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Unité de recherche INRIA Rhône-Alpes
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Un solveur générique à la volée pour les

systèmes d’équations booléennes sans alternance

Résumé : Les systèmes d’équations booléennes sont un formalisme utile pour
modéliser différents problèmes de vérification sur les systèmes concurrents à nombre
fini d’états, en particulier la vérification par équivalences et la vérification par lo-
giques temporelles. Ces problèmes peuvent être résolus à la volée (c’est-à-dire, sans
construire explicitement l’espace d’états du système à analyser) en utilisant une
construction et une résolution à la demande du système d’équations booléennes cor-
respondant. Dans ce rapport, nous présentons une bibliothèque logicielle générique
dédiée à la résolution à la volée des systèmes d’équations booléennes sans alternance.
La bibliothèque fournit actuellement quatre algorithmes de résolution : A1 et A2
sont des algorithmes généraux, le dernier étant optimisé pour produire des diag-
nostics de profondeur réduite, alors que A3 et A4 sont des algorithmes spécialisés
pour réduire la consommation mémoire lors du traitement des systèmes d’équations
booléennes acycliques, respectivement disjonctifs/conjonctifs. La bibliothèque est
développée au sein de la bôıte à outils Cadp pour la vérification des systèmes dis-
tribués et permet d’effectuer la vérification à la volée par équivalences (cinq relations
largement utilisées sont supportées) et la vérification à la volée du µ-calcul modal
sans alternance.

Mots-clés : bisimulation, logique temporelle, mu-calcul, spécification, système
d’équations booléennes, système de transitions étiquetées, vérification énumérative
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1 Introduction

Boolean Equation Systems (Bess) [Mad97] are a well-studied framework for the ver-
ification of concurrent finite-state systems, by allowing to formulate model checking
and equivalence/preorder checking problems in terms of Bes resolution. Numer-
ous algorithms for solving Bess have been proposed (see [Mad97, chap. 6] for a
survey). They can be basically grouped in two classes: global algorithms, which
require the Bes to be constructed entirely before the resolution, and local (or on-
the-fly) algorithms, which allow the Bes to be generated dynamically during the
resolution. Local algorithms are able to detect errors in complex systems even when
the corresponding Bess are too large to be constructed explicitly. Another feature
is the generation of diagnostics (portions of the Bes explaining the truth value
of a variable), which provide considerable help for debugging applications and for
understanding temporal logic formulas [Mat00].

However, as opposed to the situation in the field of symbolic verification, for
which a significant number of Bdd-based packages are available (see [YBO+98] for
a survey), we are not aware of any generic environment for Bes resolution available
for on-the-fly verification. In this report we present Cæsar Solve, a generic library
for Bes resolution and diagnostic generation, created using the Open/Cæsar en-
vironment for on-the-fly verification [Gar98]. The Cæsar Solve library provides
an application-independent representation of Bess as boolean graphs [And94], much
in the same way as Open/Cæsar provides a language-independent representa-
tion of Labeled Transition Systems (Ltss). Four algorithms are currently available
in the library. Algorithms A1 and A2 are general (they do not assume anything
about the right-hand sides of the equations), A2 being optimized to produce small-
depth diagnostics. Algorithms A3 and A4 are specialized for memory-efficient res-
olution of acyclic Bess and disjunctive/conjunctive Bess, which occur frequently
in practice. Cæsar Solve serves as engine for two on-the-fly verification tools
developed within the Cadp toolbox [FGK+96]: the equivalence/preorder checker
Bisimulator, which implements five widely-used equivalence relations, and the
model checker Evaluator for regular alternation-free µ-calculus [MS03].

The report is organized as follows. Section 2 defines alternation-free Bess. Sec-
tion 3 presents algorithms A1–A4 and compares them according to three criteria
which aim at improving time complexity. Section 4 outlines the encodings of various
equivalence relations and temporal logics in terms of alternation-free Bess, identi-
fying the particular cases suitable for algorithms A3 and A4. Section 5 shows the
architecture of the library and some performance measures. Section 6 summarizes
the results and indicates directions for future work.
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4 R. Mateescu

2 Alternation-Free Boolean Equation Systems

A Boolean Equation System (Bes) [And94, Mad97] is a tuple B = (X, M1, ..., Mn),
where X ∈ X is a boolean variable and Mi are equation blocks (i ∈ [1, n]). Each
block Mi = {Xj

σi= opjXj}j∈[1,mi] is a set of minimal (resp. maximal) fixed point
equations of sign σi = µ (resp. σi = ν). The right-hand side of each equation j is
a pure disjunctive or conjunctive formula obtained by applying a boolean operator
opj ∈ {∨,∧} to a set of variables Xj ⊆ X . The boolean constants F and T

abbreviate the empty disjunction ∨∅ and the empty conjunction ∧∅.
The main variable X must be defined in block M1. A variable Xj depends upon

a variable Xl if Xl ∈ Xj. A block Mi depends upon a block Mk if some variable of
Mi depends upon a variable defined in Mk. A block is closed if it does not depend
upon any other blocks. A Bes is alternation-free if there are no cyclic dependencies
between its blocks; in this case, the blocks are sorted topologically such that a block
Mi only depends upon blocks Mk with k > i.

