
IS
S

N
 0

24
9-

63
99

IS
R

N
 IN

R
IA

/R
R

--
29

65
--

F
R

+
E

N
G

ap por t

de r ech er ch e

THÈME 1

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Formal Description and Analysis
of a Bounded Retransmission Protocol

Radu Mateescu

N° 2965

August 1996

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe, 38330 Montbonnot-St-Martin (France)

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Formal Description and Analysis

of a Bounded Retransmission Protocol

Radu Mateescu
∗

Thème 1 — Réseaux et systèmes

Projet Spectre

Rapport de recherche n
�

2965 — August 1996 — 28 pages

Abstract: This paper reports about the formal specification and verification of a Bounded Re-
transmission Protocol (Brp) used by Philips in one of its products.

We started with the descriptions of the Brp service (i.e., external behaviour) and protocol written
in the µCrl language by Groote and van de Pol. After translating them in the Lotos language, we
performed verifications by model-checking using the Cadp (Cæsar/Aldébaran) toolbox.

The models of the Lotos descriptions were generated using the Cæsar compiler (by putting bounds
on the data domains) and checked to be branching equivalent using the Aldébaran tool.

Alternately, we formulated in the Actl temporal logic a set of safety and liveness properties for the
Brp protocol and checked them on the corresponding model using our Xtl generic model-checker.

Key-words: Formal methods, Formal description techniques, Communication protocols, Protocol
engineering, Lotos, Verification, Validation, Model-checking, Labelled Transition Systems, Bisimu-
lation, Temporal logic.

This report is also available as “Formal Description and Analysis of a Bounded Retransmission Protocol”, in
Z. Brezočnik and T. Kapus, editors, Proceedings of COST 247 International Workshop on Applied Formal Methods in
System Design (Maribor, Slovenia), University of Maribor, Slovenia, June 1996.

∗ E-mail: Radu.Mateescu@imag.fr

Description formelle et analyse

d’un protocole à retransmission bornée

Résumé : Ce rapport présente la spécification formelle et la vérification du protocole Brp (Bounded
Retransmission Protocol) utilisé par Philips dans l’un de ses produits.

Nous nous sommes basés sur les descriptions du service (comportement externe) et du protocole
Brp écrites en µCrl par Groote et van de Pol. Après les avoir traduites en Lotos, nous avons
effectué des vérifications basées sur les modèles (model-checking) à l’aide de la bôıte à outils Cadp

(Cæsar/Aldébaran).

Nous avons engendré les modèles correspondant à ces descriptions Lotos à l’aide du compilateur
Cæsar (en imposant des bornes aux domaines des données manipulées) et nous avons vérifié, à l’aide
de l’outil Aldébaran, que ces modèles sont équivalents modulo la bisimulation de branchement.

Par ailleurs, nous avons aussi formulé en logique temporelle Actl un ensemble de propriétés de sûreté
et de vivacité du protocole Brp et nous les avons vérifiées sur le modèle correspondant à l’aide de
notre évaluateur générique Xtl.

Mots-clés : Méthodes formelles, Techniques de description formelle, Protocoles de communica-
tion, Ingénierie des protocoles, Lotos, Vérification, Validation, Systèmes de transitions étiquetées,
Bisimulation, Logique temporelle.

Formal Description and Analysis of a Bounded Retransmission Protocol 3

1 Introduction

The necessity of formal verification in the designing of distributed systems and communication pro-
tocols is now widely recognized. Over the last years, a wide range of formalisms and methodologies
dealing with the description of concurrent applications and the specification of their expected prop-
erties have been defined.

There are essentially two approaches to formal verification, namely theorem-proving and model-
checking. Both have been extensively studied, and various algorithms and tools have been developed.
Theorem-proving allows to deal with infinite-state systems, but it cannot be fully automated. On the
other hand, model-checking techniques, although restricted to finite-state systems, provide a simple
and efficient approach, especially useful in the early steps of the design process, where the errors are
likely to occur more frequently.

This paper deals with the formal description and verification by model-checking of the Bounded
Retransmission Protocol (Brp) used by Philips in one of its products.

This protocol has already been studied using different approaches. Groote and van de Pol [GvdP93]
used the µCrl specification language [GP90] to describe the respective behaviours of the Brp service
(i.e., external behaviour) and protocol, proved that they are branching equivalent, and then computer-
checked the proof using the Coq system [DFH+93]. Helmink, Sellink and Vaandrager [HSV94] mod-
eled the Brp protocol and service in the framework of I/O automata theory [LT89], proved its correct-
ness and (partially) computer-checked the proof using the Coq system. Havelund and Shankar [HS96]
abstracted a finite-state version of the Brp protocol using the Pvs theorem prover [ORS92] and then
verified its correctness by model-checking with the MurΦ state exploration tool [MDI92].

