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Abstract. This paper presents the TGV tool, which al-
lows for the automatic synthesis of conformance test cases
from a formal specification of a (non-deterministic) re-
active system. TGV was developed by Irisa Rennes and
Verimag Grenoble, with the support of the Vasy team of
Inria Rhônes-Alpes. The paper describes the main elem-
ents of the underlying testing theory, which is based on
a model of transitions system which distinguishes inputs,
outputs and internal actions, and is based on the concept
of conformance relation. The principles of the test synthe-
sis process, as well as the main algorithms, are explained.
We then describe the main characteristics of the TGV
tool and refer to some industrial experiments that have
been conducted to validate the approach. As a conclusion,
we describe some ongoing work on test synthesis.

Keywords: Conformance testing – Test generation/syn-
thesis – Reactive systems – Protocols – Model-checking –
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1 Conformance testing

Software systems have becoming increasingly complex,
distributed and reactive. Their reliability is a major con-
cern, in particular for critical systems as errors occurring
during their execution may have dramatic economic or
human consequences. Correctness is also essential for less
critical software. It is thus essential to try to preserve the
correctness of software all along the design process until
deployment. This includes software engineering methods,
verification and validation. But full correctness is in gen-
eral impossible to prove. Testing is then one of the most
popular validation techniques. Testing aims at discover-
ing bugs in design or implementation phases with respect
to a reference. It cannot prove correctness, but it im-
proves confidence. Testing may focus on different aspects

of software such as functionality, robustness, perform-
ance, timing constraints etc. It may be employed at dif-
ferent levels, from unit testing to integration and system
testing. One of the main problems of testing is choosing
test data. This choice may be based on the code (white
box testing) or on the specification (black box testing),
depending on the availability and complexity of these
artefacts. In practice, testing most often remains a craft
activity. Test data are selected arbitrarily, and test exe-
cution and test results analysis are performed manually.
This implies that testing is very costly. However, most
phases can be automated, at least partially.
In this paper, we focus on conformance testing ap-

plied to non-deterministic reactive systems. By reactive
system we mean a software component which reacts to
the stimuli of its environment. Non-determinism means
that different reactions can be obtained after applying
a given stimulus (this is typically the case in the presence
of concurrency in systems). Conformance testing consists
of checking that the behaviour of a real implementation
of a system (IUT for implementation under test) is cor-
rect with respect to a specification. The code of the IUT is
unknown, and its behaviour is only visible by interaction
with a tester. This controls and observes the IUT through
dedicated interfaces (called PCO for points of control and
observation). Conformance testing is a type of functional
testing of a black box nature. In this context, we will show
how automation can significantly improve test selection.

1.1 Some basic concepts

In the context of telecommunication protocols, the main
concepts of this activity are described in the standard-
ization document ISO 9646 [19]. Some of them are intro-
duced here.
A test case is an elementary test targeted at testing

a particular functionality, called a test purpose. A test
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suite is a set of test cases. The basic elements of a test
case are interactions through PCOs: outputs are stimuli
sent from the environment in order to control the IUT’s
input events; inputs are observations of the IUT’s outputs
to the environment. Inputs may lead to different verdicts.
A Fail verdict denotes a divergence from the expected be-
haviour: the IUT is rejected. A Pass verdict is returned if
the observation is correct and the test purpose is reached.
Sometimes, one wants to bring the IUT into a particular
state or the initial state after a test case by a procedure
called postamble. In this case, a non-definitive (Pass) first
verdict is returned and the Pass verdict is only returned
if the postamble does not detect any non-conformance.
An Inconclusive verdict is returned if correct behaviour is
observed, but it is impossible to reach the test purpose.
This is due to the fact that, in general, reactive systems
cannot be completely controlled by a tester: they may
have a choice between several output interactions to the
same input. The tester – specialized hardware, software
or human operator – executes test cases. But as test cases
are often described at some abstraction level (they are
called abstract test cases), they must be translated into
executable test cases (level on which all the coding aspects
of data and interactions have been resolved).

1.2 Formalizing for automation

Conformance testing is a costly activity which plays an
important part in the global cost of software. For a long
time the scientific community has tried to automate the
process of deriving test cases. For conformance testing,
the reference behaviour is described by a specification
which determines the verdicts: it plays the role of an or-
acle, as it is called in the general framework of testing.
Automation thus requires formalizing the specification,
but also formalizing the interaction between the tester
and the IUT. The definition of verdicts also forces for-
malizing conformance, i.e. the relation between the IUT
and its specification that is checked during testing. Algo-
rithms for automatic test case synthesis must be designed
that take specifications as inputs. Essential properties of
test cases must be established. Soundness means that test
cases may only reject non-conformant IUTs, exhaustive-
ness means that all non-conformant implementations are
rejected by a test suite (or may be rejected). The main
ingredients for automation are described in [20].
Several approaches to conformance test generation

have been studied. For protocol testing, two approaches
have been studied, initially focused on control. A first
approach uses finite-state machines (FSM) as a specifi-
cation model (see [29] for a survey or [31] for an anno-
tated bibliography). The principle of testing is to check
that an unknown FSM, the IUT, is equivalent to the
specification. A finite set of finite test sequences is gen-
erated which proves or disproves this equivalence. Of
course, this is possible only if the set of possible IUTs
is finite, which is ensured by hypothesis on both the

specification and the IUT. Another approach was ini-
tially based on labelled transition models and testing pre-
orders [1, 8] and further improved by distinguishing in-
puts and outputs [35]. Hypotheses on specifications and
IUTs are weaker. In particular, non-deterministic speci-
fications (in the sense of automata) can be handled. The
counterpart is that a finite set of test cases cannot prove
conformance.
A third approach to formal conformance testing was

initially focused on data. It is based on algebraic data
types [3]. The principle is to test axioms, test cases being
terms of the algebra. Starting from an (infinite) exhaus-
tive test set, hypotheses such as regularity or uniformity
are added to restrict the size of the exhaustive test set
to a finite one. This approach has been extended with
LTS methods for Lotos specifications mixing control and
data [16].
The tool TGV presented in this paper uses the ap-

proach based on labelled transition models. This means
that it is based on behavioural models of specifications
in terms of labelled transition systems. This does not ex-
clude data in specifications, but it means that data values
are enumerated in the model. TGV is also based on a pre-
cise testing theory which allows us to describe test gen-
eration algorithms and establish important properties on
generated test cases. This is essential for us if we are to
gain confidence in software by testing. Nevertheless, the
TGV approach is not only a theoretical work; it is also
an efficient tool that has proved useful in numerous case
studies. This efficiency is mainly due to the on-the-fly ap-
proach which allows us to generate test cases by a partial
exploration of state graphs, thus avoiding the state explo-
sion problem.
The paper presents the entire TGV approach and

is organized as follows. In Sect. 2 we briefly describe
the functional view of TGV. In Sect. 3 we present the
underlying testing theory of TGV based on the model
of labelled transition systems with distinguished inputs
and outputs and precise notions of conformance and
verdicts. Then Sect. 4 presents the synthesis algorithms
and the properties that can be established on generated
test cases. The TGV tool is described in Sect. 5. Some
case studies are described in Sect. 6, ending with lessons
learned from these case studies. In Sect. 7 we compare the
TGV approach with other techniques and tools. Finally,
we conclude and present some perspectives in Sect. 8.

2 TGV functional view

TGV is a tool for test generation from specifications. Its
functional view is sketched in Fig. 1. One of the inputs is
thus a specification of the intended behaviour of the sys-
tem under test. As will be seen later in Sect. 5, TGV is
not dependent on any particular specification language,
but rather depends on a particular semantics of these lan-
guages. This semantics should focus on the behaviour.
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Fig. 1. Functional view of TGV

The semantics of the specification thus describes valid be-
haviours of the system under test.
TGV’s role is to select test cases from the behaviours

of the specification. For this, one needs to give a second
input that can be called a test selection directive. Test
selection directives could take different forms, including
random test selection, selection guided by coverage crite-
ria, guided by test purposes, or a mixture of these. Even
if TGV now allows different selection directives (see the
IF paragraph of Sect. 5.2), selection in TGV was origi-
nally based on test purposes. Test purposes are specified
by automata that accept behaviours of the specification.
They allow us to describe targeted behaviours in an ab-
stract way as it is not necessary to describe complete se-
quences of actions. More general test selection directives
have recently been added to TGV, mixing extended test
purposes with test coverage directives, but in this paper
we will mainly focus on simple test purposes.
Other optional inputs can be given to TGV. First,

inputs are used to refine the test architecture from the de-
fault one implicitly defined by the specification. Second,
options can be given to tune the test selection algorithms.
In its original form, TGV generates abstract test cases

from a specification and a test purpose. Abstract test
cases describe behaviours in terms of input/output in-
teractions between the tester and the IUT, and verdicts
associated with those behaviours. Abstract test cases pro-
duced by TGV are in a generic format of graphs. These
graphs can be easily translated into a specific language for
the description of abstract test cases such as in TTCN.
Abstract test cases are not directly executable on an

IUT, but specialized tools allow us to transform these ab-
stract test cases into executable test cases. TGV does not
take this phase into account.