The semantics [[opi{X1, ..., Xk}]]δ of a formula opi{X1, ..., Xk} w.r.t. Bool =
{F, T} and a context δ : X → Bool, which must initialize all variables X1, ...,
Xk, is the boolean value opi(δ(X1), ..., δ(Xk)). The semantics [[Mi]]δ of a block
Mi w.r.t. a context δ is the σi-fixed point of a vectorial functional Φiδ : Boolmi →
Boolmi defined as Φiδ(b1, ..., bmi

) = ([[opjXj ]](δ�[b1/X1, ..., bmi
/Xmi

]))j∈[1,mi], where
δ� [b1/X1, ..., bn/Xn] denotes a context identical to δ except for variables X1, ..., Xn,
which are assigned values b1, ..., bn, respectively. The semantics of an alternation-free
Bes is the value of its main variable X given by the solution of M1, i.e., δ1(X), where
the contexts δi are calculated as follows: δn = [[Mn]][] (the context is empty because
Mn is closed), δi = ([[Mi]]δi+1) � δi+1 for i ∈ [1, n − 1] (a block Mi is interpreted in
the context of all blocks Mk with k > i).

A block is acyclic if the dependency graph induced by its equations is acyclic. A
variable Xj is called disjunctive (resp. conjunctive) if opj = ∨ (resp. opj = ∧). A
block Mi is disjunctive (resp. conjunctive) if each of its variables either is disjunctive
(resp. conjunctive), or it depends upon at most one variable defined in Mi, its other
dependencies being constants or variables defined in other blocks.

The on-the-fly resolution of an alternation-free Bes B = (X, M1, ..., Mn) consists
in computing the value of X by exploring the right-hand sides of the equations in
a demand-driven way, without explicitly constructing the blocks. Several on-the-fly
Bes resolution algorithms are available [CS91b, And94, Mad97, DSC99]. Here we
follow an approach proposed in [And94], which proceeds as follows. To each block
Mi is associated a resolution routine Ri responsible for computing the values of
Mi’s variables. When a variable Xj of Mi is computed by a call Ri(Xj), the values
of other variables Xl defined in other blocks Mk may be needed; these values are
computed by calls Rk(Xl) of the routine associated to Mk. This process always
terminates, because there are no cyclic dependencies between blocks (the call stack

INRIA



A Generic On-the-Fly Solver for Alternation-Free BESs 5

of resolution routines has a size bounded by the depth of the dependency graph
between blocks). Since a variable Xj of Mi may be required several times during
the resolution process, the computation results must be kept persistent between
subsequent calls of Ri to obtain an efficient overall resolution.

Compared to other algorithms like Lmc [DSC99], which consists of a single
routine handling the whole Bes, the scheme above presents two advantages: (a) the
algorithms used in the resolution routines of individual blocks are simpler, since they
must handle a single type of fixed point equations; (b) the overall resolution process
is easier to optimize, simply by designing more efficient algorithms for blocks with
particular structure (e.g., acyclic, disjunctive or conjunctive).

3 On-the-Fly Resolution Algorithms

This section presents four different algorithms implementing the on-the-fly resolution
of individual equation blocks in an alternation-free Bes. The algorithms are defined
only for µ-blocks, those for ν-blocks being completely dual. Algorithms A1 and A2
are general (they do not depend upon the structure of the right-hand sides of the
equations), whereas algorithms A3 and A4 are optimized for acyclic blocks and for
disjunctive or conjunctive blocks, respectively.

We develop the resolution algorithms in terms of boolean graphs [And94], which
provide a graphical, more intuitive representation of Bess. Given an equation
block Mi = {Xj

µ
= opjX j}j∈[1,mi], the corresponding boolean graph is a tuple

G = (V, E, L), where: V = {Xj | j ∈ [1, mi]} is the set of vertices (boolean
variables), E = {Xj → Xk | j ∈ [1, mi] ∧ Xk ∈ Xj} is the set of edges (depen-
dencies between variables), and L : V → {∨,∧}, L(Xj) = opj is the vertex labeling
(disjunctive or conjunctive). The set of successors of a vertex x is noted E(x). Sink
∨-vertices (resp. ∧-vertices) represent variables equal to F (resp. T). During a call
of the resolution routine Ri associated to block Mi, all variables Xl defined in other
blocks Mk and occurring free in Mi can be seen as constants, because their values
are computed on-the-fly by calls to Rk.

As expected, the boolean graphs associated to acyclic blocks are acyclic. The
graphs associated to disjunctive (resp. conjunctive) blocks may contain ∧-vertices
(resp. ∨-vertices) having at most one successor (these vertices correspond either to
constants, or to variables having at most one non-constant successor in the current
block), the other vertices being disjunctive (resp. conjunctive).

The algorithms we present are all based upon the same principle: starting at the
variable of interest, they perform an on-the-fly, forward exploration of the boolean
graph and propagate backwards the values of the “stable” variables (i.e., whose final
value has been determined); the propagation of a T (resp. a F) backwards to a ∨-
variable (resp. ∧-variable) makes it T (resp. F). The algorithms terminate either
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6 R. Mateescu

when the variable of interest becomes stable, or the entire boolean graph is explored.
To compare the different algorithms, we precise below three requirements desirable
for obtaining a good time complexity:

(R1) The resolution of a variable (vertex of the boolean graph) must be carried out
in a time linear in the size of the graph, i.e., O(|V |+ |E|). This is necessary for
obtaining a linear time overall resolution of a multiple-block, alternation-free
Bes.

