
F. Lang, M. Volk (Eds):
Models for Formal Analysis of Real Systems (MARS 2024)
EPTCS 399, 2024, pp. 21–100, doi:10.4204/EPTCS.399.5

© H. Garavel & B. Luttik
This work is licensed under the Creative Commons
Attribution-Noncommercial-Share Alike License.

Four Formal Models of IEEE 1394 Link Layer

Hubert Garavel
Univ. Grenoble Alpes, INRIA, CNRS, Grenoble INP, LIG, 38000 Grenoble, France

hubert.garavel@inria.fr

Bas Luttik
Eindhoven University of Technology, The Netherlands

s.p.luttik@tue.nl

We revisit the IEEE 1394 high-performance serial bus (“FireWire”), which became a success story
in formal methods after three PhD students, by using process algebra and model checking, detected a
deadlock error in this IEEE standard. We present four formal models for the asynchronous mode of
the Link Layer of IEEE 1394: the original model in µCRL, a simplified model in mCRL2, a revised
model in LOTOS, and a novel model in LNT.

1 Introduction

IEEE 1394 (also called “FireWire”) is an interface standard that specifies a serial bus architecture for
high-speed communications. It can connect up to 63 peripherals in a tree or daisy-chain topology, and can
perform both asynchronous and isochronous transfers simultaneously. It was developed between 1986
and 1995 by a large consortium gathering Apple, Panasonic, Philips, Sony, and many others contributors.
This work resulted in an IEEE standard [43], followed by integration in many industrial products.

In the framework of the COST-247 action [22], a pan-European academic collaboration that took
place between 1994 and 1997, the asynchronous mode of the link layer protocol of IEEE 1394 was
selected as an interesting case study for formal methods. This protocol, which was close to being stan-
dardized, was thus studied by several young scientists at this time. At CWI Amsterdam, Bas Luttik
developed a formal model [26, 27] in the µCRL language [19, 15] and stated five correctness proper-
ties that the protocol should satisfy. At INRIA Grenoble, Mihaela Sighireanu translated this model to
LOTOS [20] and, using the XTL model checker [29] with the help of Radu Mateescu, discovered that
the deadlock-freeness property did not hold, i.e., that the protocol could enter a deadlock state after a
specific sequence of 50 transitions [37, 38, 39]. A detailed report about this bug, which would have been
difficult to detect using step-by-step simulation or testing, can be found in [41]. The link layer protocol
was also studied using theorem proving at the Universities of Kiel and Eindhoven by Lars Kühne, Jozef
Hooman, and Willem-Paul de Roever [23].

Although the IEEE 1934 serial bus is no longer used today (deployed in Apple products from 1999
to 2016, it has been gradually replaced by USB 2, USB 3, and Gigabit Ethernet), it is an inspiring
example for the formal methods community. From a historical perspective, it is a striking success story
where three doctoral students discovered in a few weeks an unexpected deadlock in an IEEE standard
designed and scrutinized over ten years by one hundred experts. Also, numerous research papers have
been devoted to another aspect of IEEE 1934, its leader election algorithm (“root contention protocol”),
the verification of which involves parameters, probabilities, and real time [35, 30, 33, 47, 7, 28, 48, 31,
34, 42, 4, 2, 24, 25, 32, 46, 49, 5].

http://dx.doi.org/10.4204/EPTCS.399.5
https://creativecommons.org
https://creativecommons.org/licenses/by-nc-sa/4.0/

22 Four Formal Models of IEEE 1394 Link Layer

Concerning the link layer protocol, formal methods evolved since 1997, as the µCRL and LOTOS
languages have been replaced by newer languages, respectively mCRL2 [17, 16, 18, 1] and LNT [13, 10,
12, 36, 3], a descendent of the E-LOTOS standard [21]. Therefore, twenty-five years after, we revisit this
case study to present, along with the original µCRL model, three companion models: a model written in
mCRL2 by Jan Friso Groote, a recent revision of the LOTOS model developed by M. Sighireanu, and a
novel model written in LNT.

The present article is organized as follows. Section 2 gives an overview of the IEEE 1394 architecture
and explains the behaviour of the Link layer and neighbour layers. Section 3 presents four formal models
in µCRL, mCRL2, LOTOS, and LNT, and discusses their main features from a modelling point of view
— the models themselves being fully provided in Annexes A to D. Section 4 briefly reports about the
verification (model checking and equivalence checking) done on these models. Finally, Section 5 gives
a few concluding remarks.

2 IEEE 1394 bus

In this section, we present a description of IEEE 1394 that bridges the gap between the general descrip-
tion given in the IEEE standard [43] and the four formal models provided in the present article. The
text in this section is based upon the technical report [26] in which the µCRL model first appeared —
actually, this model was developed from a draft version [44] of the IEEE standard, but we believe that
there is no significant difference between the draft and the standard in this respect.

First, we present the architecture as defined in the standard. Then, we focus our attention on the
link layer of the protocol, the behaviour of which is our primary modelling purpose. To provide a
comprehensive description of the link layer interacting with its environment, we will need to include the
external functional behaviour of the physical layer, and so that is described too.

2.1 Architecture

The IEEE 1394 standard deals both with the physical requirements and the protocol of the bus. The
main feature of the standard is that it supports two modes of transaction: an asynchronous mode and an
isochronous mode.

In asynchronous mode, one party (the sender) can send a message of arbitrary length to some other
party (the receiver). Such a message may be sent at an arbitrary moment after the sender has gained
access to the bus; the only timing restriction is that the interval during which a node may have access
to the bus is bounded. In this mode, the receiver must confirm the receipt of the message by sending an
acknowledgement.

In isochronous mode the sender is obliged to send messages at fixed rates, and messages are not
acknowledged. This service is useful for fast transmission of large amounts of data (e.g., audio/video
streams), if certainty at the side of the sender about the receipt of the data by the receiver is not important,
whereas the arrival of the data at a constant rate is.

The IEEE 1394 serial bus architecture is roughly as depicted in Figure 1. It consists of a number of
nodes (addressable entities that run their own part of the protocol) connected by a serial cable.

The protocol describing the behaviour of a node in asynchronous mode distinguishes three layers:

1. The transaction layer (the upper layer, indicated by TRANS in Figure 1) offers three types of
transactions to the application(s) running on the node: read transactions (read data from another
node), write transactions (write data to another node), and lock transactions (have some of its own

H. Garavel & B. Luttik 23

CABLE

PHY

LINK

TRANS

C
O

N
T

R
O

L
L

E
R

node 1

PHY

LINK

TRANS

C
O

N
T

R
O

L
L

E
R

node 2

PHY

LINK

TRANS

C
O

N
T

R
O

L
L

E
R

node n

Figure 1: IEEE 1394 architecture

data processed by another node after which it is transferred back). Such transactions consist of a
request and a response; the transaction layer can both handle concatenated response transactions
(response follows request immediately) and split transactions (response not necessarily follows
immediately on the request it belongs to).

2. The link layer (the middle layer, indicated by LINK in Figure 1) forms the interface between the
transaction layer and the physical components of the bus (consisting of the physical layers, which
are connected to each other by a serial cable). The link layer provides two types of services to the
transaction layer:

Data request/response: By means of a LINK data request, the transaction layer instructs the link
layer to send a packet to some particular node or to broadcast a packet to all other nodes. The
transaction layer must react on a packet addressed to it by sending an acknowledge packet by
means of a LINK data response.

Data indication/confirmation: By means of a LINK data indication, the link layer indicates the
arrival of data (either request or response data). The receipt of an acknowledge packet is
indicated to the transaction layer by means of a LINK data confirmation.

subaction 1

arb packet ack

data start data end subaction gap

subaction 2

arb request
packet ack response

packet ack

data prefix

Figure 2: Subactions

The link layer divides the stream of data that it receives from the physical layer into an alternating
sequence of subactions and subaction gaps, the latter being time intervals with a specified minimal
length during which serial cable resides in an idle state (see Figure 2). A subaction either consists
of a single packet (in case of a split transaction, see subaction 1) or of two packets (in case of a
concatenated response transaction, see subaction 2). Within each subaction, a packet is delimited

24 Four Formal Models of IEEE 1394 Link Layer

by special data start and data end signals1; the gap between two packets within a subaction must
be filled with data prefix signals in order to distinguish these gaps from the subaction gaps.
Before a packet can be sent, the link layer must first gain access by issuing an arbitration procedure.
Moreover, the link layer must transform the requests of the transaction layer into a certain packet
format, computing and attaching checksums to parts of the data to be transmitted. It also decides
whether incoming packets have been received properly by verifying the attached checksums. Every
packet that is sent by any of the nodes is received by the link layer of every node. If a link layer
determines that the packet was indeed addressed to the node it is part of, then it forwards the
contents of the packet to the transaction layer. The link layer also handles the sending and receiving
of acknowledgements.

3. The physical connection between a node and the serial line is called the physical layer (the lower
layer, indicated by PHY in Figure 1). It listens to and puts signals on the serial cable, measures
the lengths of the time intervals during which the cable resides in an idle state, and determines,
together with the other physical layers, which node has control over the cable (arbitration). It
provides the following services to the link layer:

Arbitration request/confirmation: The link layer instructs the physical layer to start an arbitra-
tion procedure by means of a PHY arbitration request. The result of this procedure (either
won or lost) is communicated to the link layer by means of a PHY arbitration confirmation.

Data request/indication: The link layer instructs the physical layer to put some signal on the
cable by means of a PHY data request. The physical layer indicates to the link layer the
detection of a signal on the cable (or information about the status of the cable) by means of a
PHY data indication.

Clock indication: To notify the link layer that it can (and should) put a signal on the cable, the
physical layer communicates a PHY clock indication.

According to [43], there is also a so-called node controller that can influence each of the three layers.
Since, in asynchronous mode, the role of this node controller is restricted to the ability to reset each of
the three layers (force them into their initial state), we will not consider the node controller in this paper.

2.2 Link layer

We proceed to describe in more detail the behaviour in asynchronous mode of the link layer (the middle
layer of the three-layered protocol), which is responsible for the construction of packets, the transmission
of these over a serial (one-bit) line to other parties, and the computation and verification of checksums.

We model the process behaviour of the link layer according to the state machine depicted in [43,
Figure 6-19, Page 170] and the accompanying informal explanation. The part of the state machine
defining the behaviour in asynchronous mode has eight states Ln (0 ≤ n ≤ 7).

The link layer processes maintain a buffer (initially empty) to store a pending request from the trans-
action layer.

In its initial state, the link layer can either receive a data request from the transaction layer or a data
indication from the PHY layer.

At a data request, a packet is constructed from the parameters that have been put into the buffer by
the transaction layer. The link layer process then starts a fair arbitration procedure to gain access to the
bus. If it wins the arbitration, then the underlying physical layer controls the cable and the link layer

1These and other “signals” of the link layer correspond to analog signals detected or emitted by the physical layer.

H. Garavel & B. Luttik 25

enters send mode (see below). However, it may also happen that the physical layer indicates the arrival
of data: the packet to be sent is then stored in the buffer and the data is received first.

At a data indication, it must be checked whether the received signal is a Start signal. If so, this
means that some other node has control over the cable and is sending a packet; the incoming packet must
be received in receive mode. Otherwise, the signal (which is not a Start signal) can be ignored.

Send mode. As soon as a node has gained control over the cable, its physical layer starts emitting clock
indications to inform the link layer that it should send a signal. The link layer must respond to every such
clock indication and send the entire packet, one signal at a time, delimited by a Start and an End signal.
The End signal also notifies the physical layer that the link layer is done sending the packet; it will cease
to send clock indications. Depending on the value of the destination field, the link layer either informs
the transaction layer that a broadcast packet was sent properly, or that it must wait for an acknowledge
packet.

The acknowledge packet must arrive within some specific amount of time: if a subaction gap
(subactgap signal) occurs before an acknowledgement with valid checksum has been received entirely
(i.e., up to and including the terminating End signal), then the link layer will act as if the acknowledge-
ment is missing (an acknowledge packet can be identified by its length; it consists of one signal). When
a Start signal has been received, then the link layer expects to receive an acknowledge signal. If the
next signal is indeed a data signal, then the link layer receives the terminating End signal, checks the
validity of the received acknowledge signal, and sends an acknowledgement received (ackrec) to the
transaction layer. If, instead, another data signal arrives, or if there is no terminating End signal, or if
the acknowledge packet is invalid, then the link layer sends acknowledgement missing (ackmiss) to the
transaction layer. Both in case of failure and in case of success, the link layer does wait for an indication
of the physical layer that a subaction gap has occurred, before it returns to its initial state. Of course, if
a subaction gap interferes in the above described behaviour, then the link layer should immediately send
an ackmiss and return to its initial state.

Receive mode. If the link layer receives a Start signal, it enters receive mode, expecting to see a
packet being put on the bus by some other link layer. Asynchronous packets consist of four signals. The
link layer must receive at least two signals before it can determine whether the packet is addressed to it.

If it only receives one signal followed by a terminating End, this is an acknowledge packet, which
should be ignored: the link layer will wait for the next subaction gap and return to the initial state.

If the second signal is indeed a destination signal, the link layer must check whether the incoming
packet is either a packet addressed to it, or a broadcast packet, or a packet for some other node. In the
first case, the link layer must notify the physical layer that it wants access to the bus as soon as the packet
has been received entirely, in anticipation of sending an acknowledgement. This is done by means of
an immediate arbitration request. Broadcast packets, however, are not acknowledged; so, in the second
case, no such request is needed. In the third case, the link layer should completely ignore the packet and
return to the initial state at the next subaction gap.

The third signal is expected to be a header signal, and the fourth signal should be a data signal. If the
packet is correctly terminated by either an End signal or a Prefix signal, then the packet is forwarded
to the transaction layer, either as a broadcast packet or as a packet that was addressed to this node. In
both cases, the data checksum is verified. Observe that, in the broadcast case, a packet with an invalid
data checksum is ignored. In the other case, the packet will have to be acknowledged, so upon winning
a PHY Arbitration confirmation, the link layer continues in send acknowledgement mode.

26 Four Formal Models of IEEE 1394 Link Layer

Any deviation of the above described procedure will cause the link layer to ignore the packet; it will
wait for a subaction gap and then returns to the initial state. Since an immediate arbitration request
may have been dispatched, a PHY Arbitration confirmation of won may still arrive. In such a case, the
link layer is granted access to the bus, but does not need to send an acknowledgement. Therefore, if the
destination signal indicated that the packet was meant for this node, the arbitration confirmation must be
received, and control over the cable must be terminated immediately by sending an End signal.

Send acknowledgement mode. While the link layer is waiting for the transaction layer to respond to a
data indication with the proper acknowledgement code, it must keep the cable busy by sending a Prefix
signal at every clock indication; this is to avoid the occurrence of a subaction gap. Depending on the
type of the received packet, the transaction layer may need to issue a so-called concatenated response
(for instance, the packet was a read request and the transaction layer immediately wants to send the
requested data to the requesting node). By means of a data response, the transaction layer communicates
the proper acknowledgement, as well as one of the values release or hold. The former means that
no concatenated response is requested and that, after sending the acknowledgement, the link layer may
release the bus and return to its initial state. The latter means that a concatenated response is requested
and that the link layer should maintain control over the bus after sending the acknowledgement packet
by responding to clock indications with Prefix signals. Upon a data request, the link layer can then go
into send mode immediately.

2.3 Physical layer

To simulate and analyse the interaction of the link layers of n nodes, we need to model the external
behaviour of underlying n physical layers connected by a cable, which, together, we shall refer to as the
bus.

The bus needs to keep track of which of the n nodes have had control over the bus during a so-called
fairness interval; to this aim, it maintains a table of n Booleans. During a fairness interval, each node
is allowed to gain control over the bus at most once, by means of a fair arbitration request. It may
also access the bus more than once as a consequence of an immediate arbitration request. As soon
as the bus has been idle for some specified amount of time and at least one link layer has got access
during the running fairness interval, an arbitration reset gap occurs to indicate that every node may,
again, be granted access through fair arbitration. The time interval that the bus must idle before such
an arbitration reset gap may occur should be longer than that of a subaction gap.

When the bus is in idle state and the link layer of some node requests arbitration, the bus enters
decision mode: it checks whether the requesting node already got access during the present fairness
interval. If not, the bus confirms the arbitration request by indicating that the node has won arbitration
and evolves into a busy state; otherwise, the bus indicates that the arbitration is lost.

When the bus is in busy state, it records which node has control over the bus, and which nodes have
requested immediate arbitration. In this state, the bus may still receive fair arbitration requests, but
they will be confirmed by reporting that the arbitration was lost. The node that must send a response to
the packet put on the bus will issue an immediate arbitration request. No confirmation is sent, however,
until the busy node releases its control. Furthermore, as long as some link layer still needs to send signals,
the appropriate clock indications must be generated and signals must be distributed.

In distribution mode, the bus delivers signals to all nodes except the one that dispatched it. To obtain
a realistic model, the potential loss or corruption of signals is taken into account through a function that
assigns an error value to the checksum field of header signals, data signals, and acknowledge signals.

H. Garavel & B. Luttik 27

Moreover, an extra dummy value will be used to describe the situation in which packets with a invalid
length are delivered. The following transmission errors are modelled:

• If the signal is a destination signal, then this signal may be invalidated. However, if this happens,
the header checksum (which comes with the next signal) is no longer valid. The bus should register
of which nodes invalid destinations have been distributed.

• Any signal, except for header signals having a corrupted checksum according to the above, may
be delivered correctly.

• If the signal to be delivered is a header signal, a data signal or an acknowledge signal, then it may
be delivered corrupted, or it may not be delivered at all.

• If the signal to be delivered is a data signal, then the packet may be extended by sending a dummy
signal immediately after the data signal.

When a signal has been distributed to every node, it is checked whether this signal was an End signal. If
so, the current busy node no longer requires access to the bus. It is then checked whether some node has
requested immediate arbitration. If not, a subactgap is distributed to all nodes and the bus returns to its
idle state. Otherwise, if other nodes have requested access, control over the bus must go to one of those
nodes. The bus then sends arbitration confirmations and a clock indication to all nodes that requested
immediate arbitration.

It may happen that more than one node has control over the bus. To resolve such a conflict situation,
the bus must wait for End signals from nodes, until only one node has access. Then, a data request is
received from this node. If it is not an End signal, the node becomes the busy one and this signal is
distributed to all other nodes. However, if the received signal is an End signal, no node has control over
the bus anymore; a subactgap signal is then distributed to all nodes, after which the bus returns to its
idle state.

2.4 Transaction and application layers

To precisely model the lower layers of IEEE 1394, it is sufficient to combine in parallel n LINK processes
and one BUS process, which describes n PHY processes and a cable. The µCRL and mCRL2 models
given in Annexes A and B follow this approach for n = 2, with a simple MAIN process gathering two
link layers and a bus.

For model-checking verification (i.e., using a model checker to exhaustively explore and analyze the
reachable state space), it is desirable to describe the upper layers as well, namely, the external behaviour
of the transaction layer and of the application running on top of it. To this aim, M. Sighireanu introduced
in her E-LOTOS model [37] two additional processes: TRANS, which represents a transaction layer, and
Application, which describes the application and which we note APPLI.