3 Testing theory in TGV

The contribution of TGV to automatic synthesis of test
cases is mainly in the area of algorithms and tools. TGV
is based on a conformance testing theory, inspired by the
work of Jan Tretmans and his colleagues (at the Uni-

versity of Twente) [35]. This theory builds on previous
work on testing equivalences and preorders [1, 8]. The
behaviours of specifications and IUTs are modelled by
a variant of labelled transition systems (LTS). Roughly
speaking, the conformance relation is a partial inclusion
of traces of observable events and quiescence. We now
present this theory, adapted to make it more effective and
understandable by non-specialists.

3.1 Modelling with transition systems

Labelled transition systems (LTS) have long been used to
define the semantics of behavioural specifications. LTSs
are represented by graphs whose states represent config-
urations of systems, and edges represent moves between
these configurations on the occurrence of actions. Usu-
ally LTSs make a difference between internal and visible
actions. But for conformance testing, a distinction must
also be made between events of the system that are con-
trollable by the environment (the inputs) and those that
are only observable (the outputs). The model we adopt
(called IOLTS for Input–Output LTS) is an adaptation of
the classical LTS model.

Definition 1. An IOLTS is a quadruple
M = (QM, AM,→M, qM0 ), where Q

M is a finite non-empty
set of states, qM0 ∈ Q

M is the initial state and AM is
the alphabet of actions. It is partitioned into three sets
AM =AMI ∪A

M
O ∪ I

M. AMI is the input alphabet, A
M
O is the

output alphabet and IM the alphabet of internal actions.
→M⊆QM×AM×QM is the transition relation.

For the sake of clarity in the examples, we will write ?a
for an input a ∈AMI and !x for an output x ∈A

M
O .

Notations: Let M = (QM, AM,→M, qM0 ) be an IOLTS.
The subscript (or superscript) M will be omitted when
clear from the context.We write q

a
→M q′ for (q,a,q′)∈→M

and q
a
→M for ∃q′ : q

a
→M q′. An IOLTS is sometimes de-

noted by its initial state, and we writeM →M for qM0 →M.
Let µ(i) ∈ A

M be some actions, a(i) ∈ A
M \ IM some vis-

ible actions (inputs or outputs), τ(i) ∈ I
M some internal

actions, σ ∈ (AM \ IM)∗ a sequence of visible actions and
q, q′ ∈QM some states.
Γ(q) � {µ ∈AM | q µ→M} is the set of firable actions in q.
OutM(q) � Γ(q)∩AMO is the set of firable outputs in q; we
extend it to sets of states: for P ⊆QM

OutM(P )� {OutM(q) | q ∈ P}.
Denote q

µ1...µn→ M q
′ � ∃q0, . . . , qn : q = q0

µ1→ q1
µ2→

· · ·
µn→ qn = q′.
Visible behaviours are described by the ⇒ relation.

We define q
ε
⇒ q′ � q = q′ or q τ1.τ2···τn→

∗
q′ and q

a
⇒ q′ �

∃q1, q2 : q
ε
⇒ q1

a
→ q2

ε
⇒ q′. We also use the notations

q
a1···an⇒ q′ � ∃q0, . . . , qn : q = q0

a1⇒ q1 · · ·
an⇒ qn = q′ and

q
σ
⇒� ∃ q′ : q σ⇒ q′. The set q after σ � {q′ ∈Q | q σ⇒ q′}
(respectively P after σ �

⋃
q∈P q after σ) is the set of

states reachable from q (respectively from the state set P )
by action sequences from which only the projection σ
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onto visible actions is defined. Traces(q) � {σ ∈ (A \
I)∗ | q

σ
⇒} (respectively Traces(M) � Traces(qM0 )) de-

scribes the sequences of visible actions firable from q
(respectively from the initial state of an IOLTSM).
From an IOLTS M , it is possible to build a deter-

ministic IOLTS with the same traces as M . This IOLTS
represents the visible behaviour ofM .

Definition 2. LetM =(QM, AM,→M, qM0 ) be an IOLTS.
The deterministic IOLTS of M , denoted by det(M), is
a deterministic IOLTS defined by

det(M) = (2Q
M
, AM \ IM,→det, q

M
0 after ε) where,

for P, P ′ ∈ 2Q
M
, a ∈AM \ IM,

P
a
→det P

′ ⇐⇒ P ′ = P after a.

States of det(M), called meta-states below, are sub-
sets of QM, and the initial state qM0 after ε is the set of
states reachable from qM0 by internal actions. In Sect. 4.3
we will see an efficient construction of this IOLTS.

Models of specifications: A specification of a reactive sys-
tem is in general given in a specialized language or no-
tation (SDL, Lotos, UML, and IF in the case of TGV).
The operational semantics of such a language describes
all possible behaviours of specifications. This operational
semantics is usually implemented in a simulator which al-
lows one to traverse the behaviours of the specification.
We suppose here that the semantics of a specification

is given by an IOLTS S = (QS, AS,→S, qS0 ). The example
given in Fig. 2 will be our running example (where τi de-
notes an internal action). It is not a real example, but it
will illustrate all particularities of the testing theory and
algorithms.

Models of implementations: The implementation under
test (IUT) is a black box interacting with a tester. It is not

Fig. 2. Specification S

a formal object. However, if we want to reason about con-
formance, we have to model the IUT’s behaviours. This is
called the test hypothesis.
An IUT is modelled by an IOLTS

IUT = (QIUT, AIUT,→IUT, qIUT0 ) with AIUT = AIUTI ∪
AIUTO ∪ IIUT. We will always suppose the compatibility
of the alphabets of the IUT and S, i.e. ASI ⊆ A

IUT
I , and

ASO ⊆A
IUT
O .

We assume that the IUT is (weakly) input complete: in
each state all inputs are accepted, possibly after inter-
nal actions, i.e. ∀q ∈QIUT,∀a ∈AIUTI , q

a
⇒. This hypoth-

esis is reasonable when the IUT never refuses an invalid
or inopportune input but ignores the request or answers
negatively.

3.2 Quiescence

In practice, tests observe traces of a system but also quies-
cence by timers. Several kinds of quiescence may happen
and are illustrated in the left-hand side of Fig. 3. A dead-
lock state is a state where the system cannot evolve any-
more, i.e. Γ(q) = ∅. An output quiescent state is a state
where the system is waiting only for an input from the en-
vironment, i.e. Γ(q)⊆AMI . A livelock state is a state from
which the system diverges by an infinite sequence of in-
ternal actions. In the case of the finite-state systems that
we consider, a livelock is a loop of internal actions, i.e.
∃τ1, τ2, . . . τn, q

τ1.τ2···τn→ q. We denote by deadlock(M) the
set of deadlocked states of the IOLTSM , outputlock(M)
its set of outputlocks and livelock(M) its set of livelock
states. A deadlock is a special case of outputlock; thus
deadlock(M)⊆ outputlock(M). The set of all quiescent
states is denoted by

quiescent(M) = outputlock(M)∪ livelock(M).

As conformance testing is based on the observation of
visible behaviours, test synthesis requires a determiniza-
tion of the specification: two sequences with the same
traces cannot be distinguished, but their respective suffix
must be considered as possible evolutions of the system.
Also, the information about quiescence of the specifica-
tion must be preserved by determinization. This is pos-
sible only if quiescence is computed on the specification.

Fig. 3. Quiescence and how to make it explicit
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This results in the definition of an IOLTS called a suspen-
sion automaton, which makes explicit the quiescence by
the addition of a new observable action δ, considered as
an output. This automaton is described by the following
definition, and its construction is sketched in Fig. 3.

Definition 3. The suspension automaton of an IOLTS
M = (QM, AM,→M, qM0 ) is an IOLTS
∆(M) = (QM, A∆(M),→∆(M), q

M
0 ), where A

∆(M) = AM∪

{δ} with δ ∈ A∆(M)O (δ is considered as an output, ob-
servable by the environment), and the transition relation

→δ(M) is obtained from→M by adding loops q
δ
→ q for each

quiescent state q (i.e. livelock or output quiescence and
thus deadlock). More formally:

→∆(M)=→M ∪{(q, δ, q) | q ∈ quiescent(M)}.

The traces of ∆(S) are called the suspension traces of S
and are denoted by STraces(S).

For a specification S, its suspension traces STraces(S)
exactly represent all the behaviours of S that can be
observed by the environment, i.e. its sequences of in-
puts, outputs and quiescence. This will thus constitute
the basis for test synthesis. The visible behaviour of
the IUT is also characterized by its suspension traces
STraces(IUT ). Conformance testing will thus be based
on a comparison of the observed traces STraces(IUT )
with expected traces STraces(S), as will be formalized in
the next subsection.