(R2) During the resolution of a variable, every new variable explored must be
related to the variable of interest by (at least) a path of unstable variables in
the boolean graph. This limits the graph exploration only to variables “useful”
for the current resolution.

(R3) When a call of the resolution algorithm terminates, the portion of the boolean
graph explored must be stable. This avoids that subsequent calls for solving
the same variable lead to multiple explorations of the graph (which may destroy
the overall linear time complexity).

3.1 Algorithm A1 (DFS, general)

Algorithm A1 is based upon a depth-first search (Dfs) of the boolean graph. It
satisfies all three aforementioned requirements: (R1) its worst-case time and space
complexity is O(|V | + |E|), because every edge in the boolean graph is traversed
at most twice: forwards, when its source variable is explored, and backwards, when
the value of its target variable (if it became stable) is back-propagated; (R2) new
variables, explored from the top of the Dfs stack, are related to the variable of
interest, which is at the bottom of the Dfs stack, via the unstable variables present
on the stack; (R3) the portion of boolean graph explored after each call of the
algorithm contains only stable variables, i.e., depending only upon variables already
explored.

The algorithm can be seen as an optimized version of the Avoiding 1’s algorithm
proposed in [And94]: it is implemented iteratively rather than recursively, it has a
better average complexity because values of variables are back-propagated as soon as
they become stable, and it has a lower memory consumption because dependencies
between variables are discarded during back-propagation. A1 was initially developed
for model checking regular alternation-free µ-calculus [MS03].

3.2 Algorithm A2 (BFS, general)

Algorithm A2 (see Figure 1) is based upon a breadth-first search (Bfs) of the
boolean graph, starting from the variable of interest x. Visited vertices are stored

INRIA
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in a set A ⊆ V and visited but unexplored vertices are stored in a queue. To each
vertex y are associated two informations: a counter c(x), which keeps the number
of y’s successors that must become true in order to make y true (c(y) is initialized
to |E(y)| if y is a ∧-vertex and to 1 otherwise) and a set d(y) containing the vertices
that currently depend upon y. At each iteration of the main while-loop (lines 4–
34), the vertex y in front of the queue is explored. If it is already stable (i.e.,
c(y) = 0), its value is back-propagated by the inner while-loop (lines 8–20) along
the dependencies d; otherwise, all successors E(y) are visited and (if they are stable
or new) are inserted at the end of the queue.

The algorithm satisfies requirement (R1), since each call has a complexity
O(|V | + |E|). It does not satisfy (R2), because the back-propagation may stabi-
lize vertices that “cut” all the paths relating x to vertices in the queue, and thus at
some points the algorithm may explore vertices useless for deciding the truth value
of x (however, the values of these vertices may be useful in later calls of A2). Fi-
nally, it satisfies (R3), since at the end of the main while-loop all visited vertices are
stable (they depend only upon the vertices in A). These observations are confirmed
experimentally, A2 being slightly slower than A1.

However, as regards the ability of generating positive diagnostics (examples)
of small size, A2 performs better than A1. During the back-propagation carried
out by the inner while-loop, to each ∨-vertex w that becomes stable is associated
its successor s(w) that made it stable (line 14). This information can be used to
construct a diagnostic for x after the resolution algorithm terminates, by performing
another traversal of the subgraph induced by A and keeping the successors given by
s (for ∨-vertices) or all successors (for ∧-vertices) [Mat00]. Being Bfs-based, A2
generally produces examples of smaller depth than A1, and even of minimal depth
when the examples are sequences (e.g., in the case of disjunctive blocks). Of course,
the same situation occurs in the dual case, when A2 is used for producing negative
diagnostics (counterexamples) for ν-blocks.

3.3 Algorithm A3 (DFS, acyclic)

Algorithm A3 is based upon a Dfs of the boolean graph and is specialized for solving
acyclic equation blocks. It is quite similar to algorithm A1, except that it does not
need to store dependencies between variables, since back-propagation takes place
only along the Dfs stack (the boolean graph being acyclic, variables become stable
as soon as they are popped from the Dfs stack). Therefore, algorithm A3 has a
worst-case memory consumption O(|V |), improving over the general algorithms A1
and A2.

Being Dfs-based, algorithm A3 satisfies all requirements (R1)–(R3). A3 was
initially developed for model checking µ-calculus formulas on large traces obtained
by intensive simulation of a system implementation [Mat02].
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8 R. Mateescu

1. function A2 (x, (V, E, L)) : Bool is
2. c(x) := if L(x) = ∧ then |E(x)| else 1 endif;
3. d(x) := ∅; A := {x}; queue := put(x, nil);
4. while queue 6= nil do
5. y := head(queue); queue := tail(queue);
6. if c(y) = 0 then
7. B := {y};
8. while B 6= ∅ do
9. let u ∈ B; B := B \ {u};

