourne, Australia), pages 246–259. ACM,
May 1992.

35. J.-C. Fernandez and L. Mounier. “On the Fly” Verifi-
cation of Behavioural Equivalences and Preorders. In
Proceedings of the 3rd Workshop on Computer-Aided
Verification (Aalborg, Denmark), volume 575 of Lecture
Notes in Computer Science, pages 181–191. Springer
Verlag, July 1991.

36. J.-C. Fernandez, J.-L. Richier, and J. Voiron. Verifica-
tion of Protocol Specifications using the CESAR Sys-
tem. In Proceedings of the 5th IFIP International Work-
shop on Protocol Specification, Testing and Verification
(Moissac, France), pages 71–90. IFIP, North-Holland,
June 1985.

37. M. J. Fischer and R. E. Ladner. Propositional Dy-
namic Logic of Regular Programs. J. Comput. Syst.
Sci., 18(2):194–211, Sept. 1979.

38. H. Garavel. Compilation et vérification de programmes
LOTOS. Thèse de Doctorat, Université Joseph Fourier
(Grenoble), Nov. 1989.

39. H. Garavel. Compilation of LOTOS Abstract Data
Types. In Proceedings of the 2nd International Con-
ference on Formal Description Techniques FORTE’89
(Vancouver B.C., Canada), pages 147–162. North-
Holland, Dec. 1989.

40. H. Garavel. On the Introduction of Gate Typing in E-
LOTOS. Rapport SPECTRE 94-3, VERIMAG, Greno-
ble, Feb. 1994. Annex D of ISO/IEC JTC1/SC21/WG1
N1314 Revised Draft on Enhancements to LOTOS and
Annex C of ISO/IEC JTC1/SC21/WG1 N1349 Work-
ing Draft on Enhancements to LOTOS.

41. H. Garavel. OPEN/CÆSAR: An Open Software Ar-
chitecture for Verification, Simulation, and Testing. In
Proceedings of the First International Conference on
Tools and Algorithms for the Construction and Anal-
ysis of Systems TACAS’98 (Lisbon, Portugal), volume
1384 of Lecture Notes in Computer Science, pages 68–
84, Berlin, Mar. 1998. Springer Verlag. Full version
available as INRIA Research Report RR-3352.

42. H. Garavel. Défense et illustration des algèbres de pro-
cessus. In Actes de l’Ecole d’été Temps Réel ETR 2003
(Toulouse, France). Institut de Recherche en Informa-
tique de Toulouse, Sept. 2003.

43. H. Garavel. Reflections on the Future of Concurrency
Theory in General and Process Calculi in Particular. In

Proceedings of the LIX Colloquium on Emerging Trends
in Concurrency Theory (Ecole Polytechnique de Paris,
France), November 13–15, 2006, volume 209 of Elec-
tronic Notes in Theoretical Computer Science, pages
149–164. Elsevier Science Publishers, Apr. 2008. Also
available as INRIA Research Report RR-6368.

44. H. Garavel, C. Helmstetter, O. Ponsini, and W. Serwe.
Verification of an Industrial SystemC/TLM Model us-
ing LOTOS and CADP. In Proceedings of the 7th ACM-
IEEE International Conference on Formal Methods and
Models for Codesign MEMOCODE’2009 (Cambridge,
MA, USA). IEEE Computer Society Press, June 2009.

45. H. Garavel and H. Hermanns. On Combining Func-
tional Verification and Performance Evaluation using
CADP. In Proceedings of the 11th International Sym-
posium of Formal Methods Europe FME’2002 (Copen-
hagen, Denmark), volume 2391 of Lecture Notes in
Computer Science, pages 410–429. Springer Verlag, July
2002. Full version available as INRIA Research Report
4492.

46. H. Garavel and F. Lang. SVL: a Scripting Language
for Compositional Verification. In Proceedings of the
21st IFIP WG 6.1 International Conference on For-
mal Techniques for Networked and Distributed Systems
FORTE’2001 (Cheju Island, Korea), pages 377–392.
IFIP, Kluwer Academic Publishers, Aug. 2001. Full ver-
sion available as INRIA Research Report RR-4223.