TRANS process. As mentioned in Section 2.1, the transaction layer provides read, write, and lock
transactions to the application. Transactions follow the traditional four-step connection establishment
of the OSI model: request, indication, response, and confirmation. Inside the TRANS process, outgoing
requests and incoming responses are handled by two sub-processes running in parallel and synchronized
together. Both types of transactions (concatenated and split) are dealt with. Further details can be found
in [37, Section 7].

The deadlock problem mentioned in Section 1 is caused by a missing transition in the packet trans-
mit/receive state machine of the link layer (precisely, in the Link4BRec sub-process of the µCRL and

28 Four Formal Models of IEEE 1394 Link Layer

mCRL2 models). To fix this bug, one option is to modify the behaviour of the link layer to insert the
missing transition, as shown in [41]. Another option (adopted in the LOTOS and LNT models to pre-
serve compatibility with the µCRL and mCRL2 models) is to keep the LINK process unchanged and
modify instead the TRANS process by removing the transition (synchronized with the LINK process) that
causes the deadlock; interestingly, the 2008 revision of IEEE 1394 also kept the link-layer state machine
unchanged (see [45, Figure 6-21, Page 162]). Finally, to determine the behaviour of TRANS, a parameter
v was added, which is equal either to ok (deadlock-free version) or to ko (original version).

APPLI process. M. Sighireanu designed 11 different applications, which differ by the scenario chosen
among three possibilities (see [37, Section 9.2] for details), the maximal number of nodes connected to
the bus, and the maximal number of requests sent to the link layer. Combined with both variants of the
TRANS process, this led to 22 different MAIN processes, hence 22 models to be verified.

NODE process. To factorize the vast amount of duplicated code among these 22 MAIN processes,
H. Garavel introduced a new NODE process that expresses the parallel composition of three processes: a
LINK, a TRANS, and an APPLI. Notice that, unlike the approach of [37, Section 9.2], the APPLI process
is no longer invoked from within the TRANS process.

3 Formal models

In this section, we present in more detail the four formal models of the IEEE 1394 link layer, following
the chronological order of their development.

3.1 Formal model in µCRL

The first formal model of the link layer was written in 1997 by B. Luttik and circulated among the
COST-247 community. It was reviewed by H. Garavel, J.F. Groote, and M. Sighireanu, who provided
comments that led to improvements and simplifications. It was published as an annex (nicely compacted
using mathematical symbols) in [26, 27] and, since then, has remained fairly stable. The µCRL model
given in Annex A is close to this original model, with three enhancements:

• It is “machine-readable”, meaning that it can be executed by the µCRL toolset.

• It uses the map keyword added in the 1997 version of µCRL [15] to declare non-constructors,
whereas the original model [26, 27] used the 1995 version of µCRL [19], which does not distin-
guish between constructors and non-constructors.

• It introduces tau internal actions in the Resolve and Distribute sub-processes of the BUS

process, in order to eliminate two unguarded recursive calls that existed in the original model and
that the µCRL toolset cannot handle — even if the recursion is actually bounded by the fixed
number of LINK processes.

Notice that the µCRL model is quite large (809 non-blank lines), as the Bool and Nat types with all their
basic functions must be defined in extension. This verbosity issue was solved in the three other formal
models.

H. Garavel & B. Luttik 29

3.2 Formal model in LOTOS

In 1997, M. Sighireanu wrote a LOTOS model of the IEEE 1394 link layer, based on the draft µCRL
model of B. Luttik. The development of both models at the same time led to clarifications, enhancements,
and simplifications in each of them. The LOTOS model aimed at using the existing CADP toolset [8] to
perform model-checking verification, and became an official demo example [40] of CADP in 1997. The
LOTOS code was similar in essence to the µCRL code, but with a few differences:

• As mentioned in Section 2.4, it introduced TRANS and APPLI processes to describe the upper
layers of IEEE 1394, as well as various MAIN processes specifying 22 verification scenarios.

• The LOTOS model was shorter because it imported predefined libraries containing, e.g., the
Boolean and NaturalNumber types.

• The LOTOS model uses conditional rewrite rules (e.g., C1, ...,Cn =⇒ L = R) where the µCRL
model needs to take a detour via user-defined if(C,E,E ′) functions to express conditional equal-
ities.

• The µCRL rewriter does not consider a fixed ordering of the rewrite rules: it is the modeller’s
responsibility to define a confluent term rewrite system. On the contrary, the CÆSAR.ADT com-
piler [9] for LOTOS assumes that the rewrite rules defining each (non-constructor) function are
ordered by decreasing priority; this allows more concise definitions of equality functions (e.g., the
eq comparator for type SIGNAL has 16 rules in µCRL and 2 in LOTOS) and other functions (e.g.,
is dest, is header, is data, and is ack need 10 rules each in µCRL and 2 in LOTOS).

• The LOTOS model renames all local variables i to j, because the former is a reserved LOTOS
keyword that denotes the internal action (i.e., Milner’s τ action). Later versions of CADP lifted
this restriction by making it possible to have LOTOS variables or functions named i.

This LOTOS model remained stable for many years with only, in 2005, a simplification of the handwrit-
ten C code used to iterate over data domains, which was reduced from 2134 to 156 lines by factorizing
similar code fragments present in the various scenarios.

However, in 2023, H. Garavel did a full revision of the LOTOS model, prompted by the development
of the LNT model in parallel. The volume of LOTOS code was reduced by one third (from 2091 to 1385
lines), without loss of functionality and still preserving strong bisimilarity. This was done by merging
the two versions of the TRANS process into one parameterized process, by merging the five versions of
the APPLI process into another parameterized process, and by introducing the NODE process to factorize
duplicated LOTOS code. A few other changes were made to simplify the LOTOS code and make it
closer to the µCRL code:

• Like in the µCRL model, two LOTOS processes Link and Bus have been added to serve as main
entry points.

• The definitions of the LOTOS type SIGNAL and of its related types have been aligned on the
µCRL ones by eliminating unnecessary auxiliary tuple types. Yet, to make the LOTOS model
easier to understand, the four overloaded constructors sig of type SIGNAL have been renamed to
destsig, acksig, datasig, and headersig, respectively (even if LOTOS and LNT also support
overloading of constructor functions).

• To reflect the model-checking assumptions of [37, Section 9.2], each of the three types DATA,
HEADER, and ACK is directly defined as a singleton (one-value) type, rather than defining it as a
two-value type and later providing ad hoc C code that only enumerates one of these two values.

30 Four Formal Models of IEEE 1394 Link Layer

3.3 Formal model in mCRL2

In June 2005, the µCRL model was translated to mCRL2 by J.F. Groote and distributed as a demo
example [14] in the mCRL2 toolset.

The mCRL2 spec is 60% shorter than the µCRL one (809 non-empty lines in µCRL vs 327 in
mCRL2). Most of this reduction comes from data type definitions, the size of which was roughly divided
by 6.4 in mCRL2. This is explained by two factors:

• Like LOTOS, mCRL2 benefits from built-in data types (e.g., Bool, Nat, etc.), together with their
basic functions, which need not be defined in every model.

• Like functional languages (ML, Haskell, etc.) and E-LOTOS [21], mCRL2 types can be defined by
their constructors. For instance, the SIGNAL type is defined using the struct construct of mCRL2
and the BoolTABLE type is concisely defined using the built-in List datatype. For such types,
equality functions, recognizers (i.e., functions, such as is dest, that check whether an expression
matches a given constructor), and projections (i.e., functions, such as first, second, third,
and fourth for type quadruple, that extract the various arguments of a constructor) are defined
automatically.

The mCRL2 processes differ on minor points from the µCRL ones:

• The syntax of the “if C then A else B” construct has changed: it is noted “C -> A <> B” in
mCRL2 and “A <| C |> B” in µCRL.

• In the LINK process, the µCRL definitions of the Link0 and Link7 sub-processes contain sum-
mations (i.e., nondeterministic choices) ranging over natural numbers that are not restricted in any
way. In the mCRL2 model, these summations are bounded by the number of LINK layers.

• In the mCRL2 model, each tau action introduced to guard recursion (see Section 3.1) is replaced
by an action internal, which is later abstracted from.

3.4 Formal model in LNT

Besides developing a complete LOTOS model and using it for model-checking verification, M. Sighire-
anu also wrote an E-LOTOS model of the IEEE 1394 link layer that was, rather than the LOTOS model
itself, presented in [37, 38, 39]. At this time, the E-LOTOS language was still being standardized and
not finalized yet. In essence, the E-LOTOS model bears similarities with the mCRL2 model developed
later, notwithstanding the syntactic differences between both languages.

The LNT model presented in Annex D does not derive from this E-LOTOS model, as its history
is distinct. In 2022, the LOTOS model (taken in its original version) was partly translated to LNT by
Oussama Oulkaid and Marck-Edward Kemeh, as part of an exercise for master students at the University
of Grenoble. Their model was later reworked and reshaped by H. Garavel, in order to make it complete
and strongly bisimilar to the LOTOS one. Because it had been obtained by systematic translation, this
LNT model was very much in the same style as the µCRL, mCRL2, and LOTOS ones: namely, data types
defined as term rewrite systems, and processes defined as state machines extended with local variables
that can be read and modified on transitions.

Therefore, H. Garavel entirely revised this LNT model in order to obtain a “better” model that would
exploit the characteristic features of LNT and demonstrate the full capabilities of this language. This
revision was achieved by progressive transformations, checking at each step that strong bisimilarity is
preserved. Concerning data specifications in the resulting LNT model, three main remarks can be made:

H. Garavel & B. Luttik 31

• The type definitions in LNT are similar (up to syntax) to mCRL2 ones, except that equali-
ty/inequality functions must be requested explicitly (using “with =” and “with <>” clauses)
and that functions for extracting/updating constructor arguments must also be requested (using
“with get” and “with set” clauses); this ensures that LNT models are self-contained and not
cluttered with useless implicit functions.

• As regards function definitions, the LOTOS rewrite rules ordered by decreasing priority can be
systematically translated to LNT pattern-matching case statements. However, this is not the only
style permitted by LNT, and not necessarily the most concise and readable one. One can also define
functions in a more imperative style, with the usual programming constructs (variable assignments,
if-then-else, return statements, etc.), as shown, for instance, in the various functions manipulating
values of type BoolTABLE.

• A salient difference between µCRL, LOTOS, and mCRL2, on the one hand, and LNT, on the other
hand, concerns partial functions, i.e., functions that are not defined over the entire domain of their
arguments (e.g., function get for the BoolTABLE type or functions getdest, getdcrc, getdata,
gethead, getadd, and corrupt for the SIGNAL type). In µCRL, LOTOS, and mCRL2, partial
definition is implicit, in the sense that some equations are not given, e.g., there is no equation to
define “get (n, empty)”. The LOTOS model of Annex C contains comments to warn about
partial definitions, but this is left to the good will of the specifier.
In LNT, the situation is different: any partial function triggers (based on control- and data-flow
analysis) an error, which the specifier is expected to correct, either by properly dealing with the
overlooked cases, or by explicitly inserting a “raise E” statement at each point where the function
might terminate without returning a result — E being either an event declared as an exception that
the function can raise, or the predefined event UNEXPECTED denoting an exception that cannot be
caught and triggers a run-time error.

Concerning processes, the following five transformations have been repeatedly applied until an idiomatic
LNT model was obtained:

• The guarded commands “[C]→ A [] [not(C)]→ B” present in the LOTOS model have been
translated to “if C then A else B end if ” statements of LNT. The then and else branches have been
permuted, negating the Boolean condition C, when B was much shorter than A. Also, nested if
statements have been flattened whenever possible by using the (Ada-like) elsif clause of LNT.

• When this was convenient, calls to recursive processes have been replaced by the loop statements
of LNT, possibly with a break statement to exit the loop. For instance, the Link3, Link5, and
Link7 processes of the µCRL, mCRL2, and LOTOS models have been replaced, in the LNT
model, by loop statements. Indeed, in µCRL, mCRL2, and LOTOS, (finite or infinite) iteration
must always be expressed using recursion, with two main drawbacks: (i) the mandatory use of
recursion obfuscates the flow of control by requiring the definition of auxiliary recursive processes
and “goto-like” calls to these processes; (ii) it also obfuscates the flow of data by requiring, for
such processes, as many parameters as there are live variables at the point where these processes
are called. Using iteration rather than recursion often leads to simpler, more readable models.

• In some cases, finite loops can be further simplified by turning them into while or for loops. For
instance, the sub-process Resolve2 of the µCRL, mCRL2, and LOTOS models can be rephrased
as a while loop, whereas the sub-processes Resolve, SubactionGap, and Distribute can be
described using for loops, hereby getting rid of the extra parameters that store the loop variables.

32 Four Formal Models of IEEE 1394 Link Layer

Notice that such iterative behaviour was quite clear from the textual description of these processes
in [26], but only LNT enables one to express it in natural way.

• Processes that are called only once (especially after recursion has been replaced by iteration)
should be expanded in-line at the point where they are called. Doing so, the control flow be-
comes more readable (as each process call is similar to a “goto”) and many process parameters
are eliminated. M. Sighireanu applied this idea when designing her E-LOTOS model: the two
µCRL sub-processes DecideIdle and Link1 were expanded in-line [37, footnotes 7 and 8]. In
the LNT model of Annex D, this idea was pushed beyond by also eliminating the sub-processes
Link3, Link3RA, Link3RE, Link4DH, Link4RH, Link4RD, Link4RE, Link4BRec, Link4DRec,
Link5, Link6, Link7, Resolve, and Resolve2. The sub-process Link4, although called only
once, was not expanded in-line, because it is so large that its expansion would have increased the
nesting depth too much. Also, a new Link2 sub-process was added to factorize both sub-processes
Link2req and Link2resp in a single one. As a result, the LINK process has only 6 (mutually
recursive) processes in the LNT model, instead of 19 in the other models — maintaining an exact
correspondence with the 8 states describing the asynchronous mode [43, Figure 6-19, Page 170]
was not considered a requirement for the LNT model.

• Since the in-line expansion of processes often creates variables with nested scopes, three additional
transformations may be suitable to keep the LNT model simple:

– merging different variables that have the same type and are never used simultaneously, so as
to decrease the number of variables.

– enlarging the scope of nested variables by moving their declarations upward, so has to reduce
the nesting depth of variable scopes;

– renaming nested variables declared in the scope of another variable having the same name;
for instance, after successively expanding the sub-process Link7 in Link6, Link6 in Link5,
and Link5 in Link4DRec, the d variable of Link7 arrives in the scope of the d variable of
Link4DRec; even if the innermost variable hides the outermost one in LNT (as in Algol-60),
it may be suitable to give these variables different names to avoid confusion.

These transformations sometimes conflict with each other, and their judicious application cannot
be governed by strict laws: it is rather a matter of taste and circumstances.

4 Verification

The four formal models of the IEEE 1934 link layer have been checked by their respective compilers:
the µCRL toolset, the mCRL2 toolset, and, for the LOTOS and LNT models, the CADP toolset.

The five correctness properties stated by B. Luttik [26, Section 4] have been formulated in the ACTL
temporal logic [6] by R. Mateescu and M. Sighireanu [37, Section 10]. Using the XTL [29] model
checker of CADP, these formulas have been checked on 16 out of 22 variants of the LOTOS model
(totalling 80 model-checking jobs), the domains of the types ACK, DATA, and HEADER being limited to a
single value. All the properties hold, except the first property (deadlock freeness), which is violated on
the “original” models when the application layer executes its most complex scenarios.

The LNT model has been verified in two ways, using both model checking and equivalence checking.
On the one hand, the ACTL formulas evaluate identically on the 16 variants of the LNT model. On the
other hand, the labelled transition systems generated from 20 out of 22 variants of the LNT model are
strongly bisimilar to those generated from the same variants of the LOTOS model. The labelled transition

H. Garavel & B. Luttik 33

systems of the two remaining variants are too large for being generated directly, and would certainly
benefit from compositional verification techniques [11]. In 14 cases out of 20, the labelled transition
systems generated from LOTOS and LNT have the same size, whereas in 6 cases, those generated from
LNT are slightly larger (+0.46% states, +0.43% transitions). Using version 2024-a “Eindhoven” of the
CADP toolbox, these verifications were performed in less than 8 minutes on a Dell Latitude 5580 (Intel
Core i5-7200U processor, 16 GB RAM) running Linux.

5 Conclusion

Revisiting the IEEE 1394 link layer problem, a true success story of formal methods, we presented and
discussed four models written in µCRL, mCRL2, LOTOS, and LNT — the LOTOS model (revised in
2023) and the LNT model being novel contributions. In this respect, the present paper is a tentative
“Rosetta stone” for comparing various modelling languages dedicated to communication protocols and
concurrent systems. In a nutshell, our main findings are as follows:

• It appears that the three languages µCRL, mCRL2, and LOTOS are quite close, except that data
type specifications are more concise in the latter two languages. Each of these three languages
contains two separate sub-languages: one for specifying data types (using algebraic specifications
or term rewrite rules), and another one for concurrent processes.
These sub-languages sometimes use distinct symbols to express the same concept (e.g., if-then-
else being noted differently in the data and process parts) and sometimes give the same symbol
totally different meanings, e.g., in µCRL and mCRL2, the “+” operator (which denotes addition
in the data part and nondeterministic choice in the process part), the “||” operator (which denotes
logical disjunction in the data part and parallel composition in the process part), or closing paren-
theses (which denote the end of expressions in the data part and the end of a choice, a sequential
composition, etc. in the process part).
On the contrary, LNT is a unified language, without separate sub-languages: LNT functions and
LNT processes are defined using the same notations (“;” for sequential composition, if-then-else
for conditionals, etc.), and LNT avoids, as much as possible, “overloaded” symbols.

• Although it has been argued that LOTOS supports very diverse “specification styles” [50], most
LOTOS, µCRL, and mCRL2 models consist of a set of concurrent processes, each of which being
specified using guarded commands and terminal recursion. Such a style is convenient for describ-
ing automata extended with state variables, but leads to models that are difficult to maintain when
specifications evolve frequently, and does not scale well when automata complexity increases,
resulting in large, poorly structured state machines scattered with “goto-like” transitions.
In addition to supporting guarded commands and terminal recursion, LNT provides alternative
specification styles suitable for the description of complex systems. In particular, LNT offers the
classical primitives of structured programming, properly bracketed with an Ada-like syntax, which
make large models easier to read and reduce the need for drawing state machines on paper.

To some extent, there is here a debate around the concept of minimality and how it should be interpreted.
On the one hand, LOTOS, µCRL, and mCRL2 try to be minimal in the size of the language2, the number
of syntactic constructs, and the number of semantic rules. An explicit concern for µCRL and mCRL2
has been to ensure that the semantics are as simple and elegant as possible, only including constructs in

2The µ letter (which stands for “micro”) in µCRL indeed expresses such a desire for minimality.