10. forall w ∈ d(u) do
11. if c(w) > 0 then
12. c(w) := c(w) − 1;
13. if c(w) = 0 then
14. if L(w) = ∨ then s(w) := u endif;
15. B := B ∪ {w}
16. endif
17. endif
18. end;
19. d(u) := ∅
20. end
21. else
22. forall z ∈ E(y) do
23. if z ∈ A then
24. d(z) := d(z) ∪ {y};
25. if c(z) = 0 then
26. queue := put(z, queue)
27. endif
28. else
29. c(z) := if L(z) = ∧ then |E(z)| else 1 endif;
30. d(z) := {y}; A := A ∪ {z}; queue := put(z, queue)
31. endif
32. end
33. endif
34. end;
35. return c(x) = 0
36. end

Figure 1: Algorithm A2: Bfs-based local resolution of a µ-block

INRIA
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3.4 Algorithm A4 (DFS, disjunctive/conjunctive)

Algorithm A4 (see Figure 2) is based upon a Dfs of the boolean graph, performed
recursively starting from the variable of interest x. A4 is specialized for solving
disjunctive or conjunctive blocks; we show only its variant for disjunctive blocks,
the other variant being symmetric.

1. A := ∅; n := 0; stack := nil;
2. function A4 (x, (V, E, L)) : Bool is
3. A := A ∪ {x}; n(x) := n; n := n + 1;
4. stack := push(x, stack); low(x) := n(x);
5. if |E(x)| = 0 then
6. v(x) := if L(x) = ∧ then T else F endif; stable(x) := T

7. else
8. v(x) := F; stable(x) := F

9. endif;
10. forall y ∈ E(x) do
11. if y ∈ A then
12. val := v(y);
13. if ¬stable(y) ∧ n(y) < n(x) then
14. low(x) := min(low(x), n(y))
15. endif
16. else
17. val := A4 (y, (V, E, L));
18. low(x) := min(low(x), low(y))
19. endif;
20. if val then
21. v(x) := T; stable(x) := T; break
22. endif
23. end;
24. if v(x) ∨ low(x) = n(x) then
25. repeat
26. z := top(stack); v(z) := v(x); stable(z) := T;
27. stack := pop(stack)
28. until z = x
29. endif;
30. return v(x)
31. end

Figure 2: Algorithm A4: Dfs-based local resolution of a disjunctive µ-block
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10 R. Mateescu

For simplicity, we assume that all ∧-vertices of the disjunctive block have no
successors (i.e., they are T): since each ∧-vertex may have at most one non-constant
successor in the block, it can be assimilated to a ∨-vertex if its other successors are
evaluated first (possibly by calling the resolution routines of other blocks). In this
case, solving a disjunctive block amounts to searching for a sink ∧-vertex, since a
T value will propagate back to x via ∨-vertices. This algorithm obviously meets
requirements (R1) and (R2).

However, in order to guarantee requirement (R3), we must ensure that all visited
vertices stored in A ⊆ V are stable when x has been evaluated. This could be done
by storing backward dependencies (as for algorithms A1 and A2), but for disjunctive
blocks we can avoid this by computing the strongly connected components (Sccs)
of the boolean graph. When x is evaluated to T, all vertices belonging to the Scc
of x must become T (since they can reach x via a path of ∨-vertices) and the other
ones must be stabilized to F.

Algorithm A4 combines the search for T vertices with a detection of Scc following
Tarjan’s classical algorithm [Tar72]. It proceeds as follows: for each successor y of
vertex x (lines 10–23), it calculates its boolean value v(y), its “lowlink” number
low(y), and a boolean stable(y) which is set to F if y belongs to the current Scc
and to T otherwise. Then, if v(x) = T or x is the root of a Scc, all vertices in the
current Scc are stabilized to the value v(x) (lines 24–29). In this way, algorithm
A4 meets all requirements (R1)–(R3) and avoids to store transitions of the boolean
graph, having a worst-case memory complexity O(|V |).

4 Equivalence Checking and Model Checking

In this section we study two applications of Bes resolution in the field of finite-state
verification: equivalence/preorder checking and model checking, both performed on-
the-fly. Various encodings of these problems in terms of Bess have been proposed in
the literature [CS91a, And94, Mad97]. Here we aim at giving a uniform presentation
of these results and also at identifying particular cases where the algorithms A3 and
A4 given in Sections 3.3 and 3.4 can be applied.

4.1 Encoding Equivalence Relations

Labeled Transition Systems (Ltss) are natural models for action-based languages
describing concurrency, such as process algebras. An Lts is a quadruple M =
(Q, A, T, q0), where: Q is the set of states, A is the set of actions (Aτ = A ∪ {τ}
is the set of actions extended with the invisible action τ), T ⊆ Q × Aτ × Q is
the transition relation, and q0 ∈ Q is the initial state. A transition (q1, a, q2) ∈ T
(also noted q1

a
→ q2) means that the system can evolve from state q1 to state q2 by

INRIA



A Generic On-the-Fly Solver for Alternation-Free BESs 11

performing action a. The notation is extended to transition sequences: if l ⊆ Aτ
∗ is

a language defined over Aτ , q1
l
→ q2 means that from q1 to q2 there is a sequence of

transitions whose concatenated actions form a word of l.
Let Mi = (Qi, A, Ti, q0i) be two Ltss (i ∈ {1, 2}). The table below shows the

Bes encodings of the equivalence between M1 and M2 modulo five widely-used
equivalence relations: strong bisimulation [Par81], branching bisimulation [vGW89],
observational equivalence [Mil89], τ ∗. a equivalence [FM91], and safety equiva-
lence [BFG+91]. These encodings are derived from the characterizations given
in [FM91]. Each relation is represented as a Bes with a single ν-block defining,
for each couple of states (p, q) ∈ Q1×Q2, a variable Xp,q which expresses that p and
q are equivalent (a ∈ A and b ∈ Aτ ). For each equivalence relation, the correspond-
ing preorder relation is obtained simply by dropping either the second conjunct (for
strong, τ ∗. a, and safety equivalence), or the third and fourth conjuncts (for branch-
ing and observational equivalence) in the right-hand sides of the equations defining
Xp,q (e.g., the strong preorder is defined by the Bes {Xp,q

ν
=

∧

p
b
→p′

∨

q
b
→q′

Xp′,q′}).