Example: Figure 4 represents ∆(S), the suspension au-
tomaton of the specification S of Fig. 2. States 0, 2 and
4 are livelocks as they belong to loops of internal actions,
while states 1, 7 and 9 are outputlocks as only inputs are
firable in those states.

Fig. 4. ∆(S), the suspension automaton
of specification S

Fig. 5. det(∆(S)), the visible behaviour of S
obtained by determinization of ∆(S)

The suspension traces of S representing the visible be-
haviour of S are characterized by the sequences of the au-
tomaton det(∆(S)) obtained from ∆(S) by determiniza-
tion (Definition 2). For our example, det(∆(S)) is repre-
sented in Fig. 5. Its initial meta-state 0 corresponds to the
set of states 0 after ε= {0, 1, 2, 9} of ∆(S). In ∆(S), ?b is
firable from state 2, leading to 4. Thus meta-state 0 leads
by ?b to themeta-state 2 corresponding to the set of states
4 after ε= {4, 8}. The construction proceeds until no new
meta-state is created.

3.3 Conformance relation

A conformance relation formalizes the set of IUTs that
behave consistently with a specification. Following Tret-
mans [35], the considered observations during testing are
the suspension traces, as they represent the visible be-
haviour of a system. As the IUT is unknown and con-
formance, not robustness, is considered the observation
is restricted to specified behaviours, and thus to traces
of the specification. Intuitively, an implementation IUT
conforms to its specification S for ioco if after each sus-
pension trace σ of STraces(S) the IUT exhibits only out-
puts and quiescences that are possible in S. Formally:

Definition 4. Let S be an IOLTS and IUT be an input
complete IOLTS (compatible with S):

IUT ioco S � ∀σ ∈ STraces(S),
Out(∆(IUT ) after σ)⊆ Out(∆(S) after σ).

Examples: Figure 6 explains ioco for a simple specifi-
cation and several IUTs. IUT1 ioco S because in each
state outputs of IUT1 are included in outputs of S. ioco
thus allows us to restrict the IUT on outputs (as in
state 1). IUT1 ioco S even if the initial state of IUT1 al-
lows a new input ?b, as only the outputs are checked by
ioco. ioco thus allows partial specifications. However,
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Fig. 6. ioco by example: IUT1 ioco S
and ¬(IUT2 ioco S)

¬(IUT2 ioco S), as the output !z after the input ?a is
not allowed in the specification. The other reason for non-
conformance is that the quiescence after ?a!x (due to an
internal loop for example) is not specified in S.

3.4 Tests: models, execution and properties

Reactive systems that we consider are not always con-
trollable by their environment. Thus test cases should
have the choice between correct inputs and should foresee
a non-conformant IUT. For example in Fig. 6, if a tester
sends a, it should wait for either x or y, but also for any
other output (that will allow the tester to reject IUT2).
In contrast, we assume that the testers do not present
choices between outputs as they control them. Further-
more, they have no internal actions. To model a test case,
we also use an IOLTS, but extended with verdicts and
some additional properties. A test case has a complex be-
haviour whose structure is a graph with possible loops.

Definition 5. A test case is an IOLTS
TC = (QTC, ATC,→TC, qTC0 ) equipped with three sets of
trap states Pass⊆QTC, Fail⊆QTC and Inconc ⊆QTC

characterizing verdicts. Its alphabet is ATC = ATCI ∪
ATCO , where A

TC
O ⊆ ASI (TC emits only inputs of S) and

ATCI ⊆AIUTO ∪{δ} (TC foresees any output or quiescence
of IUT). We make several structural assumptions on test
cases:

– States in Fail and Inconc are only directly reachable
by inputs:

∀(q, a, q′) ∈→TC (q
′ ∈ Inconc∪Fail⇒ a ∈ATCI ).

– From each state a verdict must be reachable:

∀q,∃σ ∈ATC
∗
,∃q′ ∈Pass∪ Inconc∪Fail, q

σ
→ q′ .

– TC is controllable: no choice is allowed between two
outputs or an input and output:

∀q ∈QTC,∀a ∈ATCO , q
a
→TC⇒∀b �= a, q �

b
→TC .

– A test case is input complete in all states where an in-
put is possible:

∀q ∈QTC, (∃ a ∈ATCI , q
a
→TC⇒∀ b ∈A

TC
I , q

a
→TC).

A test suite is a set of test cases.

Test execution: Test cases are executed against an IUT,
and this execution results in verdicts indicating if the
IUT should be rejected or not. This execution should
be formalized as we need to establish properties such
as soundness and exhaustiveness, which relate verdicts
of executions to conformance. We assume a synchronous
communication between test cases and IUTs. Thus, the
execution of a test case against an IUT is modelled by
a parallel composition with a synchronization on common
visible actions. This is formalized by the three following
rules:

p
a
→P p′, q

a
→Q q′

(p, q)
a
→P ||Q (p′, q′)

,

p
τ
→P p′

(p, q)
τ
→P ||Q (p′, q)

,
q
τ
→Q q′

(p, q)
τ
→P ||Q (p, q′)

.

This model of execution, together with the hypoth-
esis made on the IUT and test cases, ensures that
TC||∆(IUT ) may only block in states where a verdict is
returned by TC . Thus verdicts are associated with maxi-
mal traces of the test cases, i.e. sequences σ ∈ATC

∗
such

that Γ(qTC0 after σ) = ∅. Note that test cases (in particu-
lar those generated by TGV) may have loops. Thus test
execution may be infinite. To prevent this, global timers
should be used.

Verdicts: A verdict associated with the execution of
a test case TC on an IUT is completely determined by the
state of TC reached by a maximal trace of TC||∆(IUT ).
Depending on this state, it can be Pass , Fail or Inconc:1

verdict(σ) = Fail � TC after σ ⊆ Fail
verdict(σ) = Pass � TC after σ ⊆ Pass
verdict(σ) = Inconc � TC after σ ⊆ Inconc

1 We make a distinction between the verdict, e.g. Pass, and the
set of states of a test case where a verdict is assigned, e.g. Pass.
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A possible rejection of an IUT by a test case is defined
by:

TC may reject IUT � ∃σ ∈ Traces(TC||∆(IUT )),
verdict(σ) = Fail .

may pass and may inconc are defined in the same way.
Notice that the lack of control of test cases on an IUT im-
plies that a unique test case may reject, accept or return
an inconclusive verdict on the same IUT.

Test case properties: The execution of test cases on im-
plementations should give a verdict about the confor-
mance of an IUT with respect to a specification. As con-
formance is defined formally by a conformance relation,
we need to relate the verdicts of these executions to the
conformance relation. This is done by the following prop-
erties of test cases and test suites.

Definition 6. A test case TC is sound for S and ioco if

∀IUT, IUT ioco S⇒¬(TC may reject IUT ).

A test suite is sound if it consists of sound test cases.
A test suite is exhaustive for S and ioco if

∀IUT,¬(IUT ioco S)⇒ TC may reject IUT.

A test suite is complete if it is both sound and exhaustive.

The minimal property required for test suites is
soundness : a test suite should not reject a conformant
IUT. This property is important but not sufficient in
practice, as test cases accepting all IUTs are sound.
One would like exhaustive test suites, i.e. every non-
conformant IUT would be rejected. But it is unreachable
for finite test suites as soon as the specification has loops.
It requires an infinite number of test cases or infinite-state
test cases. Thus we will only require the exhaustiveness of
the synthesis technique: the infinite test suite composed
of all test cases that the synthesis algorithm can construct
is exhaustive. Thus, for a non-conformant IUT, it is the-
oretically possible to produce a test case that may reject
it (under some fairness assumption of the IUT).

3.5 Formal test purposes

One of the main ingredients of the test synthesis tech-
nique implemented in TGV is the formalization of the
concept of test purpose and its use for test selection. In
practice, test purposes are informal descriptions of be-
haviours to be tested, in general incomplete sequences of
actions. In TGV, we model test purposes by automata
(formally IOLTS extended with marked states) accept-
ing sequences of actions of the specification. One could
restrict test purposes to traces or suspension traces, as
advocated in [10]. However, allowing internal actions in
test purposes is more powerful. It is very useful when one

Fig. 7. Testing in context

wants to design test purposes for complex systems when
the targeted visible behaviour is difficult to foresee from
the behaviours of individual components. This is par-
ticularly true when the communication with the system
is performed through a context (FIFO channels for ex-
ample) that provokes a distortion of the IUT’s behaviour
(Fig. 7). In this case, one would like to test the IUT’s
behaviour, but its input/output behaviour may not be
directly visible by the tester as PCOs are at the bound-
aries of the system under test. Thus tests cases should be
composed of actions which are visible at the PCOs. The
specification should describe the whole system under test,
including the context. But test purposes can be written
according to the input/output behaviour of the specifi-
cation of the IUT and thus the internal behaviour of the
system.
Another useful feature of test purposes in TGV is

the notion of Accept and Refuse states, allowing an ef-
ficient test selection, in particular on-the-fly (Sect. 4.6).
Accept states are used to select targeted behaviours, while
Refuse states are used to cut down the exploration of
the specification state space when undesired actions are
taken. An adequate use ofRefuse states may dramatically
reduce the test generation cost.