47. H. Garavel, F. Lang, and R. Mateescu. An Overview
of CADP 2001. European Association for Software
Science and Technology (EASST) Newsletter, 4:13–24,
Aug. 2002. Also available as INRIA Technical Re-
port RT-0254 (December 2001).

48. H. Garavel, F. Lang, R. Mateescu, and W. Serwe.
CADP 2006: A Toolbox for the Construction and Anal-
ysis of Distributed Processes. In Proceedings of the
19th International Conference on Computer Aided Ver-
ification CAV’2007 (Berlin, Germany), volume 4590
of Lecture Notes in Computer Science, pages 158–163.
Springer Verlag, July 2007.

49. H. Garavel, F. Lang, R. Mateescu, and W. Serwe.
CADP 2010: A Toolbox for the Construction and Anal-
ysis of Distributed Processes. In Proceedings of the 17th
International Conference on Tools and Algorithms for
the Construction and Analysis of Systems TACAS’2011
(Saarbrücken, Germany), volume 6605 of Lecture Notes
in Computer Science, pages 372–387. Springer Verlag,
Mar. 2011.

50. H. Garavel and R. Mateescu. SEQ.OPEN: A Tool for
Efficient Trace-Based Verification. In Proceedings of the
11th International SPIN Workshop on Model Checking
of Software SPIN’2004 (Barcelona, Spain), volume 2989
of Lecture Notes in Computer Science, pages 150–155.
Springer Verlag, Apr. 2004.

51. H. Garavel, R. Mateescu, D. Bergamini, A. Curic,
N. Descoubes, C. Joubert, I. Smarandache-Sturm, and
G. Stragier. DISTRIBUTOR and BCG MERGE: Tools
for Distributed Explicit State Space Generation. In Pro-
ceedings of the 12th International Conference on Tools
and Algorithms for the Construction and Analysis of
Systems TACAS’2006 (Vienna, Austria), volume 3920
of Lecture Notes in Computer Science, pages 445–449.
Springer Verlag, Mar.–Apr. 2006.

18 Hubert Garavel et al.: CADP 2011: A Toolbox for the Construction and Analysis of Distributed Processes

52. H. Garavel, R. Mateescu, and I. Smarandache. Paral-
lel State Space Construction for Model-Checking. In
Proceedings of the 8th International SPIN Workshop
on Model Checking of Software SPIN’2001 (Toronto,
Canada), volume 2057 of Lecture Notes in Computer
Science, pages 217–234, Berlin, May 2001. Springer Ver-
lag. Revised version available as INRIA Research Re-
port RR-4341 (December 2001).

53. H. Garavel, G. Salaün, and W. Serwe. On the Seman-
tics of Communicating Hardware Processes and their
Translation into LOTOS for the Verification of Asyn-
chronous Circuits with CADP. Science of Computer
Programming, 74(3):100–127, Jan. 2009.

54. H. Garavel and W. Serwe. State Space Reduction for
Process Algebra Specifications. Theoretical Computer
Science, 351(2):131–145, Feb. 2006.

55. H. Garavel and J. Sifakis. Compilation and Verification
of LOTOS Specifications. In Proceedings of the 10th In-
ternational Symposium on Protocol Specification, Test-
ing and Verification (Ottawa, Canada), pages 379–394.
IFIP, North-Holland, June 1990.

56. H. Garavel and M. Sighireanu. Towards a Second Gen-
eration of Formal Description Techniques – Rationale
for the Design of E-LOTOS. In Proceedings of the
3rd International Workshop on Formal Methods for In-
dustrial Critical Systems FMICS’98 (Amsterdam, The
Netherlands), pages 187–230, Amsterdam, May 1998.
CWI. Invited lecture.