Other equivalences, such as delay bisimulation [NMV90] and η-bisimulation [BvG87],
can be encoded using a similar scheme. Note that for all weak equivalences, the com-
putation of the right-hand sides of equations requires to compute transitive closures
of τ -transitions in one or both Ltss.

Relation Encoding

Strong
{

Xp,q
ν
= (

∧

p
b
→p′

∨

q
b
→q′

Xp′,q′) ∧ (
∧

q
b
→q′

∨

p
b
→p′

Xp′,q′)
}

Branching







Xp,q
ν
=

∧

p
b
→p′

((b = τ ∧ Xp′,q) ∨
∨

q
τ∗

→q′
b
→q′′

(Xp,q′ ∧ Xp′,q′′)) ∧
∧

q
b
→q′

((b = τ ∧ Xp,q′) ∨
∨

p
τ∗

→p′
b
→p′′

(Xp′,q ∧ Xp′′,q′))







Observational







Xp,q
ν
= (

∧

p
τ
→p′

∨

q
τ∗

→q′
Xp′,q′) ∧ (

∧

p
a
→p′

∨

q
τ∗aτ∗

−→ q′
Xp′,q′) ∧

(
∧

q
τ
→q′

∨

p
τ∗

→p′
Xp′,q′) ∧ (

∧

q
a
→q′

∨

p
τ∗aτ∗

−→ p′
Xp′,q′)







τ∗. a
{

Xp,q
ν
= (

∧

p
τ∗a
−→p′

∨

q
τ∗a
−→q′

Xp′,q′) ∧ (
∧

q
τ∗a
−→q′

∨

p
τ∗a
−→p′

Xp′,q′)
}

Safety







Xp,q
ν
= Yp,q ∧ Yq,p

Yp,q
ν
= (

∧

p
τ∗a
−→p′

∨

q
τ∗a
−→q′

Yp′,q′)







In order to apply the resolution algorithms given in Section 3, the Bess shown
in the table above must be transformed by introducing extra variables such that
the right-hand sides of equations become disjunctive or conjunctive formulas. For
example, the Bes for strong bisimulation is transformed as follows:



















Xp,q
ν
=

∧

p
b
→p′

Yb,p′,q ∧
∧

q
b
→q′

Zb,p,q′

Yb,p′,q
ν
=

∨

q
b
→q′

Xp′,q′

Zb,p,q′
ν
=

∨

p
b
→p′

Xp′,q′


















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12 R. Mateescu

This kind of Bess can be solved by using the general algorithms A1 and A2 (note
that the encodings given above allow to construct both Ltss on-the-fly during Bes
resolution). However, when one or both Ltss M1 and M2 have a particular structure,
the Bess can be simplified in order to make applicable the specialized algorithms
A3 or A4.

Acyclic case. When M1 or M2 is acyclic, the Bess associated to strong bisimula-
tion (and its preorder) become acyclic as well. This is easy to see for strong bisimula-
tion: since the two-step sequences Xp,q → Yb,p′,q → Xp′,q′ and Xp,q → Zb,p,q′ → Xp′,q′

of the boolean graph correspond to transitions p
b
→ p′ and q

b
→ q′, a cycle

Xp,q → · · ·Xp,q in the boolean graph would correspond to cycles p
b
→ · · ·p and

q
b
→ · · · q in both M1 and M2. For τ ∗. a and safety equivalence (and their preorders),

acyclic Bess are obtained when M1 or M2 contain no cycles going through visible
transitions (but may contain τ -cycles): since two-step sequences in the boolean
graph correspond to sequences of τ -transitions ended by a-transitions performed
synchronously by the two Ltss, a cycle in the boolean graph would correspond to
cycles containing an a-transition in both M1 and M2. For branching and observa-
tional equivalence (and their preorders), both Ltss M1 and M2 must be acyclic in
order to get acyclic Bess, because τ -loops like p

τ
→ p present in M1 induce loops

Xp,q → Xp,q in the boolean graph even if M2 is acyclic.
If the above conditions are met, then the memory-efficient algorithm A3 can be

used to perform equivalence/preorder checking. One practical application concerns
the correctness of large execution traces produced by an implementation of a system
w.r.t. the formal specification of the system [Mat02]. Assuming the system spec-
ification given as an Lts M1 and the set of traces given as an Lts M2 (obtained
by merging the initial states of all traces), the verification consists in checking the
inclusion M1 � M2 modulo the strong or safety preorder.