Definition 7. A test purpose is a deterministic and
complete IOLTS TP = (QTP, ATP,→TP, qTP0 ), equipped
with two sets of trap states AcceptTP and RefuseTP, with
the same alphabet as the specification, i.e. ATP = AS.
Complete means that each state allows all actions, i.e.
∀q ∈QTP,∀ ∈ ATP, q

a
→TP, and a trap state q has a loop

on each action, i.e. ∀a ∈ATP, q
a
→TP q.

Note and example: It is interesting to allow abstraction
in the description of test purposes with respect to the
specification behaviour. This is particularly true because
in on-the-fly test generation, we want to avoid the con-
struction of the whole state graph of the specification.
However, in the above definition, test purposes should be
complete, which could seem contradictory. In fact it is
not. To satisfy the completeness requirement, we use the
label “*” in TGV which, in a transition q

∗
→ q′, is an ab-

breviation for the complement set of all other transitions
leaving q. Moreover, such “*”-transitions can be implicit,
as by convention TGV completes incomplete states by a
“*”-loop. This allows the user to describe test purposes
with partial sequences of actions that will be automati-
cally completed by TGV. Another abstraction mechan-
ism is provided by the use of regular expressions for the
description of sets of labels. This allows us to describe in-
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Fig. 8. Test purpose TP for
specification S in Fig. 2

complete labels of transitions. This is particularly useful
as it is sometimes difficult to know the format of transi-
tion labels from the specification language. Figure 8 gives
an example of a test purpose TP for the specification S.
In this example one wants to select sequences of actions
in which labels do not end with 5 or z (represented by
the regular expression .*[z5]) before a y, and when y oc-
curs it is followed by a z. Here “*”-loops are implicit in all
states.

4 Principles and algorithms

This section describes the main algorithms of TGV. Let
us sketch these algorithms, summarized in Fig. 9. TGV
takes as inputs a specification S and a test purpose TP .
The first operation performs a synchronous product be-
tween S and TP , marking S’s behaviours accepted (or
refused) by TP . From the resulting SP we build the vis-
ible behaviour (traces and quiescence) in SPVIS. Test
selection then builds an IOLTS CTG by extraction of
the accepted behaviours and inversion of inputs and out-
puts. Finally, all controllability conflicts are suppressed
to conform with the definition of test cases. Alternatively,
some conflicts can be suppressed during selection, lead-
ing to the construction of TG, and only residual conflicts
are suppressed afterwards. When S is given implicitly
by traversal functions, all operations except conflict reso-
lution can be applied on-the-fly. This means that the
aforementioned IOLTSs do not need to be completely
constructed but only partially.

4.1 Preliminary notions

A graph G with set of vertices V and set of edges E
is denoted G = (V,E). A strongly connected component
(SCC) is a maximal subset Vi of V such that, for each pair

Fig. 9. Overview of test
synthesis operations

(vi, wi) of vertices in Vi, there is a path from vi to wi and
a path from wi to vi. An SCC is trivial if restricted to
a single vertex with no loop. The partition of V into SCCs
defines a reduced graph in which vertices are SCCs, and
there is an edge from an SCC Vi to an SCC Vj if there is
an edge in G from a vertex in Vi to a vertex in Vj .
In the discussion below, we will see that several prob-

lems in test synthesis can be understood as reachability
problems.Now, there is strong relation between reachabil-
ity and SCC, as all vertices of an SCChave the same reach-
ability properties: if a vertexw is reachable from a vertexu
of an SCC Vi,w is reachable from all vertices in Vi.

Computation of SCCs: Tarjan [34] describes an algo-
rithm of linear complexity for the computation of SCCs.
In [26], we give an iterative version with “holes” and
instantiate these “holes” for several algorithms used in
TGV. The algorithm is a depth-first search (DFS). Its
principle is to identify SCCs by their roots, i.e. vertices
first reached in the DFS. The DFS uses two stacks: the
DFS stack contains vertices of the current sequence and
their pending edges and the SCC stack contains vertices
where an SCC is not completed. When an SCC root is
popped from the DFS stack, all vertices of the same SCC
are on the top of the SCC stack and are popped together.

4.2 Synchronous product

Test synthesis in TGV takes as inputs a specification S
and a test purpose TP . The first problem is to iden-
tify behaviours of S accepted (on Accept states) by TP
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or refused (on Refuse states) by TP . This is a classical
problem of computation of the intersection of languages.
Just as in model checking, this is solved by a synchronous
product.

Definition 8. Let S = (QS, AS,→S, qS0 ) be an IOLTS
and TP = (QTP, ATP,→TP, qTP0 ) a test purpose with
ATP = AS and equipped with state sets AcceptTP and
RefuseTP.
The synchronous product S×TP is an IOLTS
SP = (QSP, ASP,→SP, qSP0 ), equipped with two disjoint
sets of states AcceptSP and RefuseSP, and defined as
follows:

– Its alphabet is ASP �AS(=ATP);
– Its state set QSP is the subset of QS×QTP reachable
from the initial state qSP0 � (qS0 , qTP0 ) by the transition
relation→SP;
– The transition relation→SP is defined by:

(qS, qTP)
a
→SP (q

′S, q′TP)⇐⇒ qS
a
→S q

′S∧ qTP
a
→TP q

′TP;

– AcceptSP and RefuseSP are defined as follows:

AcceptSP �QSP∩ (QS×AcceptTP),
RefuseSP �QSP∩ (QS×RefuseTP).

The effect of the synchronous product is to mark be-
haviours of S by Accept and Refuse, and possibly to un-
fold S. More precisely, accepted behaviours of SP are ex-
actly those behaviours of S which are accepted by TP .
As TP is complete, all behaviours of S (including qui-
escence) are preserved in SP . More precisely, S×TP is
bisimilar to S. SP is built during the following operation
but could be built by any traversal.
Figure 10 represents the synchronous product S×TP

of the specification S of Fig. 2 and test purpose TP of
Fig. 8. Its suspension automaton ∆(S×TP) is obtained
by adding the dashed δ loops. The construction has been
stopped in Accept and Refuse states as subsequent be-
haviours is not explored by TGV as it will be cut by the
following operations.

4.3 Visible behaviours

The next operation consists of extracting the visible be-
haviour (traces and quiescence) from SP , i.e. construct-
ing the IOLTS SPVIS = (QVIS, AVIS,→VIS, qVIS0 ) such
that SPVIS = det(∆(SP )) (Definitions 3 and 2). Note
that suspension is applied first because determinization
preserves traces, but not quiescence. SPVIS is equipped
with Accept and Refuse states:

RefuseVIS = {P ∈QVIS | P ∩RefuseSP �= ∅},

AcceptVIS = {P ∈QVIS | P ∩AcceptSP �= ∅}\RefuseVIS.

This means that we choose to refuse a trace as soon as
it corresponds to at least one refused sequence in SP .

Fig. 10. Synchronous product SP = S×TP
and quiescence ∆(SP )

This choice is justified by the fact that this cuts down the
exploration earlier. Figure 11 gives the result of this com-
putation for the examples S of Fig. 2 and TP of Fig. 8. In
this example, the exploration has been stopped in Accept
state 11 and Refuse states 4 and 6 as successors of Accept
states (respectively Refuse states) are also Accept states
(resepctively Refuse states).

Computation of det(∆(.)): We have already given the
definitions of ∆ and det, but for the sake of efficiency,
quiescence and determinization are computed simultan-
eously. We will illustrate the computation on S×TP of
Fig. 10 and its result SPvis in Fig. 11.
Theoretically, a δ loop should be added in each qui-

escent state. For deadlocks (no deadlock in S×TP) and
output quiescent states [states (1,0),(1,1), (7,1), (9,0) and
(9,1)], we just look at outgoing transitions. For livelocks,
which are loops of internal actions [in states (0,0),(0,1),
(2,0), (2,1), (4,0) and (4,1)], a δ loop should be added
in each state of a non-trivial SCC of internal actions
(τ -SCC for short). But, as ∆(S) is determinized after-
wards, adding a δ loop in the root of each τ -SCC has the
same effect on ⇒. We will see how to combine this with
determinization.
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Fig. 11. Visible behaviour of the synchronous product:
SPVIS = det(∆(S×TP))

Determinization: Determinization consists of building
the deterministic IOLTS det(∆(S)) starting from its ini-

tial meta-state q
∆(S)
0 = q

∆(S)
0 after ε [in the example, the

meta-state 0 of det(∆(S)) is {(0, 0), (1, 0), (2, 0), (9, 0)}]
by alternation of two operations:

– Subset construction: for a state set P and a visible
action a, compute the set P ′ = {q′|∃q ∈ P, q

a
→ q′} of

states reachable in one visible step a from P . For
P = {(0, 0), (1, 0), (2, 0), (9, 0)} and ?a, the result is
P ′ = {(3, 0), (8, 0)}.
– ε-closure: for a state set P , compute the set P after ε
of states reachable from P by sequences of inter-
nal actions. For P = {(3, 0), (8, 0)}, P after ε is also
{(3, 0), (8, 0)}.