57. H. Garavel and M. Sighireanu. A Graphical Parallel
Composition Operator for Process Algebras. In Pro-
ceedings of the Joint International Conference on For-
mal Description Techniques for Distributed Systems and
Communication Protocols, and Protocol Specification,
Testing, and Verification FORTE/PSTV’99 (Beijing,
China), pages 185–202. IFIP, Kluwer Academic Pub-
lishers, Oct. 1999.

58. H. Garavel and D. Thivolle. Verification of GALS Sys-
tems by Combining Synchronous Languages and Pro-
cess Calculi. In Model Checking Software, Proceedings of
the 16th International SPIN Workshop on Model Check-
ing of Software SPIN’2009 (Grenoble, France), volume
5578 of Lecture Notes in Computer Science, pages 241–
260. Springer Verlag, June 2009.

59. H. Garavel and P. Turlier. CÆSAR.ADT : un com-
pilateur pour les types abstraits algébriques du lan-
gage LOTOS. In Actes du Colloque Francophone
pour l’Ingénierie des Protocoles CFIP’93 (Montréal,
Canada), 1993.

60. H. Garavel, C. Viho, and M. Zendri. System De-
sign of a CC-NUMA Multiprocessor Architecture using
Formal Specification, Model-Checking, Co-Simulation,
and Test Generation. Springer International Journal
on Software Tools for Technology Transfer (STTT),
3(3):314–331, July 2001. Also available as INRIA Re-
search Report RR-4041.

61. D. Giannakopoulou. Model Checking for Concurrent
Software Architectures. PhD thesis, Imperial College
of Science, Technology and Medicine — University of
London — Department of Computer Science, Jan. 1999.

62. S. Graf, J.-L. Richier, C. Rodŕıguez, and J. Voiron.
What are the Limits of Model Checking Methods for
the Verification of Real Life Protocols? In Proceedings

of the 1st Workshop on Automatic Verification Methods
for Finite State Systems (Grenoble, France), volume 407
of Lecture Notes in Computer Science, pages 275–285.
Springer Verlag, June 1989.

63. S. Graf and B. Steffen. Compositional Minimization of
Finite State Systems. In Proceedings of the 2nd Work-
shop on Computer-Aided Verification (Rutgers, New
Jersey, USA), volume 531 of Lecture Notes in Computer
Science, pages 186–196. Springer Verlag, June 1990.

64. S. Graf, B. Steffen, and G. Lüttgen. Compositional Min-
imisation of Finite State Systems using Interface Spec-
ifications. Formal Aspects of Computation, 8(5):607–
616, Sept. 1996.

65. J. Groote and F. Vaandrager. An Efficient Algorithm
for Branching Bisimulation and Stuttering Equivalence.
In Proceedings of the 17th ICALP (Warwick), volume
443 of Lecture Notes in Computer Science, pages 626–
638. Springer Verlag, 1990.

66. J. F. Groote and A. Ponse. The Syntax and Semantics
of µCRL. In Algebra of Communicating Processes’94,
Workshops in Computing Series, pages 26–62. Springer
Verlag, 1995.

67. J. F. Groote and T. A. C. Willemse. Parameterised
Boolean Equation Systems. Theoretical Computer Sci-
ence, 343:332–369, 2005.

68. C. Helmstetter. TLM.OPEN: a SystemC/TLM Front-
End for the CADP Verification Toolbox. Workshop
on Simulation Based Development of Certified Embed-
ded Systems SBDCES’09 (Awaji Island, Hyogo, Japan),
Oct. 2009.

69. C. Helmstetter and O. Ponsini. A Comparison of Two
SystemC/TLM Semantics for Formal Verification. In
Proceedings of the 6th ACM-IEEE International Con-
ference on Formal Methods and Models for Codesign
MEMOCODE’2008 (Anaheim, CA, USA), pages 59–
68. IEEE Computer Society Press, June 2008.

70. H. Hermanns. Interactive Markov Chains and the Quest
for Quantified Quality, volume 2428 of Lecture Notes in
Computer Science. Springer Verlag, 2002.