In our approach we selected the Iso language Lotos [ISO88b] to describe the Brp protocol and
service. We started from the µCrl descriptions written by Groote and van de Pol, which we translated
into Lotos. Since both µCrl and Lotos languages are based on abstract data types and process
algebras, this translation was quite straightforward.

Regarding verification of the correctness, we used model-checking rather than theorem-proving. The
verification was performed using the Cadp (Cæsar/Aldébaran) toolbox [FGK+96] by means of
two different methods: bisimulations and temporal logics.

The paper is organized as follows. Section 2 presents briefly the Lotos language. Section 3 describes
the Cadp protocol engineering toolbox. Section 4 gives the Lotos descriptions of the Brp service
and protocol. Section 5 presents the generation of the models corresponding to the two Lotos

descriptions. Sections 6 and 7 describe the various verifications performed by means of bisimulations
and temporal logics. Finally, Section 8 gives some concluding remarks and Annex A contains the
Lotos description of the data structures used in the protocol.

2 The Iso language Lotos

Many formalisms have been proposed for describing parallel systems, among which the standard-
ized Formal Description Technique Lotos1 has received a considerable attention from the research
community.

1Language Of Temporal Ordering Specification

RR n
�

2965

4 R. Mateescu

Lotos is a formal language intended for the specification of communication protocols and distributed
systems. It was developed during the years 1981–88 in the framework of the Sedos2 project and
standardized by Iso3 in 1988 [ISO88b]. Several tutorials for Lotos are available, e.g. [BB88, Tur93].

The design of Lotos was motivated by the need for a language with a high abstraction level and a
strong mathematical basis, which could be used for the description and analysis of complex systems.
As a design choice, Lotos consists of two “orthogonal” sub-languages:

The data part of Lotos is dedicated to the description of data structures. It is based on the
well-known theory of algebraic abstract data types [Gut77], more specifically on the ActOne

specification language [EM85, dMRV92].

In this approach, data structures are described by sorts, which represent value domains, and
operations, which are mathematical functions defined on these domains. The meaning of opera-
tions is defined by algebraic equations. Sorts, operations, and equations are grouped in modules
called types, which can be combined together using importation, renaming, parametrization,
and actualization. The underlying semantics is based on initial algebras [EM85].

The control part of Lotos is based on the process algebra approach for concurrency, and appears
to combine the best features of Ccs [Mil89] and Csp [Hoa85]. As a process algebra, Lotos

relies on a small set of basic operators, which represent primitive concepts of concurrent systems
(sequential composition, non-deterministic choice, guard, parallel composition, rendez-vous,
etc.). These operators are used to build algebraic terms in a compositional way, since complex
behaviours can be obtained by combining elementary ones.

As for most process algebras, the semantics of Lotos is formally defined in terms of labeled
transition systems (Ltss for short) [Par81, Mil89, ISO88b], i.e., directed graphs whose vertices
denote the global states of the system and whose arcs correspond to the evolutions (transitions)
of the system.

Lotos has been applied to describe complex systems formally, for example: the service and protocols
for the Osi transport and session layers [ISO89b, ISO89a, ISO92c, ISO92d], the Ccr4 service and
protocol [ISO95b, ISO95a], Osi Tp5 [ISO92b, Annex H], Maa6 [ISO92a, Mun91], Ftam7 basic file
protocol [ISO88a, LL95], etc. It has been mostly used to describe software systems, although there
are several attempts to use it for asynchronous hardware description [CGM+96].

A number of tools have been developed for Lotos, which cover most user needs in the areas of
simulation, compilation, test generation and formal verification. For this case-study, we used the
Cadp toolbox [FGK+96], which provides state-of-the-art verification features.

Since 1993, a revision of the Lotos standard has been undertaken within Iso. This on-going activity
should give birth to a new version of Lotos, named E-Lotos (for Extended LOTOS), which is ex-
pected to introduce simpler features (especially for data types) and increased expressiveness (notably
by adding quantitative time to the language). However, this new language being not available at the
time of this case-study, we based our work on the existing standard Lotos.