Conjunctive case. When M1 or M2 is deterministic, the Bess associated to the
five equivalence relations considered and to their corresponding preorders can be
reduced to conjunctive form. We illustrate this for strong bisimulation, the Bess of
the other equivalences being simplified in a similar manner. If M1 is deterministic,

for every state p ∈ Q1 and action b ∈ Aτ , there is at most one transition p
b
→ p′b. Let

q
b
→ q′ be a transition in M2. If there is no corresponding transition p

b
→ p′b in M1,

the right-hand side of the equation defining Xp,q trivially reduces to false (states p
and q are not strongly bisimilar). Otherwise, the right-hand side of the equation
becomes (

∨

q
b
→q′

Xp′
b
,q′) ∧ (

∧

q
b
→q′

Xp′
b
,q′), which reduces to

∧

q
b
→q′

Xp′
b
,q′ since the first

conjunct is absorbed by the second one. The same simplification applies when M2

is deterministic, leading in both cases to a conjunctive Bes.
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A Generic On-the-Fly Solver for Alternation-Free BESs 13

For weak equivalences, further simplifications of the Bess can be obtained when
one Lts is both deterministic and τ -free (i.e., without τ -transitions). For exam-
ple, if M1 is deterministic and τ -free, the Bes for observational equivalence be-
comes {Xp,q

ν
=

∧

q
τ
→q′

Xp,q′ ∧
∧

q
a
→q′

Xp′a,q′}. These simplifications have been identified

in [FM91]; we believe they can be obtained in a more direct way by using Bes
encodings.

When one of the above conditions is met, then the memory-efficient algorithm A4
can be used to perform equivalence/preorder checking. As pointed out in [FM91],
when comparing the Lts M1 of a protocol with the Lts M2 of its service (external
behaviour), it is often the case that M2 is deterministic and/or τ -free.

4.2 Encoding Temporal Logics

Alternation-free Bess allow to encode the alternation-free µ-calculus [CS91b, And94,
Mad97]. The formulas of this logic, defined over an alphabet of propositional vari-
ables X ∈ X , have the following syntax (given directly in positive form):

ϕ ::= F | T | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | 〈a〉ϕ | [a] ϕ | X | µX.ϕ | νX.ϕ

The semantics of a formula ϕ on an Lts M = (Q, A, T, q0) denotes the set of
states satisfying ϕ: boolean operators have the standard interpretation; possibility
(〈a〉ϕ) and necessity ([a] ϕ) operators denote the states from which some (resp. all)
transitions labeled by a lead to states satisfying ϕ; minimal (µX.ϕ) and maximal
(νX.ϕ) fixed point operators denote the least (resp. greatest) solution of the equa-
tion X = ϕ interpreted over 2Q. Fixed point operators act as binders for variables
X in the same way as quantifiers in first-order logic. The alternation-free condition
means that mutual recursion between minimal and maximal fixed point variables is
forbidden.

Given an Lts M , the standard translation of an alternation-free formula ϕ into a
Bes [CS91b, And94, Mad97] proceeds as follows. First, extra propositional variables
are introduced at appropriate places of ϕ to ensure that in every subformula σX.ϕ′

(where σ ∈ {µ, ν}) of ϕ, ϕ′ contains a single boolean or modal operator (this is
needed in order to obtain only disjunctive or conjunctive formulas in the right-hand
sides of the resulting Bes). Then, the Bes is constructed in a bottom-up manner, by
creating an equation block for each closed fixed point subformula σX.ϕ′ of ϕ. The
alternation-free condition ensures that once the fixed point subformulas of σX.ϕ′

have been translated into equation blocks, all remaining variables in σX.ϕ′ are of
sign σ. Each closed fixed point subformula σX.ϕ′ is translated into an equation
block {Xp

σ
= (ϕ′)p}p∈Q, where variables Xp express that state p satisfies X and the

right-hand side boolean formulas (ϕ′)p are obtained using the translation shown in
the table below.
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14 R. Mateescu

ϕ (ϕ)p ϕ (ϕ)p

F F T T

ϕ1 ∨ ϕ2 (ϕ1)p ∨ (ϕ2)p ϕ1 ∧ ϕ2 (ϕ1)p ∧ (ϕ2)p
〈a〉ϕ1

∨

p
a
→q

(ϕ1)q [a]ϕ1
∧

p
a
→q

(ϕ1)q

X Xp σX.ϕ1 Xp

This kind of Bes can be solved by the general algorithms A1 and A2 given in
Section 3 (note that the translation procedure above allows to construct the Lts
on-the-fly during Bes resolution). However, when the Lts M and/or the formula ϕ
have a particular structure, the Bes can be simplified in order to make applicable
the specialized algorithms A3 or A4.

Acyclic case. When M is acyclic and ϕ is guarded (i.e., every recursive call of
a propositional variable in ϕ falls in the scope of a modal operator), the formula
can be simplified in order to have only minimal fixed point operators, leading to
an acyclic, single-block Bes [Mat02]. This procedure can be also applied when ϕ
has higher alternation depth and/or is unguarded, in the latter case ϕ being first
translated to guarded form (with a worst-case quadratic blow-up in size).

If the above conditions are met, then the memory-efficient algorithm A3 can
be used to perform µ-calculus model checking. One practical application consists in
verifying µ-calculus formulas on sets of large execution traces (represented as acyclic
Ltss M by merging their initial states) produced by intensive random execution of
a system implementation [Mat02].