71. H. Hermanns and C. Joubert. A Set of Performance and
Dependability Analysis Components for CADP. In Pro-
ceedings of the 9th International Conference on Tools
and Algorithms for the Construction and Analysis of
Systems TACAS’2003 (Warsaw, Poland), volume 2619
of Lecture Notes in Computer Science, pages 425–430.
Springer Verlag, Apr. 2003.

72. H. Hermanns and M. Siegle. Bisimulation Algorithms
for Stochastic Process Algebras and their BDD-based
Implementation. In Proceedings of the 5th Interna-
tional AMAST Workshop ARTS’99 (Bamberg, Ger-
many), volume 1601 of Lecture Notes in Computer Sci-
ence, pages 244–265. Springer Verlag, May 1999.

73. C. A. R. Hoare. Communicating Sequential Processes.
Commun. ACM, 21(8):666–677, Aug. 1978.

74. G. J. Holzmann. Design and Validation of Computer
Protocols. Software Series. Prentice Hall, 1991.

75. G. J. Holzmann. The SPIN Model Checker: Primer and
Reference Manual. Addison-Wesley, 2003.

76. ISO/IEC. LOTOS — A Formal Description Technique
Based on the Temporal Ordering of Observational Be-
haviour. International Standard 8807, International Or-
ganization for Standardization — Information Process-

Hubert Garavel et al.: CADP 2011: A Toolbox for the Construction and Analysis of Distributed Processes 19

ing Systems — Open Systems Interconnection, Genève,
Sept. 1989.

77. ISO/IEC. Enhancements to LOTOS (E-LOTOS). In-
ternational Standard 15437:2001, International Organi-
zation for Standardization — Information Technology,
Genève, Sept. 2001.

78. ITU-T. Specification and Description Language (SDL).
ITU-T Recommendation Z.100, International Telecom-
munication Union, Genève, 1992.

79. P. C. Kanellakis and S. A. Smolka. CCS expressions,
finite state processes, and three problems of equivalence.
Information and Computation, 86(1):43–68, May 1990.

80. J. G. Kemeny and J. L. Snell. Finite Markov Chains.
Springer, 1976.

81. A. M. Khan. Connection of Compositional Verifica-
tion Tools for Embedded Systems. Mémoire master
2 recherche, Université Joseph Fourier, Grenoble, June
2006.

82. J.-P. Krimm and L. Mounier. Compositional State
Space Generation from LOTOS Programs. In Pro-
ceedings of TACAS’97 Tools and Algorithms for the
Construction and Analysis of Systems (University of
Twente, Enschede, The Netherlands), volume 1217 of
Lecture Notes in Computer Science, Berlin, Apr. 1997.
Springer Verlag.

83. F. Lang. Compositional Verification using SVL Scripts.
In Proceedings of the 8th International Conference on
Tools and Algorithms for the Construction and Analy-
sis of Systems TACAS’2002 (Grenoble, France), volume
2280 of Lecture Notes in Computer Science, pages 465–
469. Springer Verlag, Apr. 2002.

84. F. Lang. EXP.OPEN 2.0: A Flexible Tool Integrating
Partial Order, Compositional, and On-the-fly Verifica-
tion Methods. In Proceedings of the 5th International
Conference on Integrated Formal Methods IFM’2005
(Eindhoven, The Netherlands), volume 3771 of Lecture
Notes in Computer Science, pages 70–88. Springer Ver-
lag, Nov. 2005. Full version available as INRIA Research
Report RR-5673.

85. F. Lang, G. Salaün, R. Hérilier, J. Kramer, and
J. Magee. Translating FSP into LOTOS and Networks
of Automata. Formal Aspects of Computing, 22(6):681–
711, Nov. 2010.

86. E. Lantreibecq and W. Serwe. Model Checking and Co-
simulation of a Dynamic Task Dispatcher Circuit Using
CADP. In Proceedings of the 16th International Work-
shop on Formal Methods for Industrial Critical Systems
FMICS 2011 (Trento, Italy), volume 6959 of Lecture
Notes in Computer Science, pages 180–195. Springer
Verlag, Aug. 2011.