34 Four Formal Models of IEEE 1394 Link Layer

the language if they are needed for expressiveness; ease of modelling has been less of a concern so far.
LNT also tries to be minimal, e.g., by unifying the sub-languages for functions and processes, the former
being included in the latter, but it can be rightly argued that LNT is richer than the three other languages
and requires more complex compilers that implement involved control- and data-flow analyses.

Perhaps the proper concept of minimality is not so much about the size of a language or of its
compiler, but about the effort needed to learn the language, the time needed to write correct models, and
the difficulty of understanding such models for engineers who do not have a strong background in formal
methods. We hope that the present study will usefully contribute to this debate.

Acknowledgements

We are grateful to all those who contributed to the design and verification of the four formal models of
the IEEE 1394 link layer, namely: Jan Friso Groote, Marck-Edward Kemeh, Radu Mateescu, Laurent
Mounier, Oussama Oulkaid, Charles Pecheur, Judi Romijn, Mihaela Sighireanu, and Bruno Vivien. We
also thank the anonymous reviewers for their constructive remarks.

References

[1] Olav Bunte, Jan Friso Groote, Jeroen J. A. Keiren, Maurice Laveaux, Thomas Neele, Erik P. de Vink, Wieger
Wesselink, Anton Wijs & Tim A. C. Willemse (2019): The mCRL2 Toolset for Analysing Concurrent Systems
– Improvements in Expressivity and Usability. In Tomás Vojnar & Lijun Zhang, editors: Proceedings (Part II)
of the 25th International Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2019), Prague, Czech Republic Proceedings, Lecture Notes in Computer Science 11428, Springer,
pp. 21–39, doi:10.1007/978-3-030-17465-1 2.

[2] Vincenza Carchiolo, Michele Malgeri & Giuseppe Mangioni (2003): Synthesis of LOTOS Specification of
the IEEE-1394 Firewire Protocol. In: Proceedings of the 14th IEEE International Workshop on Rapid
System Prototyping (RSP’03), San Diego, California, USA, IEEE Computer Society Press, pp. 86–92,
doi:10.1109/IWRSP.2003.1207034.

[3] David Champelovier, Xavier Clerc, Hubert Garavel, Yves Guerte, Christine McKinty, Vincent
Powazny, Frédéric Lang, Wendelin Serwe & Gideon Smeding (2023): Reference Manual of the
LNT to LOTOS Translator (Version 7.1). Available at http://cadp.inria.fr/publications/

Champelovier-Clerc-Garavel-et-al-10.html. INRIA, Grenoble, France.

[4] Conrado Daws, Marta Z. Kwiatkowska & Gethin Norman (2002): Automatic Verification of the IEEE-1394
Root Contention Protocol with KRONOS and PRISM. In Rance Cleaveland & Hubert Garavel, editors:
Proceedings of the 7th International ERCIM Workshop on Formal Methods for Industrial Critical Systems
(FMICS’02), Málaga, Spain, Electronic Notes in Theoretical Computer Science 66, Elsevier, pp. 104–119,
doi:10.1016/S1571-0661(04)80406-7.

[5] Conrado Daws, Marta Z. Kwiatkowska & Gethin Norman (2004): Automatic Verification of the IEEE 1394
Root Contention Protocol with KRONOS and PRISM. International Journal on Software Tools for Technology
Transfer (STTT) 5(2–3), pp. 221–236, doi:10.1007/S10009-003-0118-5.

[6] Rocco De Nicola & Frits W. Vaandrager (1990): Action versus State based Logics for Transition Systems. In
Irène Guessarian, editor: Semantics of Systems of Concurrent Processes – Proceedings of the LITP Spring
School on Theoretical Computer Science, La Roche Posay, France, Lecture Notes in Computer Science 469,
Springer, pp. 407–419, doi:10.1007/3-540-53479-2 17.

[7] Marco Devillers, W. O. David Griffioen, Judi Romijn & Frits W. Vaandrager (2000): Verification of a Leader
Election Protocol: Formal Methods Applied to IEEE 1394. Formal Methods in System Design 16(3), pp.
307–320, doi:10.1023/A:1008764923992.

https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1109/IWRSP.2003.1207034
http://cadp.inria.fr/publications/Champelovier-Clerc-Garavel-et-al-10.html
http://cadp.inria.fr/publications/Champelovier-Clerc-Garavel-et-al-10.html
https://doi.org/10.1016/S1571-0661(04)80406-7
https://doi.org/10.1007/S10009-003-0118-5
https://doi.org/10.1007/3-540-53479-2_17
https://doi.org/10.1023/A:1008764923992

H. Garavel & B. Luttik 35

[8] Jean-Claude Fernandez, Hubert Garavel, Alain Kerbrat, Radu Mateescu, Laurent Mounier & Mihaela
Sighireanu (1996): CADP (CÆSAR/ALDEBARAN Development Package): A Protocol Validation and Ver-
ification Toolbox. In Rajeev Alur & Thomas A. Henzinger, editors: Proceedings of the 8th Conference on
Computer-Aided Verification (CAV’96), New Brunswick, New Jersey, USA, Lecture Notes in Computer
Science 1102, Springer, pp. 437–440, doi:10.1007/3-540-61474-5 97.

[9] Hubert Garavel (1989): Compilation of LOTOS Abstract Data Types. In Son T. Vuong, editor: Proceedings of
the 2nd International Conference on Formal Description Techniques FORTE’89 (Vancouver B.C., Canada),
North Holland, pp. 147–162. Available at http://cadp.inria.fr/publications/Garavel-89-c.
html.

[10] Hubert Garavel (2008): Reflections on the Future of Concurrency Theory in General and Process Cal-
culi in Particular. In Catuscia Palamidessi & Frank D. Valencia, editors: Proceedings of the LIX Collo-
quium on Emerging Trends in Concurrency Theory, Ecole Polytechnique de Paris, France, November 13–15,
2006, Electronic Notes in Theoretical Computer Science 209, Elsevier Science Publishers, pp. 149–164,
doi:10.1016/J.ENTCS.2008.04.009. Also available as INRIA Research Report RR-6368.

[11] Hubert Garavel, Frédéric Lang & Laurent Mounier (2018): Compositional Verification in Action. In Falk
Howar & Jiri Barnat, editors: Proceedings of the 23rd International Conference on Formal Methods for Indus-
trial Critical Systems (FMICS’18), Maynooth, Ireland – Essays Dedicated to Susanne Graf at the Occasion
of Her 60th Birthday, Lecture Notes in Computer Science 11119, Springer, pp. 189–210, doi:10.1007/978-
3-030-00244-2 13.

[12] Hubert Garavel, Frédéric Lang & Wendelin Serwe (2017): From LOTOS to LNT. In Joost-Pieter Katoen,
Rom Langerak & Arend Rensink, editors: ModelEd, TestEd, TrustEd – Essays Dedicated to Ed Brinksma
on the Occasion of His 60th Birthday, Lecture Notes in Computer Science 10500, Springer, pp. 3–26,
doi:10.1007/978-3-319-68270-9 1.

[13] Hubert Garavel & Mihaela Sighireanu (1998): Towards a Second Generation of Formal Description Tech-
niques – Rationale for the Design of E-LOTOS. In Jan-Friso Groote, Bas Luttik & Jos van Wamel,
editors: Proceedings of the 3rd International Workshop on Formal Methods for Industrial Critical Sys-
tems (FMICS’98), Amsterdam, The Netherlands, CWI, Amsterdam, pp. 187–230. Available at http:
//cadp.inria.fr/publications/Garavel-Sighireanu-98-a.html.

[14] Jan Friso Groote: IEEE 1394 Link Layer in mCRL2. Available at https://github.com/mCRL2org/
mCRL2/tree/master/examples/industrial/1394.

[15] Jan Friso Groote (1997): The Syntax and Semantics of Timed µCRL. Technical Report SEN-R9709, CWI,
Amsterdam, The Netherlands. Available at https://ir.cwi.nl/pub/4746.

[16] Jan Friso Groote, Aad Mathijssen, Michel Reniers, Yaroslav Usenko & Muck van Weerdenburg (2007): The
Formal Specification Language mCRL2. In Ed Brinksma, David Harel, Angelika Mader, Perdita Stevens &
Roel Wieringa, editors: Methods for Modelling Software Systems (MMOSS), Dagstuhl Seminar Proceedings
06351, Schloss Dagstuhl, Germany, pp. 1–34, doi:10.4230/DagSemProc.06351.12.

[17] Jan Friso Groote, Aad Mathijssen, Muck van Weerdenburg & Yaroslav S. Usenko (2006): From µCRL to
mCRL2: Motivation and Outline. Electronic Notes in Theoretical Computer Science 162, pp. 191–196,
doi:10.1016/j.entcs.2005.12.101.

[18] Jan Friso Groote & Mohammad Reza Mousavi (2014): Modeling and Analysis of Communicating Systems.
The MIT Press, doi:10.7551/mitpress/9946.001.0001.

[19] Jan Friso Groote & Alban Ponse (1995): The Syntax and Semantics of µCRL. In A. Ponse, C. Verhoef &
S.F.M. van Vlijmen, editors: Proceedings of the 1st Workshop on the Algebra of Communicating Processes
(ACP’94), Utrecht, The Netherlands, Workshops in Computing Series, Springer, pp. 26–62, doi:10.1007/978-
1-4471-2120-6 2.

[20] ISO/IEC (1989): LOTOS – A Formal Description Technique Based on the Temporal Ordering of Observa-
tional Behaviour. International Standard 8807, International Organization for Standardization – Informa-
tion Processing Systems – Open Systems Interconnection, Geneva. Available at https://www.iso.org/
standard/16258.html.

https://doi.org/10.1007/3-540-61474-5_97
http://cadp.inria.fr/publications/Garavel-89-c.html
http://cadp.inria.fr/publications/Garavel-89-c.html
https://doi.org/10.1016/J.ENTCS.2008.04.009
https://doi.org/10.1007/978-3-030-00244-2_13
https://doi.org/10.1007/978-3-030-00244-2_13
https://doi.org/10.1007/978-3-319-68270-9_1
http://cadp.inria.fr/publications/Garavel-Sighireanu-98-a.html
http://cadp.inria.fr/publications/Garavel-Sighireanu-98-a.html
https://github.com/mCRL2org/mCRL2/tree/master/examples/industrial/1394
https://github.com/mCRL2org/mCRL2/tree/master/examples/industrial/1394
https://ir.cwi.nl/pub/4746
https://doi.org/10.4230/DagSemProc.06351.12
https://doi.org/10.1016/j.entcs.2005.12.101
https://doi.org/10.7551/mitpress/9946.001.0001
https://doi.org/10.1007/978-1-4471-2120-6_2
https://doi.org/10.1007/978-1-4471-2120-6_2
https://www.iso.org/standard/16258.html
https://www.iso.org/standard/16258.html

36 Four Formal Models of IEEE 1394 Link Layer

[21] ISO/IEC (2001): Enhancements to LOTOS (E-LOTOS). International Standard 15437:2001, International
Organization for Standardization – Information Technology, Geneva. Available at https://www.iso.org/
standard/27680.html.

[22] Mark Jorgensen & Hubert Garavel (1997): Final Report of the COST-247 Action. Available at https:
//vasy.inria.fr/COST247.

[23] Lars Kühne, Jozef Hooman & Willem-Paul de Roever (1997): Towards Mechanical Verification of Parts
of the IEEE P1394 Serial Bus. In Ignac Lovrek, editor: Proceedings of the 2nd COST 247 International
Workshop on Applied Formal Methods in System Design (Zagreb, Croatia), pp. 73–85.

[24] Marta Z. Kwiatkowska, Gethin Norman & Jeremy Sproston (2003): Probabilistic Model Checking of Dead-
line Properties in the IEEE 1394 FireWire Root Contention Protocol. Formal Aspects of Computing 14(3),
pp. 295–318, doi:10.1007/S001650300007.

[25] Izak van Langevelde, Judi Romijn & Nicolae Goga (2003): Founding FireWire Bridges through Promela Pro-
totyping. In: Proceedings of the 17th International Parallel and Distributed Processing Symposium (IPDPS
2003), Nice, France, IEEE Computer Society, p. 239, doi:10.1109/IPDPS.2003.1213434.

[26] Bas Luttik (1997): Description and Formal Specification of the Link Layer of P1394. Report SEN-R9706,
CWI, Software Engineering (SEN), Amsterdam, The Netherlands. Available at https://ir.cwi.nl/pub/
4758.

[27] Bas Luttik (1997): Description and Formal Specification of the Link Layer of P1394. In Ignac Lovrek, editor:
Proceedings of the 2nd COST 247 International Workshop on Applied Formal Methods in System Design
(Zagreb, Croatia), pp. 43–56.

[28] Savi Maharaj & Carron Shankland (2000): A Survey of Formal Methods Applied to Leader Election in IEEE
1394. Journal of Universal Computer Science 6(11), pp. 1145–1163. Available at http://www.jucs.org/
jucs_6_11/a_survey_of_formal.

[29] Radu Mateescu & Hubert Garavel (1998): XTL: A Meta-Language and Tool for Temporal Logic Model-
Checking. In Tiziana Margaria, editor: Proceedings of the International Workshop on Software Tools for
Technology Transfer (STTT’98), Aalborg, Denmark, BRICS, pp. 33–42. Available at http://cadp.inria.
fr/publications/Mateescu-Garavel-98.html.

[30] Judi Romijn (1999): A Timed Verification of the IEEE 1394 Leader Election Protocol. In Stefania Gnesi
& Diego Latella, editors: Proceedings of the 4th International Workshop on Formal Methods for Industrial
Critical Systems (FMICS’99), Trento, Italy, pp. 3–29.

[31] Judi Romijn (2001): A Timed Verification of the IEEE 1394 Leader Election Protocol. Formal Methods in
System Design 19(2), pp. 165–194, doi:10.1023/A:1011284000753.

[32] Judi Romijn (2003): False Loop Detection in the IEEE 1394 Tree Identify Phase. Formal Aspects of Com-
puting 14(3), pp. 319–327, doi:10.1007/S001650300008.

[33] Carron Shankland & Alberto Verdejo (1999): Time, E-LOTOS, and the FireWire. In Marco Ajmone Marsan,
Juan Quemada, Tomás Robles & Manuel Silva, editors: Proceedings of the Workshop on Formal Methods
and Telecommunications (WFMT’99), Zaragoza, Spain, Prensas Universitarias de Zaragoza, pp. 103–119.
Available at http://maude.sip.ucm.es/alberto-verdejo/papers/FireWire99.html.

[34] Carron Shankland & Alberto Verdejo (2001): A Case Study in Abstraction Using E-LOTOS and the FireWire.
Computer Networks 37(3/4), pp. 481–502, doi:10.1016/S1389-1286(01)00190-6.

[35] Carron Shankland & Mark van der Zwaag (1998): The Tree Identify Protocol of IEEE 1394 in µCRL. Formal
Aspects of Computing 10(5-6), pp. 509–531, doi:10.1007/s001650050030.

[36] Mihaela Sighireanu, Alban Catry, David Champelovier, Hubert Garavel, Frédéric Lang, Guillaume Schaeffer,
Wendelin Serwe & Jan Stoecker (2023): LOTOS NT User’s Manual (Version 3.12). INRIA/CONVECS,
Grenoble, France, https://vasy.inria.fr/ftp/traian/manual.pdf, 88 pages.

[37] Mihaela Sighireanu & Radu Mateescu (1997): Validation of the Link Layer Protocol of the IEEE-1394 Serial
Bus (“FireWire”): an Experiment with E-LOTOS. Research Report RR-3172, INRIA, France. Available at
http://cadp.inria.fr/publications/Sighireanu-Mateescu-97.html.

https://www.iso.org/standard/27680.html
https://www.iso.org/standard/27680.html
https://vasy.inria.fr/COST247
https://vasy.inria.fr/COST247
https://doi.org/10.1007/S001650300007
https://doi.org/10.1109/IPDPS.2003.1213434
https://ir.cwi.nl/pub/4758
https://ir.cwi.nl/pub/4758
http://www.jucs.org/jucs_6_11/a_survey_of_formal
http://www.jucs.org/jucs_6_11/a_survey_of_formal
http://cadp.inria.fr/publications/Mateescu-Garavel-98.html
http://cadp.inria.fr/publications/Mateescu-Garavel-98.html
https://doi.org/10.1023/A:1011284000753
https://doi.org/10.1007/S001650300008
http://maude.sip.ucm.es/alberto-verdejo/papers/FireWire99.html
https://doi.org/10.1016/S1389-1286(01)00190-6
https://doi.org/10.1007/s001650050030
https://vasy.inria.fr/ftp/traian/manual.pdf
http://cadp.inria.fr/publications/Sighireanu-Mateescu-97.html

H. Garavel & B. Luttik 37

[38] Mihaela Sighireanu & Radu Mateescu (1997): Validation of the Link Layer Protocol of the IEEE-1394 Serial
Bus (“FireWire”): an Experiment with E-LOTOS. In Ignac Lovrek, editor: Proceedings of the 2nd COST
247 International Workshop on Applied Formal Methods in System Design (Zagreb, Croatia), pp. 57–72.
Full version available as INRIA Research Report RR-3172.

[39] Mihaela Sighireanu & Radu Mateescu (1998): Verification of the Link Layer Protocol of the IEEE-1394
Serial Bus (FireWire): an Experiment with E-LOTOS. Springer International Journal on Software Tools for
Technology Transfer (STTT) 2(1), pp. 68–88, doi:10.1007/S100090050018.

[40] Mihaela Sighireanu, Radu Mateescu & Hubert Garavel: CADP Demo № 23. Available at http://cadp.
inria.fr/ftp/demos/demo_23.

[41] Mihaela Sighireanu, Radu Mateescu & Hubert Garavel (1998): VASY Reports a Deadlock in the IEEE 1394
“Firewire” Standard. Available at https://vasy.inria.fr/press/firewire.html.

[42] David P. L. Simons & Mariëlle Stoelinga (2001): Mechanical Verification of the IEEE 1394a Root Contention
Protocol Using Uppaal2k. International Journal on Software Tools for Technology Transfer (STTT) 3(4), pp.
469–485, doi:10.1007/S100090100059.

[43] IEEE Computer Society (1995): IEEE Standard for a High Performance Serial Bus. IEEE Standard 1394-
1995, Institution of Electrical and Electronic Engineers, doi:10.1109/IEEESTD.1996.81049.

[44] IEEE Computer Society (1995): P1394 Standard for a High Performance Serial Bus. Technical Report,
Institution of Electrical and Electronic Engineers. Draft 8.0v2.

[45] IEEE Computer Society (2008): IEEE Standard for a High Performance Serial Bus. IEEE Standard 1394-
2008, Institution of Electrical and Electronic Engineers, doi:10.1109/IEEESTD.2008.4659233.

[46] Mariëlle Stoelinga (2003): Fun with FireWire: A Comparative Study of Formal Verification Methods Ap-
plied to the IEEE 1394 Root Contention Protocol. Formal Aspects of Computing 14(3), pp. 328–337,
doi:10.1007/S001650300009.