Disjunctive/conjunctive case. When ϕ is a formula of Ctl [CES86], Actl
(Action-based Ctl) [NV90] or Pdl [FL79], the Bes resulting after translation is in
disjunctive or conjunctive form. The table below shows the translations of Ctl and
Pdl operators into alternation-free µ-calculus [EL86] (here the ‘−’ symbol stands
for ‘any action’ of the Lts). For conciseness, we omitted the translations of Pdl
box modalities [β]ϕ, which can be obtained by duality. Actl can be translated in a
way similar to Ctl, provided action predicates (constructed from action names and
boolean operators) are used inside diamond and box modalities instead of simple
action names [FGR92].

The translation of Ctl formulas into Bess can be performed bottom-up, by
creating a ∨-block (resp. a ∧-block) for each subformula dominated by an operator
E[ U ] (resp. A[ U ]). For instance, the formula E[ϕ1Uϕ2] is translated, via the
µ-calculus formula µX.ϕ2 ∨ (ϕ1 ∧ 〈−〉X), first into the formula µX.ϕ2 ∨ µY.(ϕ1 ∧
µZ. 〈−〉X) by adding extra variables Y and Z, and then into the equation block
{Xp

µ
= (ϕ2)p ∨ Yp, Yp

µ
= (ϕ1)p ∧ Zp, Zp

µ
=

∨

p→q Xq}p∈Q. This block is disjunctive,
because its only ∧-variables are Yp and their left successors (ϕ1)p correspond to
Ctl subformulas encoded by some other block of the Bes. The formula A[ϕ1Uϕ2]
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A Generic On-the-Fly Solver for Alternation-Free BESs 15

is translated, in a similar manner, into the equation block {Xp
µ
= (ϕ2)p ∨ Yp, Yp

µ
=

(ϕ1)p ∧ Zp ∧
∧

p→q Xq, Zp
µ
=

∨

p→q T}p∈Q. This block is conjunctive, because its ∨-
variables Xp have their left successors (ϕ2)p defined in some other block of the Bes,
and its ∨-variables Zp have all their successors constant.

Operator Translation

EXϕ 〈−〉ϕ

Ctl AXϕ 〈−〉T ∧ [−]ϕ
E[ϕ1Uϕ2] µX.ϕ2 ∨ (ϕ1 ∧ 〈−〉X)
A[ϕ1Uϕ2] µX.ϕ2 ∨ (ϕ1 ∧ 〈−〉T ∧ [−]X)

〈α〉ϕ 〈α〉ϕ

〈ϕ1?〉ϕ2 ϕ1 ∧ ϕ2

Pdl 〈β1;β2〉ϕ 〈β1〉 〈β2〉ϕ

〈β1 ∪ β2〉ϕ 〈β1〉ϕ ∨ 〈β2〉ϕ

〈β∗〉ϕ µX.ϕ ∨ 〈β〉X

Actl formulas can also be translated into disjunctive or conjunctive equation
blocks, modulo their translations in µ-calculus [FGR92]. In the same way, the
translation of Pdl formulas into Bess creates a ∨-block (resp. a ∧-block) for each
subformula 〈β〉ϕ (resp. [β]ϕ): normal boolean operators can be factorized such
that at most one of their successors belongs to the current block, and the conjunc-
tions (resp. disjunctions) produced by translating the test-modalities 〈ϕ1?〉ϕ2 (resp.
[ϕ1?] ϕ2) have their left operands defined in other blocks of the Bes, resulting from
the translation of the ϕ1 subformulas.

Thus, the memory-efficient algorithm A4 can be used for model checking Ctl,
Actl, and Pdl formulas. This covers most of the practical needs, since many
interesting properties can be expressed using the operators of these logics.

5 Implementation and Experiments

We implemented the Bes resolution algorithms A1–A4 described in Section 3 in
a generic software library, called Cæsar Solve, which is built upon the primi-
tives of the Open/Cæsar environment for on-the-fly exploration of Ltss [Gar98].
Cæsar Solve is used by the Bisimulator equivalence/preorder checker and the
Evaluator model checker. We briefly describe the architecture of these tools and
give some experimental results concerning the A1–A4 algorithms.

5.1 Architecture of the Solver Library

The Cæsar Solve library (see Figure 3) provides an Application Programming
Interface (Api) allowing to solve on-the-fly a variable of a Bes. It takes as input
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16 R. Mateescu

the boolean graph associated to the Bes together with the variable of interest, and
produces as output the value of the variable, possibly accompanied by a diagnostic
(portion of the boolean graph). Depending on its particular form, each block of the
Bes can be solved using one of the algorithms A1–A4, which were developed using
the Open/Cæsar primitives (hash tables, stacks, etc.).
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Open/Cæsar
(⊇ Cæsar Solve)

libraries runtime environment

yes / no
C compiler

diagnostic

executable

libraries

Figure 3: The Cæsar Solve library and the tools Bisimulator and Evaluator

Both the input boolean graph and the diagnostic are represented implicitly by
their successor functions, which allow to iterate over the outgoing edges (dependen-
cies) of a given vertex (variable) and hence to perform on-the-fly traversals of the
boolean graphs. This scheme is similar to the implicit representation of Ltss defined
by the Open/Cæsar environment [Gar98]. To use the library, a user must provide
the successor function of the Bes (obtained by encoding some specific problem) and,
if necessary, must interpret the resulting diagnostic by traversing the corresponding
boolean subgraph using its successor function.