87. X. Liu and S. A. Smolka. Simple Linear-Time Algo-
rithms for Minimal Fixed Points. In Proceedings of
the 25th International Colloquium on Automata, Lan-
guages, and Programming ICALP’98 (Aalborg, Den-
mark), volume 1443 of Lecture Notes in Computer Sci-
ence, pages 53–66. Springer Verlag, July 1998.

88. Y. Liu, J. Sun, and J. S. Dong. Developing Model
Checkers Using PAT. In Proceedings of the 8th Inter-
national Symposium on Automated Technology for Ver-
ification and Analysis ATVA 2010 (Singapore), volume
6252 of Lecture Notes in Computer Science, pages 371–
377. Springer Verlag, Sept. 2010.

89. A. Mader. Verification of Modal Properties Using
Boolean Equation Systems. VERSAL 8, Bertz Verlag,
Berlin, 1997.

90. J. Magee and J. Kramer. Concurrency: State Models
and Java Programs. Wiley, 2006 edition, Apr. 2006.

91. J. Malhotra, S. A. Smolka, A. Giacalone, and
R. Shapiro. A Tool for Hierarchical Design and Sim-
ulation of Concurrent Systems. In Proceedings of the
BCS-FACS Workshop on Specification and Verification
of Concurrent Systems (Stirling, Scotland), pages 140–
152, Swindon, UK, July 1988. British Computer Soci-
ety.

92. R. Mateescu. Vérification des propriétés temporelles des
programmes parallèles. Thèse de Doctorat, Institut Na-
tional Polytechnique de Grenoble, Apr. 1998.

93. R. Mateescu. Efficient Diagnostic Generation for
Boolean Equation Systems. In Proceedings of 6th In-
ternational Conference on Tools and Algorithms for
the Construction and Analysis of Systems TACAS’2000
(Berlin, Germany), volume 1785 of Lecture Notes in
Computer Science, pages 251–265. Springer Verlag,
Mar. 2000. Full version available as INRIA Research
Report RR-3861.

94. R. Mateescu. A Generic On-the-Fly Solver for
Alternation-Free Boolean Equation Systems. In Pro-
ceedings of the 9th International Conference on Tools
and Algorithms for the Construction and Analysis of
Systems TACAS’2003 (Warsaw, Poland), volume 2619
of Lecture Notes in Computer Science, pages 81–96.
Springer Verlag, Apr. 2003. Full version available as
INRIA Research Report RR-4711.

95. R. Mateescu. CAESAR SOLVE: A Generic Library
for On-the-Fly Resolution of Alternation-Free Boolean
Equation Systems. Springer International Journal
on Software Tools for Technology Transfer (STTT),
8(1):37–56, Feb. 2006. Full version available as INRIA
Research Report RR-5948, July 2006.

96. R. Mateescu and H. Garavel. XTL: A Meta-Language
and Tool for Temporal Logic Model-Checking. In Pro-
ceedings of the International Workshop on Software
Tools for Technology Transfer STTT’98 (Aalborg, Den-
mark), pages 33–42. BRICS, July 1998.

97. R. Mateescu and E. Oudot. Improved On-the-Fly
Equivalence Checking using Boolean Equation Systems.
In Proceedings of the 15th International SPIN Work-
shop on Model Checking of Software SPIN’2008 (Los
Angeles, USA), volume 5156 of Lecture Notes in Com-
puter Science, pages 196–213. Springer Verlag, Aug.
2008. Full version available as INRIA Research Re-
port RR-6777.

98. R. Mateescu and G. Salaün. Translating Pi-Calculus
into LOTOS NT. In Proceedings of the 8th International
Conference on Integrated Formal Methods IFM’2010
(Nancy, France), volume 6396 of Lecture Notes in Com-
puter Science, pages 229–244. Springer Verlag, Oct.
2010.