[47] Mariëlle Stoelinga & Frits W. Vaandrager (1999): Root Contention in IEEE 1394. In Joost-Pieter Katoen,
editor: Proceedings of the 5th International AMAST Workshop on Formal Methods for Real-Time and Prob-
abilistic Systems (ARTS’99), Bamberg, Germany, Lecture Notes in Computer Science 1601, Springer, pp.
53–74, doi:10.1007/3-540-48778-6 4.

[48] Alberto Verdejo, Isabel Pita & Narciso Martı́-Oliet (2000): The Leader Election Protocol of IEEE 1394 in
Maude. In Kokichi Futatsugi, editor: Proceedings of the 3rd International Workshop on Rewriting Logic
and its Applications (WRLA 2000), Kanzawa, Japan, Electronic Notes in Theoretical Computer Science 36,
Elsevier, pp. 383–404, doi:10.1016/S1571-0661(05)80133-1.

[49] Alberto Verdejo, Isabel Pita & Narciso Martı́-Oliet (2003): Specification and Verification of the Tree
Identify Protocol of IEEE 1394 in Rewriting Logic. Formal Aspects of Computing 14(3), pp. 228–246,
doi:10.1007/S001650300003.

[50] C. Vissers, G. Scollo, M. van Sinderen & E. Brinksma (1991): Specification Styles in Distributed Systems De-
sign and Verification. Theoretical Computer Science 89(1), pp. 179–206, doi:10.1016/0304-3975(90)90111-
T.

A Formal model in µCRL

A.1 Types and functions in µCRL

% Boolean type

sort Bool

func

https://doi.org/10.1007/S100090050018
http://cadp.inria.fr/ftp/demos/demo_23
http://cadp.inria.fr/ftp/demos/demo_23
https://vasy.inria.fr/press/firewire.html
https://doi.org/10.1007/S100090100059
https://doi.org/10.1109/IEEESTD.1996.81049
https://doi.org/10.1109/IEEESTD.2008.4659233
https://doi.org/10.1007/S001650300009
https://doi.org/10.1007/3-540-48778-6_4
https://doi.org/10.1016/S1571-0661(05)80133-1
https://doi.org/10.1007/S001650300003
https://doi.org/10.1016/0304-3975(90)90111-T
https://doi.org/10.1016/0304-3975(90)90111-T

38 Four Formal Models of IEEE 1394 Link Layer

T,F: -> Bool

map
eq: Bool#Bool -> Bool

var
b: Bool

rew
eq(T,b)=b
eq(b,T)=b
eq(b,F)=not(b)
eq(F,b)=not(b)

map
and: Bool#Bool -> Bool

var
b: Bool

rew
and(T,b)=b
and(b,T)=b
and(b,F)=F
and(F,b)=F

map
or: Bool#Bool -> Bool

var
b: Bool

rew
or(T,b)=T
or(b,T)=T
or(b,F)=b
or(F,b)=b

map
not: Bool -> Bool

if: Bool#Bool#Bool -> Bool

var
b1,b2: Bool

rew
not(F)=T
not(T)=F
if(T,b1,b2)=b1
if(F,b1,b2)=b2

% Natural number type

sort NAT

func
0,1,2: -> NAT

% 0,1,2,3,4,5,6,7,8,9: −> NAT
map succ: NAT -> NAT

map

H. Garavel & B. Luttik 39

eq: NAT#NAT -> Bool

var
n,m: NAT

rew
1=succ(0)
2=succ(1)
eq(0,0)=T
eq(succ(n),0)=F
eq(0,succ(n))=F
eq(succ(n),succ(m))=eq(n,m)

map
lt: NAT#NAT -> Bool

var
n,m: NAT

rew
lt(0,0)=F
lt(succ(n),0)=F
lt(0,succ(n))=T
lt(succ(n),succ(m))=lt(n,m)

% Data/Control/Acknowledge elemens and their CRC computation

sort CHECK

func
bottom,check: -> CHECK

map
eq: CHECK#CHECK -> Bool

rew
eq(bottom,bottom)=T
eq(check,check)=T
eq(check,bottom)=F
eq(bottom,check)=F

sort DATA

func
d1,d2: -> DATA

map
crc: DATA -> CHECK

eq: DATA#DATA -> Bool

rew
crc(d1)=check
crc(d2)=check
eq(d1,d1)=T
eq(d1,d2)=F
eq(d2,d1)=F
eq(d2,d2)=T

sort HEADER

func
h1,h2: -> HEADER

map

40 Four Formal Models of IEEE 1394 Link Layer

crc: HEADER -> CHECK

eq: HEADER # HEADER -> Bool

rew
crc(h1)=check
crc(h2)=check
eq(h1,h1)=T
eq(h1,h2)=F
eq(h2,h1)=F
eq(h2,h2)=T

sort ACK

func
a1,a2: -> ACK

map
crc: ACK -> CHECK

eq : ACK # ACK -> Bool

rew
crc(a1)=check
crc(a2)=check
eq(a1,a1)=T
eq(a1,a2)=F
eq(a2,a1)=F
eq(a2,a2)=T

sort SIGNAL

func
sig: NAT -> SIGNAL

sig: HEADER#CHECK -> SIGNAL

sig: DATA#CHECK -> SIGNAL

sig: ACK#CHECK -> SIGNAL

Start,End: -> SIGNAL

Prefix,subactgap: -> SIGNAL

dhead,Dummy: -> SIGNAL

map
is_start,is_end: SIGNAL -> Bool

is_prefix,is_sagap: SIGNAL -> Bool

is_dummy,is_dhead: SIGNAL -> Bool

eq: SIGNAL#SIGNAL -> Bool

var
n,n’ : NAT

h,h’ : HEADER

d,d’ : DATA

a,a’ : ACK

c,c’ : CHECK

s : SIGNAL

rew
is_start(Start)=T
is_start(End)=F
is_start(Prefix)=F
is_start(subactgap)=F
is_start(dhead)=F

H. Garavel & B. Luttik 41

is_start(Dummy)=F
is_start(sig(n))=F
is_start(sig(h,c))=F
is_start(sig(d,c))=F
is_start(sig(a,c))=F
eq(Start,s)=is_start(s)
eq(s,Start)=is_start(s)

is_end(End)=T
is_end(Start)=F
is_end(Prefix)=F
is_end(subactgap)=F
is_end(dhead)=F
is_end(Dummy)=F
is_end(sig(n))=F
is_end(sig(h,c))=F
is_end(sig(d,c))=F
is_end(sig(a,c))=F
eq(End,s)=is_end(s)
eq(s,End)=is_end(s)

is_prefix(Prefix)=T
is_prefix(Start)=F
is_prefix(End)=F
is_prefix(subactgap)=F
is_prefix(dhead)=F
is_prefix(Dummy)=F
is_prefix(sig(n))=F
is_prefix(sig(h,c))=F
is_prefix(sig(d,c))=F
is_prefix(sig(a,c))=F
eq(Prefix,s)=is_prefix(s)
eq(s,Prefix)=is_prefix(s)

is_sagap(subactgap)=T
is_sagap(Start)=F
is_sagap(End)=F
is_sagap(Prefix)=F
is_sagap(dhead)=F
is_sagap(Dummy)=F
is_sagap(sig(n))=F
is_sagap(sig(h,c))=F
is_sagap(sig(d,c))=F
is_sagap(sig(a,c))=F
eq(subactgap,s)=is_sagap(s)
eq(s,subactgap)=is_sagap(s)

is_dhead(subactgap)=F
is_dhead(Start)=F
is_dhead(End)=F
is_dhead(Prefix)=F
is_dhead(dhead)=T

42 Four Formal Models of IEEE 1394 Link Layer

is_dhead(Dummy)=F
is_dhead(sig(n))=F
is_dhead(sig(h,c))=F
is_dhead(sig(d,c))=F
is_dhead(sig(a,c))=F
eq(dhead,s)=is_dhead(s)
eq(s,dhead)=is_dhead(s)

is_dummy(subactgap)=F
is_dummy(Start)=F
is_dummy(End)=F
is_dummy(Prefix)=F
is_dummy(dhead)=F
is_dummy(Dummy)=T
is_dummy(sig(n))=F
is_dummy(sig(h,c))=F
is_dummy(sig(d,c))=F
is_dummy(sig(a,c))=F
eq(Dummy,s)=is_dummy(s)
eq(s,Dummy)=is_dummy(s)

eq(sig(n),sig(n’))=eq(n,n’)
eq(sig(n),sig(h,c))=F
eq(sig(n),sig(d,c))=F
eq(sig(n),sig(a,c))=F
eq(sig(h,c),sig(n’))=F
eq(sig(h,c),sig(h’,c’))=and(eq(h,h’),eq(c,c’))
eq(sig(h,c),sig(d,c’))=F
eq(sig(h,c),sig(a,c’))=F
eq(sig(d,c),sig(n))=F
eq(sig(d,c),sig(h,c’))=F
eq(sig(d,c),sig(d’,c’))=and(eq(d,d’),eq(c,c’))
eq(sig(d,c),sig(a,c’))=F
eq(sig(a,c),sig(n))=F
eq(sig(a,c),sig(h,c’))=F
eq(sig(a,c),sig(d,c’))=F
eq(sig(a,c),sig(a’,c’))=and(eq(a,a’),eq(c,c’))

map
is_dest,is_header: SIGNAL -> Bool

is_data,is_ack: SIGNAL -> Bool

var
n : NAT

h : HEADER

d : DATA

a : ACK

c : CHECK

rew
is_dest(sig(n))=T
is_dest(sig(h,c))=F
is_dest(sig(d,c))=F
is_dest(sig(a,c))=F

H. Garavel & B. Luttik 43

is_dest(Start)=F
is_dest(End)=F
is_dest(Prefix)=F
is_dest(subactgap)=F
is_dest(dhead)=F
is_dest(Dummy)=F

is_header(sig(h,c))=T
is_header(sig(n))=F
is_header(sig(d,c))=F
is_header(sig(a,c))=F
is_header(Start)=F
is_header(End)=F
is_header(Prefix)=F
is_header(subactgap)=F
is_header(dhead)=F
is_header(Dummy)=F

is_data(sig(d,c))=T
is_data(sig(n))=F
is_data(sig(h,c))=F
is_data(sig(a,c))=F
is_data(Start)=F
is_data(End)=F
is_data(Prefix)=F
is_data(subactgap)=F
is_data(dhead)=F
is_data(Dummy)=F

is_ack(sig(a,c))=T
is_ack(sig(n))=F
is_ack(sig(h,c))=F
is_ack(sig(d,c))=F
is_ack(Start)=F
is_ack(End)=F
is_ack(Prefix)=F
is_ack(subactgap)=F
is_ack(dhead)=F
is_ack(Dummy)=F

map
is_physig,is_terminator: SIGNAL -> Bool

var
s : SIGNAL

rew
is_physig(s)=or(is_start(s),or(is_end(s),or(is_prefix(s),is_sagap(s))))
is_terminator(s)=or(is_end(s),is_prefix(s))

map
is_hda: SIGNAL -> Bool

var
s : SIGNAL

44 Four Formal Models of IEEE 1394 Link Layer

rew
is_hda(s)=or(is_header(s),or(is_data(s),is_ack(s)))

map
valid_hpart, valid_ack: SIGNAL -> Bool

var
n : NAT

h : HEADER

d : DATA

a : ACK

c : CHECK

rew
valid_ack(sig(a,c))=eq(c,check)
valid_ack(sig(h,c))=F
valid_ack(sig(d,c))=F
valid_ack(sig(n))=F
valid_ack(Start)=F
valid_ack(End)=F
valid_ack(Prefix)=F
valid_ack(subactgap)=F
valid_ack(Dummy)=F
valid_ack(dhead)=F

valid_hpart(sig(h,c))=eq(c,check)
valid_hpart(sig(n))=F
valid_hpart(sig(d,c))=F
valid_hpart(sig(a,c))=F
valid_hpart(Start)=F
valid_hpart(End)=F
valid_hpart(Prefix)=F
valid_hpart(subactgap)=F
valid_hpart(Dummy)=F
valid_hpart(dhead)=F

map
getdest: SIGNAL -> NAT

getdcrc: SIGNAL -> CHECK

getdata: SIGNAL -> DATA

gethead: SIGNAL -> HEADER

getack: SIGNAL -> ACK

corrupt: SIGNAL -> SIGNAL

var
n : NAT

h : HEADER

d : DATA

a : ACK

c : CHECK

rew
getdest(sig(n)) = n

gethead(sig(h,c)) = h

getdcrc(sig(d,c)) = c

getdata(sig(d,c)) = d

H. Garavel & B. Luttik 45

getack (sig(a,c)) = a

corrupt(sig(h,c)) = sig(h,bottom)

corrupt(sig(d,c)) = sig(d,bottom)

corrupt(sig(a,c)) = sig(a,bottom)

sort SIG_TUPLE

func
quadruple: SIGNAL#SIGNAL#SIGNAL#SIGNAL -> SIG_TUPLE

void: -> SIG_TUPLE

map
first,second,third,fourth: SIG_TUPLE -> SIGNAL

is_void: SIG_TUPLE -> Bool

var
x1,x2,x3,x4: SIGNAL

rew
first(quadruple(x1,x2,x3,x4))=x1
second(quadruple(x1,x2,x3,x4))=x2
third(quadruple(x1,x2,x3,x4))=x3
fourth(quadruple(x1,x2,x3,x4))=x4

is_void(void)=T
is_void(quadruple(x1,x2,x3,x4))=F

sort PAR

func
fair,immediate: -> PAR

map
eq: PAR#PAR -> Bool

rew
eq(fair,fair)=T
eq(immediate,immediate)=T
eq(fair,immediate)=F
eq(immediate,fair)=F

sort PAC

func
won,lost: -> PAC

map
eq: PAC#PAC -> Bool

rew
eq(won,won)=T
eq(lost,lost)=T
eq(won,lost)=F
eq(lost,won)=F

sort LDC

func
ackrec: ACK -> LDC

ackmiss,broadsent: -> LDC

sort LDI

46 Four Formal Models of IEEE 1394 Link Layer

func
good,broadrec: HEADER#DATA -> LDI

dcrc_err: HEADER -> LDI

sort BOC

func
release,hold: -> BOC

map
eq: BOC#BOC -> Bool

rew
eq(release,release)=T
eq(hold,hold)=T
eq(release,hold)=F
eq(hold,release)=F

A.2 The LINK process in µCRL

act
LDreq: NAT#NAT#HEADER#DATA
LDcon: NAT#LDC
LDind: NAT#LDI
LDres: NAT#ACK#BOC

sPDreq,rPDind: NAT#SIGNAL
sPAreq: NAT#PAR
rPAcon: NAT#PAC
rPCind: NAT

proc

LINK(n:NAT,i:NAT)=
(Link0(n,i,void))

Link0(n:NAT,id:NAT,buffer:SIG_TUPLE)=
(

sum(dest:NAT,

sum(h:HEADER,

sum(d:DATA,

LDreq(id,dest,h,d).

Link0(n,id,quadruple(dhead,

sig(dest),

sig(h,crc(h)),

sig(d,crc(d))))

)

)

)

<| is_void(buffer) |>
sPAreq(id,fair).Link1(n,id,buffer)

)

+
sum(p:SIGNAL,

H. Garavel & B. Luttik 47

rPDind(id,p).

(Link4(n,id,buffer) <| is_start(p) |> Link0(n,id,buffer))

)

Link1(n:NAT,id:NAT,p:SIG_TUPLE)=
rPAcon(id,won).Link2req(n,id,p)

+
rPAcon(id,lost).Link0(n,id,p)

Link2req(n:NAT,id:NAT,p:SIG_TUPLE)=
(rPCind(id).sPDreq(id,Start).

rPCind(id).sPDreq(id,first(p)).

rPCind(id).sPDreq(id,second(p))) .

(rPCind(id).sPDreq(id,third(p)).

rPCind(id).sPDreq(id,fourth(p)).

rPCind(id).sPDreq(id,End)).

(

LDcon(id,broadsent).Link0(n,id,void)

<| eq(getdest(second(p)),n) |>
Link3(n,id,void)

)

Link3(n:NAT,id:NAT,buffer:SIG_TUPLE)=
sum(p:SIGNAL,

rPDind(id,p).

(

Link3(n,id,buffer)

<| is_prefix(p) |>
(

Link3RA(n,id,buffer)

<| is_start(p) |>
(

LDcon(id,ackmiss).Link0(n,id,buffer)

<| is_sagap(p) |>
LDcon(id,ackmiss).LinkWSA(n,id,buffer,n)

)

)

)

)

Link3RA(n:NAT,id:NAT,buffer:SIG_TUPLE)=
sum(a:SIGNAL,

rPDind(id,a).

(

(

LDcon(id,ackmiss).Link0(n,id,buffer)

<| is_sagap(a) |>
LDcon(id,ackmiss).LinkWSA(n,id,buffer,n)

)

<| is_physig(a) |>
Link3RE(n,id,buffer,a)

)

48 Four Formal Models of IEEE 1394 Link Layer

)

Link3RE(n:NAT,id:NAT,buffer:SIG_TUPLE,a:SIGNAL)=
sum(e:SIGNAL,

rPDind(id,e).

(

LDcon(id,ackrec(getack(a))).LinkWSA(n,id,buffer,n)

<| and(valid_ack(a),is_terminator(e)) |>
(

LDcon(id,ackmiss).Link0(n,id,buffer)

<| is_sagap(e) |>
LDcon(id,ackmiss).LinkWSA(n,id,buffer,n)

)

)

)

Link4(n:NAT,id:NAT,buffer:SIG_TUPLE)=
sum(dh:SIGNAL,

rPDind(id,dh).

(

(

Link0(n,id,buffer)

<| is_sagap(dh) |>
LinkWSA(n,id,buffer,n)

)

<| is_physig(dh) |>
Link4DH(n,id,buffer)

)

)

Link4DH(n:NAT,id:NAT,buffer:SIG_TUPLE)=
sum(dest:SIGNAL,

rPDind(id,dest).

(

(

sPAreq(id,immediate).Link4RH(n,id,buffer,id)

<| eq(getdest(dest),id) |>
(

Link4RH(n,id,buffer,n)

<| eq(getdest(dest),n) |>
LinkWSA(n,id,buffer,n)

)

)

<| is_dest(dest) |>
(

Link0(n,id,buffer)

<| is_sagap(dest) |>
LinkWSA(n,id,buffer,n)

)

)

)

H. Garavel & B. Luttik 49

Link4RH(n:NAT,id:NAT,buffer:SIG_TUPLE,dest:NAT)=
sum(h:SIGNAL,

rPDind(id,h).

(

Link4RD(n,id,buffer,dest,h)

<| valid_hpart(h) |>
LinkWSA(n,id,buffer,dest)

)

)

Link4RD(n:NAT,id:NAT,buffer:SIG_TUPLE,dest:NAT,h:SIGNAL)=
sum(d:SIGNAL,

rPDind(id,d).

(

Link4RE(n,id,buffer,dest,h,d)

<| is_data(d) |>
LinkWSA(n,id,buffer,dest)

)

)

Link4RE(n:NAT,id:NAT,buffer:SIG_TUPLE,dest:NAT,h:SIGNAL,d:SIGNAL)=
sum(e:SIGNAL,

rPDind(id,e).