Two on-the-fly verification tools (see Figure 3) are currently using the
Cæsar Solve library: Bisimulator, an equivalence/preorder checker between
two Ltss modulo the five relations mentioned in Section 4.1, and Evaluator, a
model checker for regular alternation-free µ-calculus [MS03] over Ltss. Each tool
translates its corresponding verification problem into a Bes resolution, identifying
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the particular cases suitable for algorithms A3–A4, and translates back the diagnos-
tics produced by the library in terms of its input Lts(s).

5.2 Performance Measures

We performed several experiments to compare the performances of the resolution
algorithms A1–A4. The applications selected were (several variants of) three com-
munication protocols1: an alternating bit protocol (Abp), a bounded retransmission
protocol (Brp), and a distributed leader election protocol (Dle).

A2 versus A1 Diagnostic depth

App. Size Bisimulator Evaluator
States Trans. A1 A2 % A1 A2 %

Abp 935000 3001594 235 19 91.9 50 12 76.0

Brp 355091 471119 1455 31 97.8 744 18 97.5

Dle 143309 220176 2565 25 99.0 147 14 90.4

A3 versus A1 Memory consumption

App. Size Bisimulator Evaluator
States Trans. A1 A3 % A1 A3 %

Abp 935000 3001594 37472 32152 14.1 10592 8224 22.3

Brp 355091 471119 17656 13664 22.6 10240 7432 27.4

Dle 28710 73501 15480 11504 25.6 8480 6248 26.3

A4 versus A1 Memory consumption

App. Size Bisimulator Evaluator
States Trans. A1 A4 % A1 A4 %

Abp 935000 3001594 178744 152672 14.5 163800 60248 63.2

Brp 355091 471119 35592 23608 33.6 26752 17432 34.8

Dle 18281 44368 107592 94584 12.0 3904 3224 17.4

The results are shown in the table above. The 1st series of experiments compares
A1 with A2 as regards diagnostic depth; the 2nd and 3rd series compare A1 with
A3, resp. A1 with A4 as regards memory consumption (measured in Kbytes). For
each experiment, the table gives the measures obtained using A1 and A2–A4, and
the corresponding difference ratios. Comparisons and inclusions between Ltss are
performed using Bisimulator, and evaluations of temporal logic properties on
Ltss are performed using Evaluator. All temporal properties are expressed using
combinations of Actl and Pdl operators, which lead to disjunctive/conjunctive
Bess, therefore enabling the use of algorithm A4.

1All these examples can be found in the Cadp distribution, available at the Url
http://www.inrialpes.fr/vasy/cadp.
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18 R. Mateescu

The 1st experiments compare each protocol Lts modulo strong bisimulation
with an erroneous Lts, and verify an invalid property on the protocol Lts. The
2nd experiments check that an execution sequence of 100000 transitions is included
in each protocol Lts, and check a valid property on the sequence (both problems
yield acyclic boolean graphs, hence enabling the use of algorithm A3). The 3rd ex-
periments compare each protocol Lts modulo τ ∗. a equivalence with its service Lts,
which is deterministic (hence enabling the use of algorithm A4), and verify a valid
property on the protocol Lts. We observe important reductions of diagnostic depth
(up to 99%) whenever algorithm A2 can be used instead of A1, and reductions of
memory consumption (up to 63%) whenever algorithms A3–A4 can be used instead
of A1.

6 Conclusion and Future Work

We presented a generic library, called Cæsar Solve, for on-the-fly resolution
with diagnostic of alternation-free Bess. The library was developed using the
Open/Cæsar environment [Gar98] of the Cadp toolbox [FGK+96]. It implements
an application-independent representation of Bess, precisely defined by an Api.
The library currently offers four resolution algorithms A1–A4, A2 being optimized
to produce small-depth diagnostics and A3, A4 being memory-efficient for acyclic
and disjunctive/conjunctive Bess. Cæsar Solve is used at the heart of the equiv-
alence/preorder checker Bisimulator and the model checker Evaluator [MS03].
The experiments carried out using these tools assess the performance of the resolu-
tion algorithms and the usefulness of the diagnostic features.

We plan to continue our work along three directions. Firstly, in order to increase
its flexibility, the Cæsar Solve library can be enriched with other Bes resolution
algorithms, such as Lmc [DSC99] or the Gauss elimination-based algorithm pro-
posed in [Mad97]. Due to the well-defined Api of the library and the availability of
the Open/Cæsar primitives, the prototyping of new algorithms is quite straight-
forward; from this point of view, Cæsar Solve can be seen as an open platform
for developing and experimenting Bes resolution algorithms. Another interesting
way of research is the development of parallel versions of the algorithms A1–A4, in
order to exploit the computing resources of massively parallel machines such as Pc
clusters. Finally, other applications of the library can be envisaged, such as on-the-
fly generation of test cases (obtained as diagnostics) from the Lts of a specification
and the Lts of a test purpose, following the approach put forward in [FJJ+96].
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Unité de recherche INRIA Sophia Antipolis : 2004, route desLucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)
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