In [25] we propose an ε-closure algorithm that avoids
redundancies, with the counterpart of a supplementary
memory complexity. The idea is as follows. For all states
q of the same τ -SCC, the sets

Fire(q) =
⋃

a∈A∆(SP)

(a, {q′ | q
a
⇒ q′})

are identical. In fact, Fire(q) denotes visible actions after
a τ sequence and resulting states and is thus a reachabil-
ity property.

For example
Fire((0, 0)) = {(?a, {(3, 0), (8, 0)}), (?b, {(4, 0)}),
(?c, {(6, 0)}), (!δ, {(0, 0), (1, 0), (2, 0), (9, 0)})}
and Fire((2, 0)) = Fire((0, 0)),
while Fire((1, 0)) = {(?a, {(3, 0)}), (!δ, {(1, 0)})}.
A meta-state [{(0, 0), (1, 0), (2, 0), (9, 0)} for example]

is not only a set of states but a reduced graph of τ -SCC
[{(0, 0), (2, 0)}, {(1, 0)}, {(9, 0)}], and Fire(root(Vi)) is
synthesized on each τ -SCC Vi. Meanwhile, quiescence is
computed and δ-loops added. In particular a livelock is
a non-trivial τ -SCC [e.g. {(0, 0), (2, 0)}]. Then, when an
already visited state q is reached by a new call to ε-
closure, the root of its τ -SCC returnsFire(q). For a meta-
state P , the set

Fire(P ) =
⋃

Vi∈SCC_init

Fire(root(Vi)),

where SCCinit is the set of initial SCC of the reduced
graph of τ -SCC of P , gives all firable transitions and
reached states. Thus it gives the result of the subset
construction. The time complexity of determinization re-
mains exponential but, by avoiding redundancy, our algo-
rithm is much more efficient than the näıve one.

A word on minimization: The IOLTS SPVIS built is not
minimal w.r.t. trace equivalence. As partition refinement
algorithms used for minimization work backward, they
need the complete IOLTS. But on-the-fly test synthesis
(Sect. 4.6) avoids the complete construction of SPVIS and
works forward. We then use a weaker equivalence rela-
tion and minimize SPVIS on-the-fly for this relation: two
meta-states Pi and Pj of SP

VIS are “1-step equivalents”
if Fire(Pi) = Fire(Pj). This minimization is simply done
by coding each meta-state Pi by Fire(Pi), which is the
only used information in Pi.

4.4 Test selection

SPVIS represents all visible behaviours of S. Among
these, some visible behaviours correspond to behaviours
accepted (or refused) by the test purpose TP . They are
defined by the sets AcceptVIS and RefuseVIS. The next
operation consists of extracting a test case by selection
of accepted behaviours. This operation does a little more
since, to compute a test case (Definition 5), we must
perform a mirror image (invert inputs and outputs), com-
plete it for inputs in all states where an input is possible,
ensure controllability, and define verdicts by sets Pass,
Inconc and Fail.
In the first step, we will not deal with controllability

and will describe the computation of an IOLTS CTG or
complete test graph. CTG is an interesting IOLTS as it
contains all test cases corresponding to the test purpose.
Moreover, it is easier to explain separately how control-
lability conflicts are solved. Except for Inconc and Fail
states, CTG represents the useful part of SPvis, that is
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it is composed of states (the set L2A) and transitions
(→L2A) playing a role in the acceptance of traces.

Definition 9. For a specification S and a test purpose
TP, the complete test graph is an IOLTS
CTG = (QCTG, ACTG,−→CTG, qCTG0 ), with three sets of
trap states Pass, Inconc and Fail, and defined from
SPVIS = det(∆(S×TP )) as follows:

– Its alphabet is ACTG = ACTGO ∪ACTGI with ACTGO ⊆
AVISI and ACTGI =AVISO (mirror image).
– Its set of states is QCTG = L2A∪ Inconc∪Fail, with

– L2A= {q ∈QVIS | ∃σ ∈AVIS
∗
, v

σ
→VIS Accept

VIS}.
L2A stands for leads to Accept). It consists of
states from which AcceptVIS is reachable.
– Inconc= {v ∈QVIS | ∃u∈L2A, v �∈L2A, a∈AVISO ,

u
a
→VIS v}, i.e. Inconc is composed of states not in
L2A but which are direct successors of states in L2A
by an output in SPVIS.
– Fail= {Fail} where Fail �∈QVIS is a new state.

– If qVIS0 ∈ L2A, the initial state is qCTG0 = qVIS0 and
QCTG is restricted to states reachable from qCTG0 by
→CTG, otherwise QCTG is empty.
– The transition relation is →CTG=→L2A ∪ →Inconc
∪→Fail, where

→L2A =→VIS ∩(L2A×A
CTG×L2A)

→Inconc =→VIS ∩(L2A×A
CTG
I × Inconc)

→Fail = {(v, a,Fail) | v ∈ L2A∧a ∈A
CTG
I ∧v �

a
→VIS}.

– Finally, Pass=AcceptVIS.

Figure 12 illustrates the computation of the complete
test graph from SPVIS of Fig. 11 for the examples S and
TP . In SPVIS, the SCCs {0}, {1}, {2}, {5, 8, 9} and {11}
all lead to Accept , thus their states and transitions are
preserved in CTG. {3, 7} does not lead to Accept and is
cut as it is reached by the input ?c, but outputs !x and !z
leading to {4}, {10} and {6} are preserved and lead to an
Inconclusive verdict.

Algorithm: According to the definition of CTG, the
main point is to compute the set L2A and to check if
qVIS0 ∈ L2A. Now, the set L2A consists of co-reachable
states of Accept (note that all states are reachable from
qVIS0 by construction), i.e. states where the CTL [7]
property L2A = EFAcceptVIS holds. This computation
is classical in model-checking and is often performed
by a backward traversal from Accept . But a forward
traversal is possible, using properties of SCC, and is
more adapted to on-the-fly computation. As a mat-
ter of fact, either all states of an SCC are in L2A
or none of them are. The algorithm, called TGVloop,
adapts Tarjan’s algorithm by the additional synthesis of
the attribute L2A and a construction of →L2A during
backtracking. This algorithm can be seen as a model-
checking algorithm for L2A producing all witnesses of

Fig. 12. Complete test graph

L2A starting in the initial state. Moreover, the computa-
tion of Inconc and→Inconc is done during backtracking
of output transitions of SPVIS from states in L2A to
states outside L2A. The Fail state and transitions in
→Fail are implicit, →fail being defined by complemen-
tation of firable transitions. The algorithm has linear
complexity in time and space, just like Tarjan’s SCC
algorithm.

4.5 Pruning controllability conflicts

CTG satisfies all properties required for a test case
(Definition 5), except controllability: some states q of
CTG may have a choice between outputs or between
inputs and outputs (Fig. 13). Solving these conflicts
consists of extracting a controllable subgraph of CTG
while preserving other required properties. In a state
with a conflict, some transitions must be pruned: ei-
ther one output is kept and all other outputs and in-
puts are pruned, or all inputs are kept and outputs are
pruned. Unreachable states are suppressed. Reachabil-

Fig. 13. Controllability conflicts
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ity to Accept (or Pass, synthesized in L2A) is preserved
by a backward traversal of CTG from Pass states to
the initial state. Among possible traversal strategies we
choose a breadth first traversal for its ability to select
shorter paths from Pass. Figure 14 shows a test case
which is one possible result of this conflict resolution
for the CTG of Fig. 12. In state 0 of CTG, !a is cho-
sen but !b and ?δ are pruned. In state 5, !b is chosen
but !a and ?δ are pruned. Note that !b could be chosen
in 0 but !a cannot in 5 as the PASS verdict would be
unreachable.