(

(

Link4DRec(n,id,buffer,h,d)

<| eq(dest,id) |>
Link4BRec(n,id,buffer,h,d)

)

<| is_terminator(e) |>
LinkWSA(n,id,buffer,dest)

)

)

Link4DRec(n:NAT,id:NAT,buffer:SIG_TUPLE,h:SIGNAL,d:SIGNAL)=
LDind(id,good(gethead(h),getdata(d))).rPAcon(id,won).Link5(n,id,buffer)

<| eq(getdcrc(d),check) |>
LDind(id,dcrc_err(gethead(h))).rPAcon(id,won).Link5(n,id,buffer)

Link4BRec(n:NAT,id:NAT,buffer:SIG_TUPLE,h:SIGNAL,d:SIGNAL)=
LDind(id,broadrec(gethead(h),getdata(d))).Link0(n,id,buffer)

<| eq(getdcrc(d),check) |>
Link0(n,id,buffer)

Link5(n:NAT,id:NAT,buffer:SIG_TUPLE)=
sum(a:ACK,

sum(b:BOC,

LDres(id,a,b).Link6(n,id,buffer,sig(a,crc(a)),b)

)

)

+
rPCind(id).sPDreq(id,Prefix).Link5(n,id,buffer)

50 Four Formal Models of IEEE 1394 Link Layer

Link6(n:NAT,id:NAT,buffer:SIG_TUPLE,p:SIGNAL,b:BOC)=
(rPCind(id).sPDreq(id,Start).rPCind(id).sPDreq(id,p)) .

(rPCind(id).

(

sPDreq(id,End).Link0(n,id,buffer)

<| eq(b,release) |>
sPDreq(id,Prefix).Link7(n,id,buffer)

)

)

Link7(n:NAT,id:NAT,buffer:SIG_TUPLE)=
rPCind(id).sPDreq(id,Prefix).Link7(n,id,buffer)

+
sum(dest:NAT,

sum(h:HEADER,

sum(d:DATA,

LDreq(id,dest,h,d).

Link2resp(n,id,buffer,quadruple(dhead,

sig(dest),

sig(h,crc(h)),

sig(d,crc(d))))

)

)

)

Link2resp(n:NAT,id:NAT,buffer:SIG_TUPLE,p:SIG_TUPLE)=
(rPCind(id).sPDreq(id,Start).

rPCind(id).sPDreq(id,first(p)).

rPCind(id).sPDreq(id,second(p))).

(rPCind(id).sPDreq(id,third(p)).

rPCind(id).sPDreq(id,fourth(p)).

rPCind(id).sPDreq(id,End)).

(LDcon(id,broadsent).Link0(n,id,buffer)

<| eq(getdest(second(p)),n) |>
Link3(n,id,buffer)

)

LinkWSA(n:NAT,id:NAT,buffer:SIG_TUPLE,dest:NAT)=
sum(p:SIGNAL,

rPDind(id,p).

(

Link0(n,id,buffer)

<| is_sagap(p) |>
LinkWSA(n,id,buffer,dest)

)

)

+
(

rPAcon(id,won).rPCind(id).sPDreq(id,End).Link0(n,id,buffer)

<| eq(dest,id) |>
delta

H. Garavel & B. Luttik 51

)

A.3 The BUS process in µCRL

sort BoolTABLE

func
empty: -> BoolTABLE

btable: NAT#Bool#BoolTABLE -> BoolTABLE

map
inita: NAT -> BoolTABLE

invert: NAT#BoolTABLE -> BoolTABLE

get: NAT#BoolTABLE -> Bool

if: Bool#BoolTABLE#BoolTABLE -> BoolTABLE

eq:BoolTABLE#BoolTABLE->Bool

var
n,m : NAT

b : Bool

bt1,bt2 : BoolTABLE

rew
eq(bt1, bt1)=T
inita(0)=empty
inita(succ(n))=btable(n,F,inita(n))

invert(n,empty)=empty
invert(n,btable(m,b,bt1))=
if(eq(n,m),

btable(m,not(b),bt1),

btable(m,b,invert(n,bt1))

)

get(n,btable(m,b,bt1))=if(eq(n,m),b,get(n,bt1))
get(n,empty)=F
if(T,bt1,bt2)=bt1
if(F,bt1,bt2)=bt2

map
zero,one,more: BoolTABLE -> Bool

var
n : NAT

bt : BoolTABLE

rew
zero(empty)=T
zero(btable(n,T,bt))=F
zero(btable(n,F,bt))=zero(bt)
one(empty)=F
one(btable(n,T,bt))=zero(bt)
one(btable(n,F,bt))=one(bt)
more(bt)=and(not(zero(bt)),not(one(bt)))

act

52 Four Formal Models of IEEE 1394 Link Layer

rPAreq: NAT#PAR
rPDreq,sPDind: NAT#SIGNAL
sPAcon: NAT#PAC
sPCind: NAT

arbresgap

losesignal

proc

BUS(n:NAT)=
BusIdle(n, inita(n))

BusIdle(n:NAT,t:BoolTABLE)=
sum(id:NAT,

sum(astat:PAR,

rPAreq(id,astat).DecideIdle(n,t,id,astat)))

+
arbresgap.BusIdle(n,inita(n)) <| not(zero(t)) |> delta

DecideIdle(n:NAT,t:BoolTABLE,id:NAT,astat:PAR)=
(sPAcon(id,won).BusBusy(n,invert(id,t),inita(n),inita(n),id))

<| not(get(id,t)) |>
(sPAcon(id,lost).BusIdle(n,t))

BusBusy(n:NAT,

t:BoolTABLE,

next:BoolTABLE,

destfault:BoolTABLE,

busy:NAT)=
(

(

sPCind(busy).

sum(p:SIGNAL,

rPDreq(busy,p).Distribute(n,t,next,destfault,busy,p,0)

)

)

<| lt(busy,n) |>
(

SubactionGap(n,t,0)

<| zero(next) |>
Resolve(n,t,next,0)

)

)

+
sum(j:NAT,

rPAreq(j,fair).sPAcon(j,lost).BusBusy(n,t,next,destfault,busy)

)

+
sum(j:NAT,

rPAreq(j,immediate).

(BusBusy(n,t,invert(j,next),destfault,busy)

<| not(get(j,next)) |> delta)

H. Garavel & B. Luttik 53

)

SubactionGap(n:NAT,t:BoolTABLE,i:NAT)=
BusIdle(n,t)

<| eq(i,n) |>
sPDind(i,subactgap).SubactionGap(n,t,succ(i))

Resolve(n:NAT,t:BoolTABLE,next:BoolTABLE,i:NAT)=
(

(

(sPAcon(i,won).sPCind(i).Resolve(n,t,next,succ(i)))

<| get(i,next) |>
(tau.Resolve(n,t,next,succ(i)))

)

<| lt(i,n) |>
Resolve2(n,t,next)

)

Resolve2(n:NAT,t:BoolTABLE,next:BoolTABLE)=
(

sum(j:NAT,

rPDreq(j,End).

(

Resolve2(n,t,invert(j,next))

<| get(j,next) |>
delta

)

)

<| more(next) |>
sum(j:NAT,

sum(p:SIGNAL,

rPDreq(j,p).

(

SubactionGap(n,t,0)

<| is_end(p) |>
Distribute(n,t,inita(n),inita(n),j,p,0)

)

)

)

)

Distribute(n:NAT,

t:BoolTABLE,

next:BoolTABLE,

destfault:BoolTABLE,

busy:NAT,

p:SIGNAL,

i:NAT)=
(

(

(

%% Signals can be handed over correctly

54 Four Formal Models of IEEE 1394 Link Layer

(sPDind(i,p).

Distribute(n,t,next,destfault,busy,p,succ(i))

<| or(not(is_header(p)),not(get(i,destfault))) |>
delta)

+
%% Destination signals may be corrupted
(sum(dest:NAT,

sPDind(i,sig(dest)).

Distribute(n,t,next,invert(i,destfault),busy,p,succ(i))

) <| is_dest(p) |> delta)

+
%% Headers/Data/Acks may be corrupted
(sPDind(i,corrupt(p)).

Distribute(n,t,next,destfault,busy,p,succ(i))

<| is_hda(p) |> delta)

+
%% Headers/Data/Acks may get lost
(losesignal.Distribute(n,t,next,destfault,busy,p,succ(i))

<| is_hda(p) |> delta)

+
%% Packets may be too large
(sPDind(i,p).sPDind(i,Dummy).

Distribute(n,t,next,destfault,busy,p,succ(i))

<| is_data(p) |> delta)

+
(rPAreq(i,immediate).

(Distribute(n,t,invert(i,next),destfault,busy,p,i)

<| not(get(i,next)) |> delta))

)

<| not(eq(i,busy)) |>
tau.Distribute(n,t,next,destfault,busy,p,succ(i))

)

<| lt(i,n) |>
(

BusBusy(n,t,next,destfault,n)

<| is_end(p) |>
BusBusy(n,t,next,destfault,busy)

)

)

A.4 The MAIN process in µCRL

act
PDind,PDreq: NAT#SIGNAL
PAcon: NAT#PAC
PAreq: NAT#PAR
PCind: NAT

comm
rPDind|sPDind=PDind
rPDreq|sPDreq=PDreq

H. Garavel & B. Luttik 55

rPAcon|sPAcon=PAcon
rPAreq|sPAreq=PAreq
rPCind|sPCind=PCind

proc

P1394(n:NAT)=
hide({PDind, PDreq, PAcon, PAreq, PCind, arbresgap,losesignal},

encap({rPDind, sPDind, rPDreq, sPDreq, rPAcon,

sPAcon, rPAreq, sPAreq, rPCind, sPCind},

BUS(2) || LINK(2,0) || LINK(2,1)

)

)

% note: for 3 links, use BUS(3) || LINK(3,0) || LINK(3,1) || LINK(3,2), etc.

init P1394(2)

B Formal model in mCRL2

B.1 Types and functions in mCRL2

sort CHECK = struct bottom | check;

sort DATA = struct d1 | d2;

map crc : DATA -> CHECK;

eqn crc(d1)=check;
crc(d2)=check;

sort HEADER = struct h1 | h2;

map crc : HEADER -> CHECK;

eqn crc(h1)=check;
crc(h2)=check;

sort ACK = struct a1 | a2;

map crc : ACK -> CHECK;

eqn crc(a1)=check;
crc(a2)=check;

sort SIGNAL = struct sig(getdest:Nat) ? is_dest |
sig(gethead:HEADER,gethcrc:CHECK) ? is_header |
sig(getdata:DATA,getdcrc:CHECK) ? is_data |
sig(getack:ACK,getacrc:CHECK) ? is_ack |
Start ? is_start |
End ? is_end |
Prefix ? is_prefix |
subactgap ? is_sagap |
dhead ? is_dhead |

56 Four Formal Models of IEEE 1394 Link Layer

Dummy ? is_dummy;

map is_physig,is_terminator : SIGNAL -> Bool;

getcrc : SIGNAL -> CHECK;

var s : SIGNAL;

eqn is_physig(s) = is_start(s) || is_end(s) || is_prefix(s) || is_sagap(s);

is_terminator(s)=is_end(s) || is_prefix(s);

getcrc(s)=if(is_header(s),gethcrc(s),
if(is_data(s),getdcrc(s),

if(is_ack(s),getacrc(s),

bottom)));

map is_hda : SIGNAL -> Bool;

valid_hpart, valid_ack : SIGNAL -> Bool;

var s : SIGNAL;

eqn is_hda(s)=is_header(s) || is_data(s) || is_ack(s);

valid_ack(s)=if(is_ack(s),getacrc(s)==check,false);
valid_hpart(s)=if(is_header(s),gethcrc(s)==check,false);

map corrupt : SIGNAL -> SIGNAL;

var h : HEADER;

d : DATA;

a : ACK;

c : CHECK;

eqn corrupt(sig(h,c)) = sig(h,bottom);

corrupt(sig(d,c)) = sig(d,bottom);

corrupt(sig(a,c)) = sig(a,bottom);

sort SIG_TUPLE =
struct quadruple (first:SIGNAL,

second:SIGNAL,

third:SIGNAL,

fourth:SIGNAL)

| void ? is_void;

sort PAR = struct fair | immediate;

sort PAC = struct won | lost;

sort LDC = struct ackrec(ACK)

| ackmiss

| broadsent;

sort LDI = struct good (HEADER,DATA)

| broadrec (HEADER,DATA)

| dcrc_err (HEADER);

sort BOC = struct release | hold;

B.2 The LINK process in mCRL2

H. Garavel & B. Luttik 57

act
LDreq : Nat#Nat#HEADER#DATA;
LDcon : Nat#LDC;
LDind : Nat#LDI;
LDres : Nat#ACK#BOC;

sPDreq,rPDind : Nat#SIGNAL;
sPAreq : Nat#PAR;
rPAcon : Nat#PAC;
rPCind : Nat;

proc LINK(n:Nat,i:Nat)=Link0(n,i,void);

Link0(n:Nat,id:Nat,buffer:SIG_TUPLE)=
is_void(buffer) ->

(sum dest:Nat,h:HEADER,d:DATA.

(dest<=n) -> LDreq(id,dest,h,d).

Link0(n,id,quadruple(dhead,

sig(dest),

sig(h,crc(h)),

sig(d,crc(d))))<>delta) <>
sPAreq(id,fair).Link1(n,id,buffer) +

sum p:SIGNAL.

rPDind(id,p).

(is_start(p) -> Link4(n,id,buffer) <> Link0(n,id,buffer));

Link1(n:Nat,id:Nat,p:SIG_TUPLE)=
rPAcon(id,won).Link2req(n,id,p) +
rPAcon(id,lost).Link0(n,id,p);

Link2req(n:Nat,id:Nat,p:SIG_TUPLE)=
rPCind(id).sPDreq(id,Start).

rPCind(id).sPDreq(id,first(p)).

rPCind(id).sPDreq(id,second(p)) .

rPCind(id).sPDreq(id,third(p)).

rPCind(id).sPDreq(id,fourth(p)).

rPCind(id).sPDreq(id,End).

((getdest(second(p))==n) ->
LDcon(id,broadsent).Link0(n,id,void) <>
Link3(n,id,void));

Link3(n:Nat,id:Nat,buffer:SIG_TUPLE)=
sum p:SIGNAL.

rPDind(id,p).

(is_prefix(p) -> Link3(n,id,buffer) <>
(is_start(p) -> Link3RA(n,id,buffer) <>
(is_sagap(p) -> LDcon(id,ackmiss).Link0(n,id,buffer) <>

LDcon(id,ackmiss).LinkWSA(n,id,buffer,n)

)));

Link3RA(n:Nat,id:Nat,buffer:SIG_TUPLE)=
sum a:SIGNAL.

58 Four Formal Models of IEEE 1394 Link Layer

rPDind(id,a).

(is_sagap(a) -> LDcon(id,ackmiss).Link0(n,id,buffer) <>
(is_physig(a) -> LDcon(id,ackmiss).LinkWSA(n,id,buffer,n) <>

Link3RE(n,id,buffer,a)));

Link3RE(n:Nat,id:Nat,buffer:SIG_TUPLE,a:SIGNAL)=
sum e:SIGNAL.

rPDind(id,e).

((valid_ack(a) && is_terminator(e)) ->
LDcon(id,ackrec(getack(a))).LinkWSA(n,id,buffer,n) <>

(is_sagap(e) ->
LDcon(id,ackmiss).Link0(n,id,buffer) <>
LDcon(id,ackmiss).LinkWSA(n,id,buffer,n)

));

Link4(n:Nat,id:Nat,buffer:SIG_TUPLE)=
sum dh:SIGNAL.

rPDind(id,dh).

(is_physig(dh) ->
(is_sagap(dh) ->

Link0(n,id,buffer) <>
LinkWSA(n,id,buffer,n)) <>

Link4DH(n,id,buffer));

Link4DH(n:Nat,id:Nat,buffer:SIG_TUPLE)=
sum dest:SIGNAL.rPDind(id,dest).

(is_dest(dest) ->
((getdest(dest)==id) ->

sPAreq(id,immediate).Link4RH(n,id,buffer,id) <>
((getdest(dest)==n) ->

Link4RH(n,id,buffer,n) <>
LinkWSA(n,id,buffer,n)

)

) <>
(is_sagap(dest) ->

Link0(n,id,buffer) <>
LinkWSA(n,id,buffer,n)

));

Link4RH(n:Nat,id:Nat,buffer:SIG_TUPLE,dest:Nat)=
sum h:SIGNAL.rPDind(id,h).

(valid_hpart(h) ->
Link4RD(n,id,buffer,dest,h) <>
LinkWSA(n,id,buffer,dest)

);

Link4RD(n:Nat,id:Nat,buffer:SIG_TUPLE,dest:Nat,h:SIGNAL)=
sum d:SIGNAL.

rPDind(id,d).

(is_data(d) ->
Link4RE(n,id,buffer,dest,h,d) <>
LinkWSA(n,id,buffer,dest)

H. Garavel & B. Luttik 59

);

Link4RE(n,id:Nat,buffer:SIG_TUPLE,dest:Nat,h:SIGNAL,d:SIGNAL)=
sum e:SIGNAL.

rPDind(id,e).

(is_terminator(e) ->
((dest==id) ->

Link4DRec(n,id,buffer,h,d) <>
Link4BRec(n,id,buffer,h,d)

) <>
LinkWSA(n,id,buffer,dest)

);

Link4DRec(n:Nat,id:Nat,buffer:SIG_TUPLE,h:SIGNAL,d:SIGNAL)=
(getcrc(d)==check) ->

LDind(id,good(gethead(h),getdata(d))).rPAcon(id,won).Link5(n,id,buffer)

<>
LDind(id,dcrc_err(gethead(h))).rPAcon(id,won).Link5(n,id,buffer);

Link4BRec(n:Nat,id:Nat,buffer:SIG_TUPLE,h:SIGNAL,d:SIGNAL)=
(getcrc(d)==check) ->

LDind(id,broadrec(gethead(h),getdata(d))).Link0(n,id,buffer) <>
Link0(n,id,buffer);

Link5(n,id:Nat,buffer:SIG_TUPLE)=
sum a:ACK,b:BOC.LDres(id,a,b).Link6(n,id,buffer,sig(a,crc(a)),b) +
rPCind(id).sPDreq(id,Prefix).Link5(n,id,buffer);

Link6(n:Nat,id:Nat,buffer:SIG_TUPLE,p:SIGNAL,b:BOC)=
rPCind(id).sPDreq(id,Start).rPCind(id).sPDreq(id,p).rPCind(id).