99. R. Mateescu and W. Serwe. Model Checking and Per-
formance Evaluation with CADP Illustrated on Shared-
Memory Mutual Exclusion Protocols. Science of Com-
puter Programming, 2012.
http://dx.doi.org/10.1016/j.scico.2012.01.003

100. R. Mateescu and M. Sighireanu. Efficient On-
the-Fly Model-Checking for Regular Alternation-Free

http://dx.doi.org/10.1016/j.scico.2012.01.003

20 Hubert Garavel et al.: CADP 2011: A Toolbox for the Construction and Analysis of Distributed Processes

Mu-Calculus. Science of Computer Programming,
46(3):255–281, Mar. 2003.

101. R. Mateescu and D. Thivolle. A Model Checking Lan-
guage for Concurrent Value-Passing Systems. In Pro-
ceedings of the 15th International Symposium on For-
mal Methods FM’08 (Turku, Finland), volume 5014
of Lecture Notes in Computer Science, pages 148–164.
Springer Verlag, May 2008.

102. J. M. Mellor-Crummey and M. L. Scott. Algorithms
for Scalable Synchronization on Shared-Memory Multi-
processors. ACM Transactions on Computer Systems,
9(1):21–65, Feb. 1991.

103. G. J. Milne. CIRCAL and the Representation of Com-
munication, Concurrency, and Time. ACM Trans. Prog.
Lang. Syst., 7(2):270–298, Apr. 1985.

104. R. Milner. Communication and Concurrency. Prentice-
Hall, 1989.

105. R. D. Nicola and F. W. Vaandrager. Action versus
State Based Logics for Transition Systems, volume 469
of Lecture Notes in Computer Science, pages 407–419.
Springer Verlag, 1990.

106. C. Pecheur. Specification and Verification of the CO4
Distributed Knowledge System Using LOTOS. In Pro-
ceedings of the 12th IEEE International Conference on
Automated Software Engineering ASE-97 (Incline Vil-
lage, Nevada, USA), Nov. 1997.

107. C. Pecheur. Advanced Modelling and Verification Tech-
niques Applied to a Cluster File System. In Proceed-
ings of the 14th IEEE International Conference on Au-
tomated Software Engineering ASE-99 (Cocoa Beach,
Florida, USA). IEEE Computer Society, Oct. 1999.

108. O. Ponsini, C. Fédèle, and E. Kounalis. Rewriting of
imperative programs into logical equations. Science
of Computer Programming, 56(3):363–401, May – June
2005.

109. O. Ponsini and W. Serwe. A Schedulerless Semantics of
TLM Models Written in SystemC via Translation into
LOTOS. In Proceedings of the 15th International Sym-
posium on Formal Methods FM’08 (Turku, Finland),
volume 5014 of Lecture Notes in Computer Science,
pages 278–293. Springer Verlag, May 2008.

110. J.-P. Queille. Le système CESAR : description,
spécification et analyse des applications réparties. Uni-
versité Scientifique et Médicale de Grenoble, Grenoble,
June 1982.

111. A. W. Roscoe. The theory and practice of concurrency.
Prentice Hall, 1998.

112. A. Rose, S. Swan, J. Pierce, and J.-M. Fernandez.
Transaction Level Modeling in SystemC. Open SystemC
Initiative, 2005.

113. K. K. Sabnani, A. M. Lapone, and M. U. Uyar. An
Algorithmic Procedure for Checking Safety Properties
of Protocols. IEEE Transactions on Communications,
37(9):940–948, Sept. 1989.

114. G. Salaün, X. Etchevers, N. D. Palma, F. Boyer, and
T. Coupaye. Verification of a Self-configuration Proto-
col for Distributed Applications in the Cloud. In Pro-
ceedings of the 27th Symposium On Applied Computing
SAC’12 (Riva del Garda, Italy). ACM Press, 2012. To
appear.