Forward pruning: Conflict resolution with a backward
traversal, as presented previously, requires a complete
construction of CTG. But this reduces the interest of
the on-the-fly synthesis (Sect. 4.6). Another solution con-
sists of pruning during backtracking in TGVloop. Sup-
pose that TGVloop pops a state q′ of SPVIS from which
AcceptVIS is reachable (i.e. q′ ∈ L2A), and let q be its im-
mediate predecessor in the DFS stack by action a. If a is
an input in SPVIS (an output of the tester), all other tran-
sitions leaving q (already explored or not) can be pruned.
If a is an output of SPVIS (an input of the tester), all
inputs can be pruned. In the first case, already explored
transitions do not lead to AcceptVIS, otherwise one of the
rules would have been applied already and the input a
pruned. In the second case, already explored inputs do
not lead to AcceptVIS, otherwise the first rule would have
been applied previously and the input a pruned.
This may solve some controllability conflicts and avoid

the construction of some parts of CTG. But some con-

Fig. 14. A possible test case
for the example

flicts may not be solved this way, only in the case of par-
ticular traversal orders in loops. In fact, when a state q′ is
popped from the DFS stack, it is not always known if it is
in L2A or not. In the worst case, this is known only when
its SCC is computed and the two preceding rules cannot
be applied.
However, residual conflicts can be solved a posteriori

by the backward algorithm. In the example, the conflict in
0 can be solved by forward pruning but the conflict in 5 is
solved this way only if !b is explored before !a.

4.6 On-the-fly test case synthesis

Figure 9 gave an overview of the operations needed for
test synthesis. Remember that after the computation of
the product SP = S×TP , the suspension automaton
∆(SP ) and the deterministic automaton of it SPVIS =
det(∆(SP )) are factorized in one operation. Accept and
Refuse sets are propagated by these operations. From
SPVIS a complete test graph CTG is computed by selec-
tion of traces leading to AcceptVIS, mirror image, add-
ition of verdicts. Alternatively, a test graph TG can be
built by pruning some controllability conflicts during se-
lection. Finally, residual controllability conflicts on CTG
or TG are solved to produce one test case TC .
In general TC is small compared to S, because of

selection by TP . Also the specification is not given ex-
plicitly by an IOLTS but in a specification language. Its
semantics is an IOLTS S, but it is given implicitly by
a simulator API in terms of functions allowing its traver-
sal. Building S completely when only a small part is used
in TP is thus inefficient, and in general impossible if S is
not finite state.
The idea of on-the-fly synthesis is to perform a lazy

construction of subgraphs of S, SP and SPVIS necessary
for the construction of TC, i.e. selected by TP . To un-
derstand the global behaviour, one has to reason in terms
of functions for the construction of each of the IOLTS S,
SP and SPVIS. The required functions are traversal func-
tions:init gives the initial state; firable gives the set of
firable transitions in a state; from a state and a firable
transition, succ computes the (set of) target state(s). Ad-
ditionally, a comparison function, and functions comput-
ing the membership of Accept or Refuse are needed.
In the worst case, on-the-fly synthesis does not reduce

the construction of the IOLTS S, SP and SPVIS. But
in practice, the reduction is often dramatic, in particu-
lar if TP strongly constrains the behaviours by the use
of Refuse states. Using this technique often allowed us to
quickly synthesize test cases on very large or even infinite
state spaces. Nevertheless, it is clear that if S is small, it is
preferable to build it completely and to minimize it before
test synthesis with different test purposes. As we already
noted, on-the-fly test synthesis does not allow minimiza-
tion for trace equivalence, and this sometimes results in
the unfolding of loops in test cases. However, as test cases
are often small, they can be minimized a posteriori.
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4.7 Properties of synthesized test suites

Test cases produced by TGV have nice properties re-
lating verdicts computed during test execution and con-
formance. These properties are stated by the following
theorem:

Theorem 1. For every specification S, all test suites
produced by TGV are sound. Moreover, the (infinite) test
suite consisting of all test cases that TGV may produce is
exhaustive.

We do not detail the proofs here but just explain the
main principles. For soundness, we need to prove that
if a test case TC may reject an implementation IUT of
a specification S, then ¬IUT ioco S. It then suffices to
prove that a Fail verdict of a test case is only put after
a forbidden input (an output of IUT not specified in S)
after a suspension trace of S. This is almost clear from
the definition of CTG. Conversely, for exhaustiveness, we
need to prove that for every non-conformant IUT there is
a test purpose TP and a possibility to synthesize a test
case TC from S and TP , such that TC may reject IUT.
But, if ¬IUT ioco S, there is a suspension trace σ of S
such that an output of IUT after σ is not possible in S.TP
is then constructed from σ and there is a possibility to ex-
tract a test case TC from the CTG such that IUT may be
rejected by TC.

5 The TGV tool

5.1 TGV architecture

The architecture of TGV follows its functional descrip-
tion (Fig. 15). TGV has several software levels communi-
cating through APIs. Each API is a simulation API of an

Fig. 15. TGV architecture

IOLTS made of graph traversal functions: the computa-
tion of the initial states, the computation of firable transi-
tions of a state, the computation of its successors and the
comparison between states. Each level implements one
of the algorithms described in Sect. 4, transforming an
IOLTS (or two, in the case of the product) given by its
simulation API into a simulation API of a new IOLTS.
Additionally, TGV uses libraries for storing states, for
hiding, renaming and regular expressions provided by the
CADP toolbox [14]. Due to this architecture, TGV guides
the simulation API of different specification languages
with the same source code, except for the highest API.
This ensures the coherency of different variants and facil-
itates porting to new systems (TGV works on SunOS 5,
Linux and WindowsXP). Moreover, some parts can be
used alone or by other programs. In particular, we have
implemented a module called VTS which verifies sound-
ness and strictness of manual test cases (strictness of
a test case states that it may reject all IUTs that are non-
conformant on the traces of the test case). This module
just replaces TGVloop and uses other levels. It also served
for testing TGVloop.

5.2 Supported languages

TGV supports different specification languages by a con-
nection to their simulation API:

Lotos: TGV uses the simulation API provided by the
CAESAR compiler of the CADP toolbox. But as Lotos
does not distinguish inputs and outputs, TGV needs an
additional file which partitions visible events into inputs
and outputs.

SDL: TGV uses the simulation API of the ObjectGeode
SDL tool from Telelogic [17]. There are two versions of
this connection. The academic version uses a CADP-like
API and guides the ObjectGéode simulator. The com-
mercial tool TestComposer of ObjectGéode also inte-
grates TGV as one of its two test synthesis engines. Test-
Composer is also equipped with a test purpose synthesis
engine based on a branch coverage strategy. This engine
produces sequences of observable actions interpreted as
test purposes.

UML: To produce test cases from UML models, TGV is
connected to a CADP-like simulation API provided by
the UMLAUT tool [18], a validation framework for UML
developed in IRISA. UMLAUT uses class and object di-
agrams, deployment diagrams, and state diagrams and
gives an operational semantics for UML in terms of la-
beled transition systems by transforming and compiling
the UML model.
Another possibility is now offered by the compilation

of UML into IF in the context of the Agedis IST project.

IF: IF [5] is an intermediate format developed by Ver-
imag (Grenoble) based on communicating automata ex-
tended with data. IF specifications can be produced from
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SDL and UML models. TGV also uses the simulation
API provided by the IF compiler. Recently, during the
IST Agedis project, a new version of this connection was
developed. The API offered by IF is now the API of
the product between a test directive and the specifica-
tion. Test directives generalize test purposes in several
ways. First, they describe test purposes extended with
constraints on data, just as in GOAL observers in Ob-
jectGéode. This allows a more precise test case selection.
They also allow one to describe coverage directives simi-
lar to those of Gotcha [2]. Coverage directives express
coverage of general expressions on specification variables.
Covering an expression means finding sequences of tran-
sitions covering all reachable values of the expression.
These sequences are then transformed into test cases. The
main problem is that this may result in the construction
of the whole state graph of the specification. This is why
coverage directives can also be coupled with test purposes
in order to limit the behaviours in which an expression
should be covered. Using the general coverage principle,
it is also possible to define different state and transition
coverage policies. In fact, it suffices to automatically in-
troduce new variables in the IF specification that code
state change or transition firing and to cover the values of
these variables.

Your favorite specification language: The simulation API
required by TGV is documented and quite simple. For
a language with an operational semantics described in
terms of LTS or IOLTS, if a compiler produces a simu-
lation API, an interface between this API and the TGV
API can be easily built.

Output language: TGV may produce test cases in TTCN
(Tree and Tabular Combined Notation [19]) or in one of
the graph formats (.aut and .bcg) of the CADP toolbox.

5.3 Other TGV characteristics

Several options are provided by TGV in order to tune
test generation or to refine the produced test cases. In
particular, TGV produces test cases with timer opera-
tions. Recall that timers are used to detect quiescence
and that quiescence has been taken into account in test
generation. Two timers are managed, TAC and TNOAC.
TAC is used when no quiescence is expected. Thus, TAC
is started when inputs are expected (except if δ is ex-
pected). If an input is observed, TAC is cancelled, other-
wise a timeout is observed and produces a Fail verdict.
Conversely, TNOAC is used when quiescence is possible.
TNOAC is started before entering a state where a quies-
cence (δ) is allowed. It is cancelled if an input is observed.
The observation of δ is replaced by a timeout. This time-
out does not produce a Fail verdict because the presence
of δ proves that quiescence is possible in the specification.
This transformation is described by Fig. 16 for the test
case in Fig. 14.