((b==release) ->
sPDreq(id,End).Link0(n,id,buffer) <>
sPDreq(id,Prefix).Link7(n,id,buffer)

);

Link7(n,id:Nat,buffer:SIG_TUPLE)=
rPCind(id).sPDreq(id,Prefix).Link7(n,id,buffer) +
sum dest:Nat,h:HEADER,d:DATA. (dest<=n) ->

LDreq(id,dest,h,d). Link2resp(n,id,buffer,

quadruple(dhead,sig(dest),sig(h,crc(h)),sig(d,crc(d))))<>delta;

Link2resp(n:Nat,id:Nat,buffer:SIG_TUPLE,p:SIG_TUPLE)=
rPCind(id).sPDreq(id,Start).

rPCind(id).sPDreq(id,first(p)).

rPCind(id).sPDreq(id,second(p)).

rPCind(id).sPDreq(id,third(p)).

rPCind(id).sPDreq(id,fourth(p)).

rPCind(id).sPDreq(id,End).

((getdest(second(p))==n) ->
LDcon(id,broadsent).Link0(n,id,buffer) <>
Link3(n,id,buffer)

);

60 Four Formal Models of IEEE 1394 Link Layer

LinkWSA(n:Nat,id:Nat,buffer:SIG_TUPLE,dest:Nat)=
sum p:SIGNAL.rPDind(id,p).

(is_sagap(p) ->
Link0(n,id,buffer) <>
LinkWSA(n,id,buffer,dest)

) +
(dest==id) -> rPAcon(id,won).rPCind(id).sPDreq(id,End).Link0(n,id,buffer)<>delta;

B.3 The BUS process in mCRL2

sort BoolTABLE = List(struct pair(Nat,getbool:Bool));

map inita : Nat -> BoolTABLE;

invert : Nat#BoolTABLE -> BoolTABLE;

get : Nat#BoolTABLE -> Bool;

var n,m : Nat;

b : Bool;

bt1,bt2 : BoolTABLE;

eqn inita(0)=[];
n>0 -> inita(n)=pair(Int2Nat(n-1),false)|>inita(Int2Nat(n-1));

invert(n,[])=[];
invert(n,pair(m,b)|>bt1)=

if(n==m,pair(m,!b)|>bt1,pair(m,b)|>invert(n,bt1));

get(n,[])=false;
get(n,pair(m,b)|>bt1)=if(n==m,b,get(n,bt1));

map zero,one,more: BoolTABLE -> Bool;

var n : Nat;

bt : BoolTABLE;

eqn zero([])=true;
zero(pair(n,true)|>bt)=false;
zero(pair(n,false)|>bt)=zero(bt);
one([])=false;
one(pair(n,true)|>bt)=zero(bt);
one(pair(n,false)|>bt)=one(bt);
more(bt)=!zero(bt) && !one(bt);

act rPAreq: Nat#PAR;
rPDreq,sPDind: Nat#SIGNAL;
sPAcon: Nat#PAC;
sPCind: Nat;

arbresgap;

losesignal;

internal;

proc BUS(n:Nat)=BusIdle(n, inita(n));

BusIdle(n:Nat,t:BoolTABLE)=
sum id:Nat,astat:PAR.(id<=n) ->

H. Garavel & B. Luttik 61

rPAreq(id,astat).DecideIdle(n,t,id,astat)<>delta +
!zero(t)->arbresgap.BusIdle(n,inita(n))<>delta;

DecideIdle(n:Nat,t:BoolTABLE,id:Nat,astat:PAR)=
(!get(id,t)) ->
sPAcon(id,won).BusBusy(n,invert(id,t),inita(n),inita(n),id) <>
sPAcon(id,lost).BusIdle(n,t);

BusBusy(n:Nat,t,next,destfault:BoolTABLE,busy:Nat)=
(busy<n) ->

(sPCind(busy).

(sum p:SIGNAL.rPDreq(busy,p).Distribute(n,t,next,destfault,busy,p,0))

) <>
(zero(next) ->

SubactionGap(n,t,0) <>
Resolve(n,t,next,0)

) +
sum j:Nat.(j<=n) ->

rPAreq(j,fair).sPAcon(j,lost).BusBusy(n,t,next,destfault,busy)<>delta +
sum j:Nat.(j<=n) -> rPAreq(j,immediate).

(!get(j,next) -> BusBusy(n,t,invert(j,next),destfault,busy)<>delta)<>delta;

SubactionGap(n:Nat,t:BoolTABLE,i:Nat)=
(i==n) ->

BusIdle(n,t) <>
sPDind(i,subactgap).SubactionGap(n,t,i+1);

Resolve(n:Nat,t,next:BoolTABLE,i:Nat)=
(i<n) ->
(get(i,next) ->

sPAcon(i,won).sPCind(i).Resolve(n,t,next,i+1) <>
internal.Resolve(n,t,next,i+1)

) <>
Resolve2(n,t,next);

Resolve2(n:Nat,t:BoolTABLE,next:BoolTABLE)=
more(next) ->

(sum j:Nat.(j<=n) -> rPDreq(j,End).(get(j,next) ->
Resolve2(n,t,invert(j,next))<>delta)<>delta) <>
(sum j:Nat,p:SIGNAL.(j<=n) ->

rPDreq(j,p).

(is_end(p) ->
SubactionGap(n,t,0) <>
Distribute(n,t,inita(n),inita(n),j,p,0)

)<>delta);

Distribute(n:Nat,t,next,destfault:BoolTABLE,busy:Nat,p:SIGNAL,i:Nat)=
(i<n) ->
((i!=busy) ->
(%% Signals can be handed over correctly
(!is_header(p) || !get(i,destfault)) ->

sPDind(i,p).Distribute(n,t,next,destfault,busy,p,i+1)<>delta +

62 Four Formal Models of IEEE 1394 Link Layer

%% Destination signals may be corrupted
sum dest:Nat.(is_dest(p) && dest<=n) ->

sPDind(i,sig(dest)).

Distribute(n,t,next,invert(i,destfault),busy,p,i+1)<>delta +
%% Headers/Data/Acks may be corrupted
is_hda(p) ->

sPDind(i,corrupt(p)).

Distribute(n,t,next,destfault,busy,p,i+1)<>delta +
%% Headers/Data/Acks may get lost
is_hda(p) ->

losesignal.Distribute(n,t,next,destfault,busy,p,i+1)<>delta +
%% Packets may be too large
is_data(p) ->

sPDind(i,p).sPDind(i,Dummy).

Distribute(n,t,next,destfault,busy,p,i+1)<>delta +
(!get(i,next)) ->

rPAreq(i,immediate).

Distribute(n,t,invert(i,next),destfault,busy,p,i)<>delta
) <>
%% i==busy
internal.Distribute(n,t,next,destfault,busy,p,i+1)

) <>
%% i>=n
(is_end(p) ->

BusBusy(n,t,next,destfault,n) <>
BusBusy(n,t,next,destfault,busy)

);

B.4 The MAIN process in mCRL2

act
cPDreq,cPDind : Nat#SIGNAL;
cPAreq : Nat#PAR;
cPAcon : Nat#PAC;
cPCind : Nat;

proc P1394(n:Nat)=
allow({LDreq,LDcon,LDind,LDres},

hide({arbresgap,losesignal,internal,cPDind,cPDreq,cPAcon,cPAreq,cPCind},
comm({rPDind|sPDind->cPDind,rPDreq|sPDreq->cPDreq,rPAcon|sPAcon->cPAcon,

rPAreq|sPAreq->cPAreq,rPCind|sPCind->cPCind},

allow({LDreq,LDcon,LDind,LDres,arbresgap,losesignal,internal,

rPDind|sPDind,rPDreq|sPDreq,rPAcon|sPAcon,
rPAreq|sPAreq,rPCind|sPCind},

BUS(2) || LINK(2,0) || LINK(2,1)))));

% note: for 3 links, use BUS(3) || LINK(3,0) || LINK(3,1) || LINK(3,2), etc.

init P1394(2);

H. Garavel & B. Luttik 63

C Formal model in LOTOS

C.1 Types and functions in LOTOS

type CHECK is Boolean

sorts
CHECK

opns
bottom (*! constructor *) : −> CHECK

check (*! constructor *) : −> CHECK

eq : CHECK, CHECK −> Bool

eqns
forall x, y : CHECK

ofsort Bool

eq (x, x) = true;
(* otherwise *) eq (x, y) = false;

endtype

(*−−−*)

type DATA is CHECK

sorts
DATA

opns
d1 (*! constructor *) : −> DATA

(* for verification, this type is restricted to a single value *)
(* d2 {*! constructor *} : −> DATA *)
crc : DATA −> CHECK

eq : DATA, DATA −> Bool

eqns
forall x, y : DATA

ofsort Bool

eq (x, x) = true;
(* otherwise *) eq (x, y) = false;

ofsort CHECK

crc (x) = check;
endtype

(*−−−*)

type HEADER is CHECK

sorts
HEADER

opns
h1 (*! constructor *) : −> HEADER

(* for verification, this type is restricted to a single value *)
(* h2 {*! constructor *} : −> HEADER *)
crc : HEADER −> CHECK

eq : HEADER, HEADER −> Bool

eqns
forall x, y : HEADER

64 Four Formal Models of IEEE 1394 Link Layer

ofsort Bool

eq (x, x) = true;
(* otherwise *) eq (x, y) = false;

ofsort CHECK

crc (x) = check;
endtype

(*−−−*)

type ACK is CHECK

sorts
ACK

opns
a1 (*! constructor *) : −> ACK

(* for verification, this type is restricted to a single value *)
(* a2 {*! constructor *} : −> ACK *)
crc : ACK −> CHECK

eq : ACK, ACK −> Bool

eqns
forall x, y : ACK

ofsort Bool

eq (x, x) = true;
(* otherwise *) eq (x, y) = false;

ofsort CHECK

crc (x) = check;
endtype

(*−−−*)

type BOC is CHECK

sorts
BOC

opns
release (*! constructor *),
hold (*! constructor *),
no_op (*! constructor *) : −> BOC

eq : BOC, BOC −> Bool

eqns
forall x, y : BOC

ofsort Bool

eq (x, x) = true;
(* otherwise *) eq (x, y) = false;

endtype

(*−−−*)

type PHY_AREQ is CHECK

sorts
PHY_AREQ

opns
fair (*! constructor *),
immediate (*! constructor *) : −> PHY_AREQ

H. Garavel & B. Luttik 65

eq : PHY_AREQ, PHY_AREQ −> Bool

eqns
forall x, y : PHY_AREQ

ofsort Bool

eq (x, x) = true;
(* otherwise *) eq (x, y) = false;

endtype

(*−−−*)

type PHY_ACONF is CHECK

sorts
PHY_ACONF

opns
won (*! constructor *),
lost (*! constructor *) : −> PHY_ACONF

eq : PHY_ACONF, PHY_ACONF −> Bool

eqns
forall x, y : PHY_ACONF

ofsort Bool

eq (x, x) = true;
(* otherwise *) eq (x, y) = false;

endtype

(*−−−*)

type SIGNAL is ACK, CHECK, DATA, HEADER, NaturalNumber

sorts
SIGNAL

opns
destsig (*! constructor *) : Nat −> SIGNAL

headsig (*! constructor *) : HEADER, CHECK −> SIGNAL

datasig (*! constructor *) : DATA, CHECK −> SIGNAL

acksig (*! constructor *) : ACK, CHECK −> SIGNAL

dhead (*! constructor *) : −> SIGNAL

Start (*! constructor *) : −> SIGNAL

End (*! constructor *) : −> SIGNAL

Prefix (*! constructor *) : −> SIGNAL

subactgap (*! constructor *) : −> SIGNAL

Dummy (*! constructor *) : −> SIGNAL

is_dest, is_header, is_data, is_ack, is_physig : SIGNAL −> Bool

valid_hpart, valid_ack : SIGNAL −> Bool

getdest : SIGNAL −> Nat

getdcrc : SIGNAL −> CHECK

getdata : SIGNAL −> DATA

gethead : SIGNAL −> HEADER

getack : SIGNAL −> ACK

corrupt : SIGNAL −> SIGNAL

eq : SIGNAL, SIGNAL −> Bool

eqns
forall n : Nat, c : CHECK, h : HEADER, d : DATA, a : ACK, s, s1, s2 : SIGNAL

ofsort Bool

66 Four Formal Models of IEEE 1394 Link Layer

is_dest (destsig (n)) = true;
(* otherwise *) is_dest (s) = false;
is_header (headsig (h, c)) = true;
(* otherwise *) is_header (s) = false;
is_data (datasig (d, c)) = true;
(* otherwise *) is_data (s) = false;
is_ack (acksig (a, c)) = true;
(* otherwise *) is_ack (s) = false;
is_physig (Start) = true;
is_physig (End) = true;
is_physig (Prefix) = true;
is_physig (subactgap) = true;
(* otherwise *) is_physig (s) = false;
valid_ack (acksig (a, c)) = eq (c, check);
(* otherwise *) valid_ack (s) = false;
valid_hpart (headsig (h, c)) = eq (c, check);
(* otherwise *) valid_hpart (s) = false;

ofsort Nat

getdest (destsig (n)) = n;
(* otherwise getdest (s) is undefined *)

ofsort HEADER

gethead (headsig (h, c)) = h;
(* otherwise gethead (s) is undefined *)

ofsort CHECK

getdcrc (datasig (d, c)) = c;
(* otherwise getdcrc (s) is undefined *)

ofsort DATA

getdata (datasig (d, c)) = d;
(* otherwise getdata (s) is undefined *)

ofsort ACK

getack (acksig (a, c)) = a;
(* otherwise getack (s) is undefined *)

ofsort SIGNAL

corrupt (headsig (h, c)) = headsig (h, bottom);
corrupt (datasig (d, c)) = datasig (d, bottom);
corrupt (acksig (a, c)) = acksig (a, bottom);

ofsort Bool

eq (s1, s1) = true;
(* otherwise *) eq (s1, s2) = false;

endtype

(*−−−*)

type SIG_TUPLE is Boolean, SIGNAL

sorts
SIG_TUPLE

opns
quadruple (*! constructor *) : SIGNAL, SIGNAL, SIGNAL, SIGNAL −> SIG_TUPLE

void (*! constructor *) : −> SIG_TUPLE

first, second, third, fourth : SIG_TUPLE −> SIGNAL

is_void : SIG_TUPLE −> Bool

eqns

H. Garavel & B. Luttik 67

forall s1, s2, s3, s4 : SIGNAL

ofsort SIGNAL

first (quadruple (s1, s2, s3, s4)) = s1;
second (quadruple (s1, s2, s3, s4)) = s2;
third (quadruple (s1, s2, s3, s4)) = s3;
fourth (quadruple (s1, s2, s3, s4)) = s4;

ofsort Bool

is_void (void) = true;
is_void (quadruple (s1, s2, s3, s4)) = false;

endtype

(*−−−*)

type LIN_DCONF is ACK

sorts
LIN_DCONF

opns
ackrec (*! constructor *) : ACK −> LIN_DCONF

ackmiss (*! constructor *),
broadsent (*! constructor *) : −> LIN_DCONF

endtype

(*−−−*)

type LIN_DIND is Boolean, DATA, HEADER

sorts
LIN_DIND

opns
good (*! constructor *),
broadrec (*! constructor *) : HEADER, DATA −> LIN_DIND

dcrc_err (*! constructor *) : HEADER −> LIN_DIND

is_broadrec : LIN_DIND −> Bool

eqns
forall h: HEADER, d: DATA, xind: LIN_DIND

ofsort Bool

is_broadrec (broadrec (h, d)) = true;
(* otherwise *) is_broadrec (xind) = false;

endtype

(*−−−*)

type BoolTABLE is Boolean, NaturalNumber

sorts
BoolTABLE

opns
empty (*! constructor *) : −> BoolTABLE

btable (*! constructor *) : Nat, Bool, BoolTABLE −> BoolTABLE

init : Nat −> BoolTABLE

invert : Nat, BoolTABLE −> BoolTABLE

get : Nat, BoolTABLE −> Bool

zero, one, more : BoolTABLE −> Bool

eqns

68 Four Formal Models of IEEE 1394 Link Layer

forall n, n1, n2 : Nat, b : Bool, t : BoolTABLE

ofsort BoolTABLE

init (0) = empty;
init (Succ (n)) = btable (n, false, init (n));
invert (n, empty) = empty;
n1 eq n2 => invert (n1, btable (n2, b, t)) = btable (n2, not (b), t);
n1 ne n2 => invert (n1, btable (n2, b, t)) = btable (n2, b, invert (n1, t));

ofsort Bool

(* get (n, empty) is undefined *)
n1 eq n2 => get (n1, btable (n2, b, t)) = b;
n1 ne n2 => get (n1, btable (n2, b, t)) = get (n1, t);

ofsort Bool

zero (empty) = true;
zero (btable (n, true, t)) = false;
zero (btable (n, false, t)) = zero (t);
one (empty) = false;
one (btable (n, true, t)) = zero (t);
one (btable (n, false, t)) = one (t);
more (t) = not (zero (t)) and not (one (t));

endtype

(*−−−*)

type Version is
sorts

Version

opns
ko (*! constructor *),
ok (*! constructor *) : −> Version

endtype

(*−−−*)

type Scenario is Boolean, Natural

sorts
Scenario

opns
scenario_1 (*! constructor *),
scenario_2 (*! constructor *),
scenario_3_2 (*! constructor *),
scenario_3_3 (*! constructor *),
scenario_3_4 (*! constructor *) : −> Scenario

eq : Scenario, Scenario −> Bool

eqns
forall s1, s2: Scenario

ofsort Bool

s1 eq s1 = true;
(* otherwise *) s1 eq s2 = false;

endtype

H. Garavel & B. Luttik 69

C.2 The LINK process in LOTOS

process Link [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id: Nat) : noexit :=

Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind] (n, id, void)

endproc

(* −−− *)

process Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id: Nat, buffer: SIG_TUPLE) : noexit :=

[is_void (buffer)] −>
LDreq !id ?dest: Nat ?h: HEADER ?d: DATA;
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, quadruple (dhead,

destsig (dest),

headsig (h, crc (h)),

datasig (d, crc (d))))

[]
[not (is_void (buffer))] −>

PAreq !id !fair;
Link1 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

[]
PDind !id ?p: SIGNAL;
(

[eq (p, Start)] −>
Link4 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

[]
[not (eq (p, Start))] −>

Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

)

endproc

(* −−− *)

process Link1 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id: Nat, buffer: SIG_TUPLE) : noexit :=

PAcon !id !won;
Link2req [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

[]
PAcon !id !lost;
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

endproc

(* −−− *)

process Link2req [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

70 Four Formal Models of IEEE 1394 Link Layer

(n, id: Nat, buffer: SIG_TUPLE) : noexit :=

PCind !id;
PDreq !id !Start;
PCind !id;
PDreq !id !first (buffer);
PCind !id;
PDreq !id !second (buffer);
PCind !id;
PDreq !id !third (buffer);
PCind !id;
PDreq !id !fourth (buffer);
PCind !id;
PDreq !id !End;
(

[getdest (second (buffer)) eq n] −>
LDcon !id !broadsent;
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, void)

[]
[getdest (second (buffer)) ne n] −>

Link3 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, void)

)

endproc

(* −−− *)

process Link3 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id: Nat, buffer: SIG_TUPLE) : noexit :=