115. S. Schewe. Solving Parity Games in Big Steps. In
Proceedings of the 27th International Conference on

Software Technology and Theoretical Computer Science
FSTTCS’07 (New Delhi, India), volume 4855 of Lec-
ture Notes in Computer Science, pages 449–460, Berlin,
Dec. 2007. Springer Verlag.

116. P. Stevens and C. Stirling. Practical Model-Checking
using Games. In Proceedings of the First International
Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems TACAS’98 (Lisbon, Por-
tugal), volume 1384 of Lecture Notes in Computer Sci-
ence, pages 85–101, Berlin, Mar. 1998. Springer Verlag.

117. R. Streett. Propositional Dynamic Logic of Looping
and Converse. Information and Control, (54):121–141,
1982.

118. K. C. Tai and V. Koppol. Hierarchy-Based Incremental
Reachability Analysis of Communication Protocols. In
Proceedings of the IEEE International Conference on
Network Protocols (San Francisco, CA), pages 318–325,
Piscataway, NJ, Oct. 1993. IEEE Press.

119. K. C. Tai and V. Koppol. An Incremental Approach
to Reachability Analysis of Distributed Programs. In
Proceedings of the 7th International Workshop on Soft-
ware Specification and Design (Los Angeles, CA), pages
141–150, Piscataway, NJ, Dec. 1993. IEEE Press.

120. D. Thivolle. Langages modernes pour la vérification des
systèmes asynchrones. Thèse de Doctorat, Université
Joseph Fourier (Grenoble, France) and Universitatea
Politehnica din Bucuresti (Bucharest, Romania), Apr.
2011.

121. F. Tronel, F. Lang, and H. Garavel. Compositional
Verification Using CADP of the ScalAgent Deploy-
ment Protocol for Software Components. In Proceed-
ings of the 6th IFIP International Conference on For-
mal Methods for Open Object-based Distributed Systems
FMOODS’2003 (Paris, France), volume 2884 of Lecture
Notes in Computer Science, pages 244–260. Springer
Verlag, Nov. 2003. Full version available as INRIA Re-
search Report RR-5012.

122. A. Valmari. Compositional State Space Generation.
In Proceedings of Advances in Petri Nets, volume 674
of Lecture Notes in Computer Science, pages 427–457.
Springer Verlag, 1993.

123. R. J. van Glabbeek and W. P. Weijland. Branching-
Time and Abstraction in Bisimulation Semantics (ex-
tended abstract). CS R8911, Centrum voor Wiskunde
en Informatica, Amsterdam, 1989. Also in proc. IFIP
11th World Computer Congress, San Francisco, 1989.

124. C. West. A General Technique for Communication Pro-
tocol Validation. IBM Journal of Research and Devel-
opment, pages 393–404, July 1978.

125. P. Wolper. A Translation from Full Branching Time
Temporal Logic to One Letter Propositional Dynamic
Logic with Looping. Unpublished manuscript, 1982.

126. W. J. Yeh. Controlling State Explosion in Reachability
Analysis. PhD thesis, Software Engineering Research
Center (SERC) Laboratory, Purdue University, Dec.
1993. Technical Report SERC-TR-147-P.

127. W. J. Yeh and M. Young. Compositional Reachability
Analysis Using Process Algebra. In Proceedings of the
ACM SIGSOFT Symposium on Testing, Analysis, and
Verification (SIGSOFT’91, Victoria, British Columbia,
Canada), pages 49–59, New York, NY, Oct. 1991. ACM
Press.

Hubert Garavel et al.: CADP 2011: A Toolbox for the Construction and Analysis of Distributed Processes 21

128. S. Yovine. Kronos: A verification tool for real-time sys-
tems. Springer International Journal on Software Tools
for Technology Transfer (STTT), 1(1/2):123–133, Oct.
1997.

	Introduction
	Architecture and Verification Technology
	Specification languages
	Visual Checking
	Model Checking
	Equivalence checking
	Compositional Verification
	Performance Evaluation
	Parallel and Distributed Methods
	Applications
	Conclusion