Fig. 16. Test case with timers

The traversal depth can be bounded. This bound is
interpreted in terms of visible actions as, due to non-
determinism, a bound in terms of actions could result in
an unsound test case.
TGV allows the computation of postambles from Pass

and Inconc verdicts. If possible, these postambles lead to
stable states, i.e. states where, according to S, no output
from the IUT is expected.
The test architecture can also be modified by the use

of hiding and renaming rules described by regular expres-
sions. Hiding is used to increase the set of internal actions.
Renaming is used to modify the description of visible ac-
tions, as they will appear in test cases. These options
are useful for studying several test architectures without
modifying the original specification. Another option is
the description of inputs and outputs. This is particularly
useful for specification languages that do not distinguish
them, such as Lotos.

6 Case studies

Different versions of TGV have been evaluated on indus-
trial size case studies, in various application domains,
and with different specification languages. We just sketch
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these cases studies, as they have already been pub-
lished, and summarize the lessons learned from these
experiments.

6.1 The DREX protocol

This protocol is a military version of the ISDN D pro-
tocol. The study was performed during a project involv-
ing several French industrial partners. Several specifica-
tions were written in SDL, each describing one service.
This case study allowed the validation of TGV princi-
ples on a preliminary version of the tool. This version
was incomplete and did not work on-the-fly [15]. The
same specification served as a case study for two other
tools: TVéda from CNET [32] and the TOPIC proto-
type from Vérilog. The experiment allowed us to com-
pare TGV with these tools as well as with the manual
production of test cases [11]. It proved that the TGV ap-
proach was feasible on real size case studies. Moreover,
it allowed us to detect some errors in manual test cases,
in particular some due to asynchronous communication
between the tester and the IUT, producing race condi-
tions. These asynchronous behaviours are very difficult to
imaginemanually and completely justify the use of formal
methods.

6.2 A cache coherency protocol

Several experiments [27, 28] consisted of using TGV on
Lotos specifications of cache coherency protocols for mul-
tiprocessor architectures of Bull (Polykid). The Lotos
specification used was 2000 lines long, half of which con-
sisted of abstract data types. The specification consisted
of 3 modules with several processes per module. Its state
graph could not be built. During the experiment, the
first version of TGV working completely on-the-fly was
developed. This also allowed us to improve TGV al-
gorithms (generation of acyclic test cases) and to in-
troduce new optional features. In particular, as Lotos
does not make a distinction between inputs and out-
puts, we had to provide this information in an addi-
tional file. Renaming and hiding was also intensively
used.
Test purposes were written according to a test plan

provided by Bull. Seventy-five test cases have been pro-
duced from these test purposes. The average size of test
cases was 1000 cycles. Produced test cases were then ex-
ecuted by Bull on a simulator of the architecture run-
ning a VHDL description of the Polykid architecture. The
usual way to perform testing in Bull for hardware archi-
tectures was to work off-line, i.e. emulating the system
by input data, collecting reactions in output files, ana-
lysing the results and emitting a verdict. As test cases
produced by TGV are reactive, a testing environment
was developed to run these reactive test cases. The test
campaign uncovered five bugs mainly due to address
collisions.

6.3 The SSCOP protocol

The SSCOP protocol (service specific connection ori-
ented protocol) is a quite complex protocol of the ATM
stack, standardized by ITU. This protocol is supposed
to transfer data between two high-bandwidth network
entities. A specification was coded in SDL by FTR&D
from the ATM Forum specification. It consisted of one
single process describing several services. Its size was ap-
proximately 2000 lines of textual SDL (approximately
80 pages of graphical SDL). We have used this pro-
tocol and its SDL specification in several experiments
with the aim of putting into relief the particularities
of TGV [4]. The version of TGV that was used was
connected to the ObjectGéode SDL simulator (Tele-
logic). So we used ObjetGéode features to tune the
experiments. In particular, we imposed restrictions on
the environment behaviour with the use of feeds. We
also used GOAL observers to specify the global ser-
vice automaton of the ATM standard. This was useful
for detecting errors in the specification and for ensur-
ing that sequences traversed by TGV during test case
generation did not violate the service. We also used
static analysis to safely reduce the specification state
graph. Fifty complex test purposes were designed, cov-
ering all services of the protocol, but of course not all
behaviours. We made some variations on the number
of PCOs and the communication mode (synchronous or
asynchronous) between tester and IUT. Asynchronous
communication was specified by the introduction of a pro-
cess between the system and the environment. The results
gained during these experiments showed that on-the-fly
test generation was efficient on specifications with large
state spaces. This resulted in the transfer of TGV into
ObjectGéode.
We also used the same SDL specification to check for

correctness of a part of the TTCN test suite produced by
the ATM Forum. For this, we used our tool VTS, which
is built from parts of TGV. VTS takes as input a spe-
cification and a test case and checks for soundness and
strictness of the test case [24]. This allowed us to detect
some errors with respect to soundness in the ATM test
suite. Most of them were due to asynchronism.

6.4 The conference protocol

TGV has also been used on a conference protocol [12].
This protocol is a toy example designed by colleagues
at Twente University to compare test generation tools.
Several specifications have been written in different lan-
guages, including SDL and Lotos. Also, 28 mutants of
a correct implementation were written in order to check
if tools were able to detect non-conformant mutants. An
experiment with TorX had already been conducted on
a Lotos specification, and TorX was able to detect all
non-conformant mutants. A new experiment was then
conducted with TGV on the same Lotos specification,



312 C. Jard, T. Jéron: TGV: theory, principles and algorithms

during a visit of colleagues from Twente, in order to com-
pare TGV with TorX. The challenge was to detect all
non-conformantmutants by running generated test cases.
Of course, the code of mutants was not available to us.
The main problem encountered with TGV was to imag-
ine adequate test purposes. Of course, this involves a good
knowledge of the protocol as one has to imagine abstract
scenarios where at least one implementation may fail. We
first used informal requirements provided with the proto-
col to write test purposes and were able to detect most
non-conformant IUTs by generated test cases. The last
non-conformant mutants were more difficult to find as
faults occurred after long sequences involving loops in
protocol entities. But finally, after a careful study of the
protocol, new test purposes were written, and all non-
conformant IUTs were detected.
Another experiment with the SDL version of the pro-

tocol was conducted later using the version of TGV in
TestComposer.

6.5 Air traffic controller

A UML model of an air traffic control (ATC) system
was used as an example of the UMLAUT/TGV connec-
tion. This model consists of a class diagram consisting
of four classes and three actors, one state diagram per
class or actor, and object diagrams specifying the initial
state. The environment behaviour is defined by actors.
One describes a human controller, the second describes
the radar and the third describes a controller of another
ATC. The four classes describe the flight and flight plan,
the position of flights and the flight plan manager. The
semantics of a UMLmodel in UMLAUT is defined by a la-
beled transition system obtained by transformations of
the UML model. Simple test purposes have been auto-
matically generated from sequence diagrams. From these,
TGV produced interesting test cases. The case study was
done to demonstrate that test generation using TGV was
possible for UML models.

6.6 Transit Computerization Project

In the framework of the IST European project Agedis,
TGV has been used on an IF specification of the ECN
component of the Transit Computerization Project
(TCP). The aim of TCP is to develop a set of applica-
tions to be used for electronic exchange of information
regarding goods in transit between EU countries. The
ECN is mainly in charge of ensuring the communication
and translation of business information flows between
domains. From an informal UML model of the system
provided by IntraSoft, an SDL specification was writ-
ten by Verimag and then automatically translated into
IF. The specification consists of ten processes running
concurrently and communicating asynchronously. Two
experiments were conducted. The first one with TGV in
TestComposer, directly with the SDL specification, used

test purposes generated with branch coverage and test
purposes generated with interactive simulation. This ex-
periment showed that branch coverage was clearly not
sufficient to cover most interesting behaviours. Thus ad-
ditional test purposes were designed by simulation and
from requirements. The second experiment was done
with TGV connected with the IF simulator, using the
IF specification and a few significant test purposes. The
number of processes (ten) and their concurrency pushed
TGV to its limits. In particular, we noticed that there
were a lot of concurrencies between internal actions. But
these concurrencies could be avoided, as test generation
is concerned with visible behaviour. This gave us some
ideas about possible improvements using partial-order
methods (Sect. 8). Finally, we generated a state graph of
the specification with additional constraints. The size of
the graph was of the order of 500 000 states and 900000
transitions.