PDind !id ?p: SIGNAL;
(

[eq (p, Prefix)] −>
Link3 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

[]
[eq (p, Start)] −>

Link3RA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

[]
[eq (p, subactgap)] −>

LDcon !id !ackmiss;
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

[]
[not (eq (p, Prefix) or eq (p, Start) or eq (p, subactgap))] −>

LDcon !id !ackmiss;
LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, n)

)

endproc

(* −−− *)

H. Garavel & B. Luttik 71

process Link3RA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id: Nat, buffer: SIG_TUPLE) : noexit :=

PDind !id ?a: SIGNAL;
(

[is_physig (a)] −>
(

[eq (a, subactgap)] −>
LDcon !id !ackmiss;
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

[]
[not (eq (a, subactgap))] −>

LDcon !id !ackmiss;
LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, n)

)

[]
[not (is_physig (a))] −>

Link3RE [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, a)

)

endproc

(* −−− *)

process Link3RE [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id: Nat, buffer: SIG_TUPLE, a: SIGNAL) : noexit :=

PDind !id ?e: SIGNAL;
(

[valid_ack (a) and (eq (e, End) or eq (e, Prefix))] −>
LDcon !id !ackrec (getack (a));
LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, n)

[]
[not (valid_ack (a) and (eq (e, End) or eq (e, Prefix)))] −>

(

[eq (e, subactgap)] −>
LDcon !id !ackmiss;
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

[]
[not (eq (e, subactgap))] −>

LDcon !id !ackmiss;
LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, n)

)

)

endproc

(* −−− *)

72 Four Formal Models of IEEE 1394 Link Layer

process Link4 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id: Nat, buffer: SIG_TUPLE) : noexit :=

PDind !id ?dh: SIGNAL;
(

[is_physig (dh)] −>
(

[eq (dh, subactgap)] −>
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

[]
[not (eq (dh, subactgap))] −>

LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, n)

)

[]
[not (is_physig (dh))] −>

Link4DH [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

)

endproc

(* −−− *)

process Link4DH [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id: Nat, buffer: SIG_TUPLE) : noexit :=

PDind !id ?dest: SIGNAL;
(

[is_dest (dest)] −>
(

[getdest (dest) eq id] −>
PAreq !id !immediate;
Link4RH [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, id)

[]
[getdest (dest) eq n] −>

Link4RH [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, n)

[]
[(getdest (dest) ne n) and (getdest (dest) ne id)] −>

LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, n)

)

[]
[not (is_dest (dest))] −>

(

[eq (dest, subactgap)] −>
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

[]
[not (eq (dest, subactgap))] −>

LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, n)

H. Garavel & B. Luttik 73

)

)

endproc

(* −−− *)

process Link4RH [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id: Nat, buffer: SIG_TUPLE, dest: Nat) : noexit :=

PDind !id ?h: SIGNAL;
(

[valid_hpart (h)] −>
Link4RD [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, dest, h)

[]
[not (valid_hpart (h))] −>

LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, dest)

)

endproc

(* −−− *)

process Link4RD [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id: Nat, buffer: SIG_TUPLE, dest: Nat, h: SIGNAL) : noexit :=

PDind !id ?d: SIGNAL;
(

[is_data (d)] −>
Link4RE [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, dest, h, d)

[]
[not (is_data (d))] −>

LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, dest)

)

endproc

(* −−− *)

process Link4RE [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id: Nat, buffer: SIG_TUPLE, dest: Nat, h: SIGNAL, d: SIGNAL)

: noexit :=

PDind !id ?e: SIGNAL;
(

[eq (e, End) or eq (e, Prefix)] −>
(

[dest eq id] −>
Link4DRec [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, h, d)

[]
[dest ne id] −>

Link4BRec [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, h, d)

74 Four Formal Models of IEEE 1394 Link Layer

)

[]
[not (eq (e, End) or eq (e, Prefix))] −>

LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, dest)

)

endproc

(* −−− *)

process Link4DRec [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id: Nat, buffer: SIG_TUPLE, h: SIGNAL, d: SIGNAL) : noexit :=

[eq (getdcrc (d), check)]−>
LDind !id !good (gethead (h), getdata (d));
PAcon !id !won;
Link5 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

[]
[not (eq (getdcrc (d), check))] −>

LDind !id !dcrc_err (gethead (h));
PAcon !id !won;
Link5 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

endproc

(* −−− *)

process Link4BRec [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id: Nat, buffer: SIG_TUPLE, h: SIGNAL, d: SIGNAL) : noexit :=

[eq (getdcrc (d), check)] −>
LDind !id !broadrec (gethead (h), getdata (d));
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

[]
[not (eq (getdcrc (d), check))] −>

Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

endproc

(* −−− *)

process Link5 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id: Nat, buffer: SIG_TUPLE) : noexit :=

LDres !id ?a: ACK ?b: BOC;
Link6 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, acksig (a, crc (a)), b)

[]
PCind !id;
PDreq !id !Prefix;
Link5 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

endproc

H. Garavel & B. Luttik 75

(* −−− *)

process Link6 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id: Nat, buffer: SIG_TUPLE, p: SIGNAL, b: BOC) : noexit :=

PCind !id;
PDreq !id !Start;
PCind !id;
PDreq !id !p;
PCind !id;
(

[eq (b, release)] −>
PDreq !id !End;
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

[]
[not (eq (b, release))] −>

PDreq !id !Prefix;
Link7 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

)

endproc

(* −−− *)

process Link7 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id: Nat, buffer: SIG_TUPLE) : noexit :=

PCind !id;
PDreq !id !Prefix;
Link7 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

[]
LDreq !id ?dest: Nat ?h: HEADER ?d: DATA;
Link2resp [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, quadruple (dhead,

destsig (dest),

headsig (h, crc (h)),

datasig (d, crc (d))))

endproc

(* −−− *)

process Link2resp [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id: Nat, buffer: SIG_TUPLE, p: SIG_TUPLE) : noexit :=

PCind !id;
PDreq !id !Start;
PCind !id;
PDreq !id !first (p);
PCind !id;
PDreq !id !second (p);
PCind !id;
PDreq !id !third (p);

76 Four Formal Models of IEEE 1394 Link Layer

PCind !id;
PDreq !id !fourth (p);
PCind !id;
PDreq !id !End;
(

[getdest (second (p)) eq n] −>
LDcon !id !broadsent;
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

[]
[getdest (second (p)) ne n] −>

Link3 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

)

endproc

(* −−− *)

process LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id: Nat, buffer: SIG_TUPLE, dest: Nat) : noexit :=

PDind !id ?p: SIGNAL;
(

[eq (p, subactgap)] −>
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

[]
[not (eq (p, subactgap))] −>

LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, dest)

)

[]
[dest eq id] −>

PAcon !id !won;
PCind !id;
PDreq !id !End;
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

endproc

C.3 The BUS process in LOTOS

process Bus [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n: Nat) : noexit :=

BusIdle [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal] (n, init (n))

endproc

(* −−− *)

process BusIdle [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n: Nat, t: BoolTABLE) : noexit :=

H. Garavel & B. Luttik 77

PAreq ?id: Nat ?astat: PHY_AREQ [id lt n];
DecideIdle [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal] (n, t, id,

astat)

[]
[not (zero(t))] −>

arbresgap;
BusIdle [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal] (n, init (n))

endproc

(* −−− *)

process DecideIdle [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n: Nat, t: BoolTABLE, id: Nat, astat: PHY_AREQ) : noexit :=

[get (id, t) eq false] −>
PAcon !id !won;
BusBusy [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal] (n,

invert (id, t), init (n), init (n), id)

[]
[get (id, t) eq true] −>

PAcon !id !lost;
BusIdle [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal] (n, t)

endproc

(* −−− *)

process BusBusy [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n: Nat, t: BoolTABLE, next: BoolTABLE, destfault: BoolTABLE,

busy: Nat) : noexit :=

[busy lt n] −>
PCind !busy;
PDreq !busy ?p: SIGNAL;
Distribute [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, next, destfault, busy, p, 0)

[]
[not (busy lt n)] −>

(

[zero (next)] −>
SubactionGap [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, 0)

[]
[not (zero (next))] −>

Resolve [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, next, 0)

)

[]
PAreq ?j: Nat !fair [j lt n];
PAcon !j !lost;
BusBusy [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, next, destfault, busy)

[]
PAreq ?j: Nat !immediate [not (get (j, next)) and (j lt n)];
BusBusy [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

78 Four Formal Models of IEEE 1394 Link Layer

(n, t, invert (j, next), destfault, busy)

endproc

(* −−− *)

process SubactionGap [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n: Nat, t: BoolTABLE, j: Nat) : noexit :=

[j eq n] −>
BusIdle [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal] (n, t)

[]
[j ne n] −>

PDind !j !subactgap;
SubactionGap [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, succ (j))

endproc

(* −−− *)

process Resolve [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n: Nat, t: BoolTABLE, next: BoolTABLE, j: Nat) : noexit :=

[j lt n] −>
(

[get (j, next) eq true] −>
PAcon !j !won;
PCind !j;
Resolve [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, next, succ (j))

[]
[get (j, next) eq false] −>

Resolve [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, next, succ (j))

)

[]
[not (j lt n)] −>

Resolve2 [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, next)

endproc

(* −−− *)

process Resolve2 [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n: Nat, t: BoolTABLE, next: BoolTABLE) : noexit :=

[more (next)] −>
PDreq ?j: Nat !End [get (j, next) and (j lt n)];
Resolve2 [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, invert (j, next))

[]
[not (more (next))] −>

PDreq ?j: Nat ?p: SIGNAL [j lt n];
(

[eq (p, End)] −>
SubactionGap [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

H. Garavel & B. Luttik 79

(n, t, 0)

[]
[not (eq (p, End))] −>

Distribute [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, init (n), init (n), j, p, 0)

)

endproc

(* −−− *)

process Distribute [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n: Nat, t, next, destfault: BoolTABLE, busy: Nat, p: SIGNAL,

j: Nat) : noexit :=

[j lt n] −>
(

[j ne busy] −>
(

[not (is_header (p)) or not (get (j, destfault))] −>
PDind !j !p;
Distribute [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, next, destfault, busy, p, succ (j))

[]
[is_dest (p)] −>

(

choice dest: Nat []
PDind !j !destsig (dest);
Distribute [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, next, invert (j, destfault), busy, p, succ (j))

)

[]
[is_header (p) or (is_data (p) or is_ack (p))] −>

PDind !j !corrupt (p);
Distribute [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, next, destfault, busy, p, succ (j))

[]
[is_header (p) or (is_data (p) or is_ack (p))] −>

losesignal;
Distribute [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, next, destfault, busy, p, succ (j))

[]
[is_data (p)] −>

PDind !j !p;
PDind !j !Dummy;
Distribute [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, next, destfault, busy, p, succ (j))

[]
PAreq !j !immediate [not (get (j, next))];

Distribute [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, invert (j, next), destfault, busy, p, j)

)

[]
[j eq busy] −>

80 Four Formal Models of IEEE 1394 Link Layer

Distribute [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, next, destfault, busy, p, succ (j))

)

[]
[not (j lt n)] −>

(

[eq (p, End)] −>
BusBusy [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, next, destfault, n)

[]
[not (eq (p, End))] −>

BusBusy [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, next, destfault, busy)

)

endproc

C.4 The TRANS process in LOTOS

process Trans [LDreq, LDcon, LDind, LDres, TDreq] (n, id: Nat, v: Version) : noexit :=

hide TX0 in
(

TransReq [LDreq, LDcon, TDreq, TX0] (n, id)

|[TX0]|
TransRes [LDind, LDres, TX0] (id, v)

)

endproc

(*−−−*)

process TransReq [LDreq, LDcon, TDreq, TX0] (n, id: Nat) : noexit :=

TDreq !id ?dest: Nat ?h: HEADER ?d: DATA [dest le n];
(

TX0;
exit (dest, h, d)

[]
exit (dest, h, d)

) >> accept dest: Nat, h: HEADER, d: DATA in
(

LDreq !id !dest !h !d;
(

[dest eq n] −>
LDcon !id !broadsent;
TransReq [LDreq, LDcon, TDreq, TX0] (n, id)

[]
[dest ne n] −>

(

choice a: ACK []
LDcon !id !ackrec (a);
TransReq [LDreq, LDcon, TDreq, TX0] (n, id)

)

[]

H. Garavel & B. Luttik 81

LDcon !id !ackmiss;
TransReq [LDreq, LDcon, TDreq, TX0] (n, id)

)

)

endproc

(*−−−*)

process TransRes [LDind, LDres, TX0] (id: Nat, v: Version) : noexit :=

LDind !id ?l: LIN_DIND;
(

[is_broadrec (l)] −>
(

[v = ko] −>
(* original (incorrect) specification *)
LDres !id !a1 !no_op;
TransRes [LDind, LDres, TX0] (id, v)

[]
[v = ok] −>

(* correct specification *)
TransRes [LDind, LDres, TX0] (id, v)

)

[]
[not (is_broadrec (l))] −>

(

choice a: ACK []
(

(* concatenated response = lock transaction *)
TX0;
LDres !id !a !hold;
TransRes [LDind, LDres, TX0] (id, v)

[]
(* split response *)
LDres !id !a !release;
TransRes [LDind, LDres, TX0] (id, v)

)

)

)

endproc

C.5 The APPLI process in LOTOS

process Application [TDreq] (n: Nat, id: Nat, s: Scenario) : noexit :=

[s eq scenario_1] −>
[id eq 0] −>

(

(* send a request for transaction with a *different* node *)
choice dest: Nat, h: HEADER, d: DATA []

[(dest le n) and (dest ne id)] −>
TDreq !id !dest !h !d;
stop

82 Four Formal Models of IEEE 1394 Link Layer

)

[]
[s eq scenario_2] −>

(

(* send a request for transaction with a *different* node *)
choice dest: Nat, h: HEADER, d: DATA []

[(dest le n) and (dest ne id)] −>
TDreq !id !dest !h !d;
stop

)

[]
[(s eq scenario_3_2) or (s eq scenario_3_3) or (s eq scenario_3_4)] −>

[id eq 0] −>
(

(* 2, 3 or 4 requests in sequence *)
choice h: HEADER, d: DATA []

TDreq !id !n !h !d;
TDreq !id !n !h !d;
(

[s eq scenario_3_2] −>
stop

[]
[s eq scenario_3_3] −>

TDreq !id !n !h !d;
stop

[]
[s eq scenario_3_4] −>

TDreq !id !n !h !d;
TDreq !id !n !h !d;
stop

)

)

endproc

C.6 The NODE process in LOTOS

process Node [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n: Nat, id: Nat, v: Version, s: Scenario) : noexit :=

hide TDreq in
(

Link [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind] (n, id)

|[LDreq, LDcon, LDind, LDres]|
Trans [LDreq, LDcon, LDind, LDres, TDreq] (n, id, v)

|[TDreq]|
Application [TDreq] (n, id, s)

)

endproc

C.7 The MAIN process in LOTOS

specification P1394 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind,

H. Garavel & B. Luttik 83

arbresgap, losesignal] : noexit

library
BOOLEAN, NATURAL, DATA

endlib

behaviour

(

Node [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind] (2, 0, ko,

scenario_3_4)

|||
Node [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind] (2, 1, ko,

scenario_3_4)

)

|[PDreq, PDind, PAreq, PAcon, PCind]|
Bus [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal] (2)

where

library
APPLI, TRANS, LINK, BUS, NODE

endlib

endspec

For model-checking purposes, a complementary file restricts the set of natural numbers, e.g., to the
finite range {0, ...,2} in the above example.

D Formal model in LNT

D.1 Types and functions in LNT

module DATA is

type CHECK is
bottom, check

with =, <>
end type

−−−

type DATA is
d1 −− , d2, ... for verification, this type is restricted to a single value
with =, <>

end type

function crc (d: DATA): CHECK is
use d; −− this parameter was not used in the LOTOS specification
return check

end function

84 Four Formal Models of IEEE 1394 Link Layer

−−−

type HEADER is
h1 −− , h2, ... for verification, this type is restricted to a single value
with =, <>

end type

function crc (h: HEADER): CHECK is
use h; −− this parameter was not used in the LOTOS specification
return check

end function

−−−

type ACK is
a1 −− , a2, ... for verification, this type is restricted to a single value
with =, <>

end type

function crc (a: ACK): CHECK is
use a; −− this parameter was not used in the LOTOS specification
return check

end function

−−−

type BOC is
release, hold, no_op

with =
end type

type PHY_AREQ is
fair, immediate

with =
end type

type PHY_ACONF is
won, lost

with =
end type

−−−

type SIGNAL is
destsig (dest: Nat),

headsig (head: HEADER, crc: CHECK),

datasig (data: DATA, crc: CHECK),

acksig (ack: ACK, crc: CHECK),

dhead,

Start,

End,

H. Garavel & B. Luttik 85

Prefix,

subactgap,

Dummy

with =, <>, get, set
end type

function is_dest (s: SIGNAL) : Bool is
case s in

destsig (any nat) -> return true

| any -> return false

end case
end function

function is_header (s: SIGNAL) : Bool is
case s in

headsig (any HEADER, any CHECK) -> return true

| any -> return false

end case
end function

function is_data (s: SIGNAL) : Bool is
case s in

datasig (any DATA, any CHECK) -> return true

| any -> return false

end case
end function

function is_ack (s: SIGNAL) : Bool is
case s in

acksig (any ACK, any CHECK) -> return true

| any -> return false

end case
end function

function is_physig (s: SIGNAL) : Bool is
case s in

Start | End | Prefix | subactgap -> return true

| any -> return false

end case
end function

function valid_hpart (s: SIGNAL) : Bool is
return is_header (s) and then (s.crc = check)

end function

function valid_ack (s: SIGNAL) : Bool is
return is_ack (s) and then (s.crc = check)

end function

function getdest (s: SIGNAL) : Nat is
return s .[UNEXPECTED] dest

end function

86 Four Formal Models of IEEE 1394 Link Layer

function getdcrc (s: SIGNAL) : CHECK is
assert is_data (s);
return s .[UNEXPECTED] crc

end function

function getdata (s: SIGNAL) : DATA is
return s .[UNEXPECTED] data

end function

function gethead (s: SIGNAL) : HEADER is
return s .[UNEXPECTED] head

end function

function getack (s: SIGNAL) : ACK is
return s .[UNEXPECTED] ack

end function

function corrupt (s: SIGNAL) : SIGNAL is
case s in

headsig (any HEADER, any CHECK) -> return s.{crc -> bottom}

| datasig (any DATA, any CHECK) -> return s.{crc -> bottom}

| acksig (any ACK, any CHECK) -> return s.{crc -> bottom}

| any -> raise UNEXPECTED

end case
end function

−−−

type SIG_TUPLE is
quadruple (dh, dest, header, data: SIGNAL),

void

with get

end type

function is_void (s: SIG_TUPLE) : Bool is
case s in

void -> return true

| any -> return false

end case
end function

−−−

type LIN_DCONF is
ackrec (a: ACK),

ackmiss,

broadsent

end type

−−−

H. Garavel & B. Luttik 87

type LIN_DIND is
good (h: HEADER, d: DATA),

broadrec (h: HEADER, d: DATA),

dcrc_err (h: HEADER)