6.7 Lessons learned from case studies

We have sketched some case studies in which members of
our team participated. TGV has been used by us or some
of our partners in other case studies in telecommunica-
tions but also for smart card applications.
First, one notices that we made some realistic case

studies in very different domains. TGV was first designed
for telecommunication protocols but showed that it could
also be applied to hardware as well as to middleware. This
proves that the TGV approach is very general. The rea-
son is that the testing theory and algorithms are general
enough for all these application domains.
We also used different specification languages. This

clearly shows the independence of TGV with respect to
specification languages. This is not surprising as all these
languages are given a semantics in terms of labelled tran-
sition systems. An additional interpretation of actions in
terms of internal, input or output actions is sometimes
necessary but is often clear.
On-the-fly test generation has proved useful in most

cases. In fact, sometimes state graphs of specifications
were infinite, but in most cases they were very large,
due to data and/or asynchronism between processes, and
thus impossible to build completely. Nevertheless, we
were able to generate test cases with TGV. Of course,
if state graphs can be completely constructed, on-the-fly
test generation is not necessary. But TGV can still be
used on these explicit state graphs.
All experiments were useful for imagining improve-

ments of TGV. Test generation algorithms have been im-
proved over the first version. Starting from algorithms
generating acyclic test cases, TGV now generates test
cases with loops and takes into account coverage direc-
tives. We also improved the tuning of TGV by the add-
ition of options in test generation algorithms.
The main difficulty in most case studies was to design

test purposes. In some cases, the task was easier as we
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could base test purpose design on requirements. But this
was not always the case. In a first approach one writes
very abstract test purposes. But it is often necessary to
refine these test purposes for several reasons. First, when
state graphs are large, abstract test purposes do not guide
the generation sufficiently. Thus TGV may suffer from
state space explosion. Second, even if a test case is pro-
duced, one realizes that a shorter one could be generated.
This implies restricting test purposes by the addition of
refuse states or limiting the depth of test cases.
Nevertheless, we know that test generation from test

purposes is not always the best approach for some users.
Some prefer a more automatic solution based on coverage
criteria. But coverage is limited as it often misses inter-
esting behaviours. Thus additional test cases based on
well-targeted test purposes are often necessary. However,
we are concerned with coverage. This is why we recently
tried to improve TGVwith coverage facilities, allowing us
to mix coverage directives with test purposes.

7 Comparison with other techniques and tools

7.1 FSM-based test generation

FSM test generation tools make strong assumptions
about specifications and implementations. This is the
price to pay for exhaustiveness, as this restricts the set of
possible implementations to a finite set. This means that
if a fault is present, it can be detected after a bounded
number of steps. This corresponds to a regularity hypoth-
esis in the framework of [3]. Conversely, the assumptions
made by TGV are very weak. The only significant one
is that implementations are input complete. In practical
terms, exhaustiveness cannot be assured because the set
of possible implementations is infinite. This means that
a fault can occur after a trace of arbitrary length and thus
cannot be detected by test cases of bounded length. How-
ever, all faults are detectable as proven by Theorem 1.
Moreover, FSM-based test generation algorithms are

complex and are thus limited to small specifications. Usu-
ally, when large specifications are considered, a rough
abstraction is made, or the state graphs are built up to
a limited depth. Thus exhaustiveness is only partial.

7.2 Test generation based on model checking

TGV can be compared with test synthesis techniques and
tools based on model checking (e.g. [13]). The common
idea of most of these techniques is to use a standardmodel
checker to produce counter-examples. Given a test pur-
pose specified by a reachability property P of a temporal
logic (e.g. LTL or CTL), a model checker (e.g. SPIN,
SMV) is used to produce a witness of P on the specifi-
cation S. To do this, one checks the negation ¬P of the
property against the specification S. The property ¬P is
a safety property that can be violated by a finite trace.

Most model checkers can produce counter-examples for
this kind of property. Thus, if S violates ¬P (thus P is
satisfied by S), the model checker produces a counter-
example for ¬P and thus a witness for P . This witness is
then abstracted from internal actions and interpreted as
a test case. TGV goes beyond this idea. First, it is based
on a clear testing theory. Second, it does not use a model-
checking tool but adapts model-checking algorithms to
test synthesis. This allows us to take into account non-
deterministic and non-controllable specifications, which
is not the case for other tools.

7.3 TorX

The most comparable tool for TGV is TorX [9] from the
University of Twente. The testing theory is almost identi-
cal (except that livelocks are not considered). It also syn-
thesizes test cases on-the-fly, but for the moment without
any test purpose. As it executes test cases on-the-fly dur-
ing their synthesis, the test case synthesis is guided by
the observations made of the IUT for the proposed stim-
uli. As mentioned in Sect. 5.3, both tools were applied to
the same case study and, despite their differences, gave
similar results in terms of fault detection power. In some
sense, TGV algorithms are more powerful than TorX
ones for test selection. They both base test generation
on a traversal of suspension traces of the specification.
But while TorXworks forward and randomly, TGVworks
both forward and backward guided by a test purpose.
Nevertheless, the approaches of TGV and TorX are com-
plementary. TorX is very efficient for intensive testing,
when the goal is to detect faults by a random exploration
of behaviours. TGV is more efficient when precise faults
are targeted by a test purpose.

8 Conclusion and perspectives

In this paper, we have presented the principles of TGV,
its underlying theory, the algorithms and the tool. TGV
has improved the state of the art in test synthesis in a sig-
nificant way. Our main contribution is not in the theory,
despite our adaptations and improvements, but in the al-
gorithms and tool architecture. TGV is able to synthesize
tests from industrial size specifications. However, some
improvements are still necessary for industrial use.
A first drawback is the necessity to describe test pur-

poses. It is an advantage compared to manual generation
of test cases because test purposes are of a higher ab-
straction level and because TGV ensures soundness of
synthesized test cases. But an effort must be made for the
description of test purposes, and this requires some ex-
pertise. TestComposer provides a partial answer by the
synthesis of test purposes according to a coverage cri-
terion adapted from branch coverage but limited to ob-
servable behaviours. But the branch coverage criterion
is often too weak and some test purposes still have to
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be written. A possible direction for future research is to
use improved coverage criteria based on the specification
code and adapted to the specific problem of conformance.
In the context of the Agedis project, we improved TGV
with test directives that include both test purposes and
coverage criteria (e.g. state and transition coverage).
Improvements of algorithms are also to be investi-

gated. An interesting direction is to use partial-order
techniques as in model checking [30]. These techniques
can already be used for internal actions as the order of
occurrence of internal actions has no effect (if they are
not used in test purposes) on visible actions, and thus on
synthesized test cases. Applying these techniques for visi-
ble actions is more difficult as concurrent behaviour must
be synthesized in test cases. Other improvements concern
compositionality.We will investigate how to compute test
cases incrementally in the case of compositional specifica-
tions. In the same line of thought, in the context of Agedis
we also investigated how to compute several test cases in
one run from a composition of test purposes or coverage
criteria.
Another important problem is that of distributed test-

ing. In the general case the system is distributed, and
test cases should be distributed and should communi-
cate asynchronously. Concurrent-TTCN has such speci-
fication power. A first approach we adopted [23] was to
synthesize a sequential test case and to distribute it ac-
cording to localities of actions. Global choices were solved
by a distributed consensus service. The main drawback is
the loss of concurrency and the fact that unnecessary syn-
chronizations between testers are added. A direction of
research is to preserve concurrency by the use of true con-
currency models [21, 22] and to revisit the testing theory
accordingly.
Another drawback of TGV is the use of enumerative

techniques. A consequence is that specifications with data
structures with large (or infinite) domains may be impos-
sible to treat, even with on-the-fly techniques. Also, spe-
cifications with symbolic variables are beyond the scope
of TGV. A solution is to use symbolic techniques [33].
State sets and transitions are not enumerated but rep-
resented by predicates. The specification model we use
is called IOSTS (Input-Output Symbolic Transition Sys-
tems). Transitions are labelled with inputs, outputs or
internal actions, guarded with boolean expressions on
symbolic constants, variables and communication param-
eters, and may perform assignments. From a specification
specified as an IOSTS and test purpose (with Accept and
Refuse states) also specified by an IOSTS, a test case
is first extracted with techniques similar to TGV, but
only on the syntax of the specification. This test case
is sound for the conformance relation but may include
unsatisfiable transitions that should be pruned. Unfor-
tunately, this problem is undecidable, and thus approx-
imate methods must be used. In our tool STG [6], we
use two means. We use the Omega constraint solver to
prune some locally unsatisfiable transitions. Moreover,

a deeper analysis using abstract interpretation (by our
NBAC tool) computes an over-approximation of reach-
able and co-reachable states, which prunes more unsat-
isfiable transitions. Even if some unsatisfiable transitions
remain, after fixing the values of symbolic constants, ex-
ecutable test cases can be produced and executed on im-
plementations. Omega is again used during execution to
find outputs satisfying the guards.
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A, Morel P, Mounier L (2000) Verification and test generation
for the SSCOP protocol. J Sci Comput Programm 36(1):27–52

5. Bozga M, Graf S, Mounier L (2002) IF-2.0: A validation en-
vironment for component-based real-time systems. Lecture
notes in computer science, vol 2404. Springer, Berlin Heidel-
berg New York, pp 343–348
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25. Jéron T, Morel P (1997) Abstraction, τ -réduction et déter-
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