end type

function is_broadrec (x: LIN_DIND) : Bool is
case x in

broadrec (any HEADER, any DATA) -> return true

| any -> return false

end case
end function

−−−

type BoolTABLE is
empty,

btable (index: Nat, value: Bool, next: BoolTABLE)

with =, get

end type

function init (n: Nat) : BoolTABLE is
−− returns a table of size n initialized to false
if n = 0 then

return empty

else
return btable (n - 1, false, init (n - 1))

end if
end function

function zero (t: BoolTABLE) : Bool is
−− returns true iff no value in t is true
if t = empty then

return true

elsif t.value then
return false

else
return zero (t.next)

end if
end function

function one (t: BoolTABLE) : Bool is
−− returns true iff exactly one value in t is true
if t = empty then

return false

elsif t.value then
return zero (t.next)

else
return one (t.next)

end if
end function

88 Four Formal Models of IEEE 1394 Link Layer

function more (t: BoolTABLE) : Bool is
−− returns true iff more than one value in t is true
return not (zero (t)) and not (one (t))

end function

function get (n: Nat, t: BoolTABLE) : Bool is
−− returns the value associated with index n in t
if t = empty then

raise UNEXPECTED

elsif t.index = n then
return t.value

else
return get (n, t.next)

end if
end function

function invert (n: Nat, t: BoolTABLE) : BoolTABLE is
−− returns in which the value associated with index n is negated
if t = empty then

return empty

elsif t.index = n then
return btable (t.index, not (t.value), t.next)

else
return btable (t.index, t.value, invert (n, t.next))

end if
end function

−−−

type Version is
ko, ok

end type

type Scenario is
scenario_1, scenario_2, scenario_3_2, scenario_3_3, scenario_3_4

with =
end type

function requests (s: Scenario): Nat is
case s in

scenario_3_2 -> return 2

| scenario_3_3 -> return 3

| scenario_3_4 -> return 4

| any -> raise UNEXPECTED

end case
end function

end module

D.2 Channels in LNT

H. Garavel & B. Luttik 89

module CHANNELS (DATA) is

channel Id is
(n: Nat)

end channel

channel Sig is
(id: Nat, flag: SIGNAL)

end channel

channel Areq is
(id: Nat, flag: PHY_AREQ)

end channel

channel Acon is
(id: Nat, flag: PHY_ACONF)

end channel

channel Ack is
(id: Nat, a: ACK, b: BOC)

end channel

channel Dreq is
(id: Nat, dest: Nat, h: HEADER, d: DATA)

end channel

channel Dind is
(id: Nat, l: LIN_DIND)

end channel

channel Dcon is
(id: Nat, l: LIN_DCONF)

end channel

end module

D.3 The LINK process in LNT

module LINK (DATA, CHANNELS) is

process Link [LDreq: Dreq, LDcon: Dcon, LDind: Dind, LDres: Ack, PDreq, PDind: Sig,

PAreq: Areq, PAcon: Acon, PCind: Id] (n, id: Nat) is
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind] (n, id, void)

end process

−−−

process Link0 [LDreq: Dreq, LDcon: Dcon, LDind: Dind, LDres: Ack, PDreq, PDind: Sig,

PAreq: Areq, PAcon: Acon, PCind: Id] (n, id: Nat, buffer: SIG_TUPLE) is
select

if is_void (buffer) then

90 Four Formal Models of IEEE 1394 Link Layer

var dest: Nat, h: HEADER, d: DATA, b: SIG_TUPLE in
LDreq (id, ?dest, ?h, ?d);
b := quadruple (dhead,

destsig (dest),

headsig (h, crc (h)),

datasig (d, crc (d)));
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, b)

end var
else

PAreq (id, fair);
−− here, the LOTOS process Link1 was expanded in−line
−− (see footnote 8 in the research report [Sighireanu−Mateescu−97])
select

PAcon (id, won);
−− here, Link2 represents the LOTOS process Link2req
Link2 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, void, buffer)

[]
PAcon (id, lost);
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

end select
end if

[]
var p: SIGNAL in

PDind (id, ?p);
if p = Start then

Link4 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

else
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

end if
end var

end select
end process

−−−

process Link1 [LDreq: Dreq, LDcon: Dcon, LDind: Dind, LDres: Ack, PDreq, PDind: Sig,

PAreq: Areq, PAcon: Acon, PCind: Id] (n, id: Nat, buffer: SIG_TUPLE, p: SIGNAL) is
−− process Link1 factors code repeated thrice in process Link3 below
LDcon (id, ackmiss);
if p = subactgap then

Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

else
LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, n)

end if
end process

H. Garavel & B. Luttik 91

−−−

process Link2 [LDreq: Dreq, LDcon: Dcon, LDind: Dind, LDres: Ack, PDreq, PDind: Sig,

PAreq: Areq, PAcon: Acon, PCind: Id] (n, id: Nat, buffer: SIG_TUPLE, p: SIG_TUPLE) is
−− process Link2 unifies the two LOTOS processes Link2req and Link2resp
PCind (id);
PDreq (id, Start);
PCind (id);
PDreq (id, p.dh);
PCind (id);
PDreq (id, p.dest);
PCind (id);
PDreq (id, p.header);
PCind (id);
PDreq (id, p.data);
PCind (id);
PDreq (id, End);
if getdest (p.dest) = n then

LDcon (id, broadsent);
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

else
−− here, the LOTOS process Link3 was expanded in−line (called only once)
var p, a, e: SIGNAL in

loop L in
PDind (id, ?p);
if p <> Prefix then

break L

end if
end loop;
if p <> Start then

Link1 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, p)

else
−− here, the LOTOS process Link3RA was expanded (called only once)
PDind (id, ?a);
if is_physig (a) then

Link1 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, a)

else
−− here, the LOTOS process Link3RE was expanded (called only once)
PDind (id, ?e);
if valid_ack (a) and ((e = End) or (e = Prefix)) then

LDcon (id, ackrec (getack (a)));
LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon,

PCind] (n, id, buffer, n)

else
Link1 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, e)

end if
end if

92 Four Formal Models of IEEE 1394 Link Layer

end if
end var

end if
end process

−−−

process Link4 [LDreq: Dreq, LDcon: Dcon, LDind: Dind, LDres: Ack, PDreq, PDind: Sig,

PAreq: Areq, PAcon: Acon, PCind: Id] (n, id: Nat, buffer: SIG_TUPLE) is
var s1, s2, s3, s4, s5: SIGNAL, dest: Nat in

PDind (id, ?s1);
if s1 = subactgap then

Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

elsif is_physig (s1) then
LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, n)

else
−− here, the LOTOS process Link4DH was expanded in−line (called only once)
PDind (id, ?s2);
if s2 = subactgap then

Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

elsif not (is_dest (s2)) or else
((getdest (s2) <> id) and (getdest (s2) <> n)) then

LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, n)

else
dest := getdest (s2);
if dest = id then

PAreq (id, immediate)

end if;
−− here, the LOTOS process Link4RH was expanded (called only once)
PDind (id, ?s3);
if not (valid_hpart (s3)) then

−− here, the LOTOS process Link4RD was expanded (called only once)
LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, dest)

else
PDind (id, ?s4);
if not (is_data (s4)) then

LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon,

PCind] (n, id, buffer, dest)

else
−− here, the LOTOS process Link4RE was expanded (called only once)
PDind (id, ?s5);
if (s5 <> End) and (s5 <> Prefix) then

LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon,

PCind] (n, id, buffer, dest)

elsif dest <> id then
−− here, the LOTOS process Link4BRec was expanded (called only once)
if getdcrc (s4) = check then

H. Garavel & B. Luttik 93

LDind (id, broadrec (gethead (s3), getdata (s4)))

end if;
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon,

PCind] (n, id, buffer)

else
−− here, the LOTOS process Link4DRec was expanded (called only once)
if getdcrc (s4) = check then

LDind (id, good (gethead (s3), getdata (s4)))

else
LDind (id, dcrc_err (gethead (s3)))

end if;
PAcon (id, won);
−− here, the LOTOS process Link5 was expanded (called only once)
loop L in

select
PCind (id);
PDreq (id, Prefix)

[]
break L

end select
end loop;
var a: ACK, b: BOC, p: SIGNAL in

LDres (id, ?a, ?b);
p := acksig (a, crc (a));
−− here, the LOTOS process Link6 was expanded (called only once)
PCind (id);
PDreq (id, Start);
PCind (id);
PDreq (id, p);
PCind (id);
if b = release then

PDreq (id, End);
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon,

PCind] (n, id, buffer)

else
PDreq (id, Prefix);
−− here, the LOTOS process Link7 was expanded (called only once)
loop L in

select
PCind (id);
PDreq (id, Prefix)

[]
break L

end select
end loop;
var dest: Nat, h: HEADER, d: DATA, t: SIG_TUPLE in

LDreq (id, ?dest, ?h, ?d);
t := quadruple (dhead,

destsig (dest),

headsig (h, crc (h)),

datasig (d, crc (d)));
−− here, Link2 represents the LOTOS process Link2resp

94 Four Formal Models of IEEE 1394 Link Layer

Link2 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq,

PAcon, PCind] (n, id, buffer, t)

end var
end if

end var
end if

end if
end if

end if
end if

end var
end process

−−−

process LinkWSA [LDreq: Dreq, LDcon: Dcon, LDind: Dind, LDres: Ack, PDreq, PDind: Sig,

PAreq: Areq, PAcon: Acon, PCind: Id] (n, id: Nat, buffer: SIG_TUPLE, dest: Nat) is
select

var p: SIGNAL in
PDind (id, ?p);
if p = subactgap then

Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

else
LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, dest)

end if
end var

[]
only if dest = id then

PAcon (id, won);
PCind (id);
PDreq (id, End);
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

end if
end select

end process

end module

D.4 The BUS process in LNT

module BUS (DATA, CHANNELS) is

process Bus [PAreq: Areq, PDreq, PDind: Sig, PAcon: Acon, PCind: Id,

arbresgap, losesignal: none] (n: Nat) is
BusIdle [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal] (n, init (n))

end process

−−−

H. Garavel & B. Luttik 95

process BusIdle [PAreq: Areq, PDreq, PDind: Sig, PAcon: Acon, PCind: Id,

arbresgap, losesignal: none] (n: Nat, t: BoolTABLE) is
select

var id: Nat in
PAreq (?id, ?any PHY_AREQ) where id < n;
−− here, the LOTOS process DecideIdle was expanded in−line
−− (see footnote 7 in the research report [Sighireanu−Mateescu−97])
if get (id, t) = false then

PAcon (id, won);
BusBusy [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, invert (id, t), init (n), init (n), id)

else
PAcon (id, lost);
BusIdle [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal] (n, t)

end if
end var

[]
only if not (zero (t)) then

arbresgap;
BusIdle [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, init (n))

end if
end select

end process

−−−

process BusBusy [PAreq: Areq, PDreq, PDind: Sig, PAcon: Acon, PCind: Id,

arbresgap, losesignal: none] (n: Nat, t: BoolTABLE,

in var next: BoolTABLE, destfault: BoolTABLE, busy: Nat) is
select

var j: Nat in
PAreq (?j, fair) where j < n;
PAcon (j, lost);
BusBusy [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, next, destfault, busy)

end var
[]

var j: Nat in
PAreq (?j, immediate) where not (get (j, next)) and (j < n);
BusBusy [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, invert (j, next), destfault, busy)

end var
[]

if busy < n then
var p: SIGNAL in

PCind (busy);
PDreq (busy, ?p);
Distribute [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, next, destfault, busy, p)

end var

96 Four Formal Models of IEEE 1394 Link Layer

elsif zero (next) then
SubactionGap [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal] (n, t)

else
−− here, the LOTOS process Resolve was expanded (called only once)
var j: Nat, p: SIGNAL in

for j := 0 while j < n by j := j + 1 loop
if get (j, next) then

PAcon (j, won);
PCind (j)

end if
end loop;
−− here, the LOTOS process Resolve2 was expanded (called only once)
while more (next) loop

PDreq (?j, End) where get (j, next) and (j < n);
next := invert (j, next)

end loop;
PDreq (?j, ?p) where j < n;
if p = End then

SubactionGap [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t)

else
Distribute [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, init (n), init (n), j, p)

end if
end var

end if
end select

end process

−−−

process SubactionGap [PAreq: Areq, PDreq, PDind: Sig, PAcon: Acon, PCind: Id,

arbresgap, losesignal: none] (n: Nat, t: BoolTABLE) is
var j: Nat in

for j := 0 while j < n by j := j + 1 loop
PDind (j, subactgap)

end loop;
BusIdle [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal] (n, t)

end var
end process

−−−

process Distribute [PAreq: Areq, PDreq, PDind: Sig, PAcon: Acon, PCind: Id,

arbresgap, losesignal: none] (n: Nat, t: BoolTABLE,

in var next, destfault: BoolTABLE, busy: Nat, p: SIGNAL) is
var j, incr: Nat in

for j := 0 while j < n by j := j + incr loop
incr := 1;
if j <> busy then

select
only if not (is_header (p) and get (j, destfault)) then

H. Garavel & B. Luttik 97

PDind (j, p)

end if
[]

only if is_dest (p) then
var dest: Nat in

dest := any Nat;
PDind (j, destsig (dest));
destfault := invert (j, destfault)

end var
end if

[]
only if is_header (p) or is_data (p) or is_ack (p) then

select
PDind (j, corrupt (p))

[]
losesignal

end select
end if

[]
only if is_data (p) then

PDind (j, p);
PDind (j, Dummy)

end if
[]

PAreq (j, immediate) where not (get (j, next));
incr := 0; −− instead of 1, here
next := invert (j, next)

end select
end if

end loop;
if p = End then

j := n

else
j := busy

end if;
BusBusy [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, next, destfault, j)

end var
end process

end module

D.5 The TRANS process in LNT

module TRANS (DATA, CHANNELS) is

process Trans [LDreq: Dreq, LDcon: Dcon, LDind: Dind, LDres: Ack, TDreq: Dreq]

(n, id: Nat, v: Version) is
hide TX0: none in

par TX0 in
TransReq [LDreq, LDcon, TDreq, TX0] (n, id)

98 Four Formal Models of IEEE 1394 Link Layer

||
TransRes [LDind, LDres, TX0] (id, v)

end par
end hide

end process

−−−

process TransReq [LDreq: Dreq, LDcon: Dcon, TDreq: Dreq, TX0: none] (n, id: Nat) is
var dest: Nat, h: HEADER, d: DATA, a: ACK in

loop
TDreq (id, ?dest, ?h, ?d) where dest <= n;
select

TX0

[]
null

end select;
i; −− this ”i” corresponds to the ”>>” operator in the LOTOS specification
LDreq (id, dest, h, d);
select

if dest = n then
LDcon (id, broadsent)

else
a := any ACK;
LDcon (id, ackrec (a))

end if
[]

LDcon (id, ackmiss)

end select
end loop

end var
end process

−−−

process TransRes [LDind: Dind, LDres: Ack, TX0: none] (id: Nat, v: Version) is
var l: LIN_DIND, a: ACK in

loop
LDind (id, ?l);
if is_broadrec (l) then

case v in
ko ->

−− original (incorrect) specification
LDres (id, a1, no_op)

| ok ->
−− correct specification
null

end case
else

a := any ACK;
select

−− concatenated response = lock transaction

H. Garavel & B. Luttik 99

TX0;
LDres (id, a, hold)

[]
−− split response
LDres (id, a, release)

end select
end if

end loop
end var

end process

end module

D.6 The APPLI process in LNT

module APPLI (DATA, CHANNELS) is

process Application [TDreq: Dreq] (n: Nat, id: Nat, s: Scenario) is
var dest: Nat, h: HEADER, d: DATA, r: Nat in

case s in
scenario_1 ->

only if id == 0 then
−− send a request for transaction with a *different* node
dest := any Nat where (dest <= n) and (dest <> id);
h := any HEADER;
d := any DATA;
TDreq (id, dest, h, d);
stop

end if
| scenario_2 ->

−− send a request for transaction with a *different* node
dest := any Nat where (dest <= n) and (dest <> id);
h := any HEADER;
d := any DATA;
TDreq (id, dest, h, d);
stop

| scenario_3_2 | scenario_3_3 | scenario_3_4 ->
only if id == 0 then

h := any HEADER;
d := any DATA;
for r := requests (s) while r > 0 by r := r - 1 loop

TDreq (id, n, h, d)

end loop;
stop

end if
end case

end var
end process

end module

100 Four Formal Models of IEEE 1394 Link Layer

D.7 The NODE process in LNT

module NODE (DATA, CHANNELS, APPLI, TRANS, LINK) is

process Node [LDreq: Dreq, LDcon: Dcon, LDind: Dind, LDres: Ack, PDreq, PDind: Sig,

PAreq: Areq, PAcon: Acon, PCind: Id] (n, id: Nat, v: Version, s: Scenario) is
hide TDreq: Dreq in

par
TDreq ->

Application [TDreq] (n, id, s)

||
TDreq, LDreq, LDcon, LDind, LDres ->

Trans [LDreq, LDcon, LDind, LDres, TDreq] (n, id, v)

||
LDreq, LDcon, LDind, LDres ->

Link [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind] (n, id)

end par
end hide

end process

end module

D.8 The MAIN process in LNT

module scen3_orig_2_4 (APPLI, TRANS, LINK, NODE, BUS) is

!nat sup 2

process MAIN [LDreq: Dreq, LDcon: Dcon, LDind: Dind, LDres: Ack, PDreq, PDind:

Sig, PAreq: Areq, PAcon: Acon, PCind: Id, arbresgap, losesignal: none] is
par PDreq, PDind, PAreq, PAcon, PCind in

par
Node [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(2, 0, ko, scenario_3_4)

||
Node [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(2, 1, ko, scenario_3_4)

end par
||

Bus [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal] (2)

end par
end process

end module

	Introduction
	IEEE 1394 bus
	Architecture
	Link layer
	Physical layer
	Transaction and application layers

	Formal models
	Formal model in CRL
	Formal model in LOTOS
	Formal model in mCRL2
	Formal model in LNT

	Verification
	Conclusion
	Formal model in CRL
	Types and functions in CRL
	The LINK process in CRL
	The BUS process in CRL
	The MAIN process in CRL

	Formal model in mCRL2
	Types and functions in mCRL2
	The LINK process in mCRL2
	The BUS process in mCRL2
	The MAIN process in mCRL2

	Formal model in LOTOS
	Types and functions in LOTOS
	The LINK process in LOTOS
	The BUS process in LOTOS
	The TRANS process in LOTOS
	The APPLI process in LOTOS
	The NODE process in LOTOS
	The MAIN process in LOTOS

	Formal model in LNT
	Types and functions in LNT
	Channels in LNT
	The LINK process in LNT
	The BUS process in LNT
	The TRANS process in LNT
	The APPLI process in LNT
	The NODE process in LNT
	The MAIN process in LNT