2Software Environment for the Design of Open Distributed Systems, ESPRIT project 410
3International Organization for Standardization
4Commitment, Concurrency, and Recovery
5Distributed Transaction Processing
6Message Authentication Algorithm
7File Transfer, Access and Management

INRIA

Formal Description and Analysis of a Bounded Retransmission Protocol 5

3 The Cadp verification toolbox

The Cadp8 toolbox is dedicated to the design and verification of communication protocols and
distributed systems. Initiated in 1986, several motivations have contributed to its development since
this date:

� This toolbox aims to offer an integrated set of functionalities ranging from interactive simulation
to exhaustive, model-based verification methods. In particular, both logical and behavioural
specifications can be verified.

� One of the major objectives of the toolbox is to deal with large case studies. Therefore, in
addition to enumerative verification methods, it also includes more sophisticated approaches,
such as symbolic verification, on-the-fly verification, and compositional model generation.

� Finally, this toolbox can be viewed as an open software platform: in addition to Lotos, it also
supports lower-level formalisms such as finite state machines and networks of communicating
automata.

In the sequel we only present the tools used throughout this case-study:

�
Cæsar [GS90] and Cæsar.adt [Gar89, GT93] are compilers that translate a Lotos program
into an Lts describing its exhaustive behaviour. This Lts can be represented either explicitly ,
as a set of states and transitions, or implicitly , as a library of C functions allowing to execute
the program behaviour in a controlled way.

�
Aldébaran [Fer90, FKM93] is a verification tool able to compare or to minimize Ltss with
respect to (bi)simulation relations [Par81, Mil89]. Initially designed to deal with explicit Ltss
produced by Cæsar, it has been extended to also handle networks of communicating automata
(for on-the-fly and symbolic verification).

Several simulation and bisimulation relations are implemented within Aldébaran, which offers
a wide spectrum for expressing such behavioural specifications.

�
Xtl (eXecutable Temporal Language) [Mat94] is a functional-like programming language de-
signed to allow an easy, compact implementation of various temporal logic operators that are
evaluated over an Lts generated from a source program.

Beside the usual predefined types (booleans, integers, characters, strings, etc.), the Xtl lan-
guage allows to access all types and functions defined in the source program and provides special
types, such as states, transitions, sets of states, sets of transitions, and labels of the Lts. It
offers primitives to access the informations contained in states and labels: this allows to express
“basic predicates” (i.e., containing no temporal operators) defined over the states and labels of
the Lts. There also exist predefined functions to access the initial state and the successors and
predecessors of states and transitions, thus allowing the exploring of the transition relation.

The temporal operators of various temporal logics can be implemented as recursively defined
user Xtl functions operating on sets of states and transitions. A prototype compiler for Xtl

has been developed, and several temporal logics like Hml [HM85], Ctl [CES86], Ltac [QS83]
or Actl [NV90] have already been implemented in Xtl.

8Cæsar/Aldébaran Development Package

RR n
�

2965

6 R. Mateescu

4 Lotos description of the Brp

The Brp protocol is designed to transmit (large) data packets over an unreliable medium by splitting
them in (small) chunks, which are sent sequentially. After each chunk transmission, the sender
entity of the protocol waits for an acknowledgement from the receiver entity before sending the next
chunk. In case a transmission failure occurs and the acknowledgement fails to come, the sender
times out and retransmits the chunk. Only a limited number of retransmissions is allowed (bounded
retransmission); if this limit is reached, the protocol aborts the transmission of the data packet,
appropriately informing the sending client and the receiving client.

This kind of protocol is known as “positive acknowledgement with retransmission” protocol [MV93]
since, unlike the Alternating Bit Protocol, the acknowledgements sent by the receiver carry no infor-
mation.

4.1 The Brp service

We present below a Lotos description of the Brp service, i.e., the external behaviour that the
protocol should have while interacting with a sending client and a receiving client.

The Brp service is modeled by the Lotos process SERVICE below. It communicates with the sending
and receiving clients via the gates INPUT and OUTPUT, respectively.

The data packets produced by the sending client, modeled as lists of data chunks (see Annex A for
a description of the type Packet), are read at the INPUT gate. After accepting a packet, a decision
is made either to reject the packet if it is empty9 and to go back to the initial state (modeled by a
recursive call of the SERVICE process) or to accept it and begin its transmission (modeled by a call
to the SERVICE 1 process).

process SERVICE [INPUT, OUTPUT] : noexit :=

INPUT ?P:Packet;

(

[len (P) == 0] -> (* empty packets rejected *)

SERVICE [INPUT, OUTPUT]

[]

[len (P) > 0] ->

SERVICE_1 [INPUT, OUTPUT] (P, len (P))

)

endproc

The SERVICE 1 process has two value parameters: P, which represents the portion of the initial packet
that remains to be transmitted, and L, which stands for the length (i.e., number of chunks) of the
initial packet.

In case of a faultless transmission, each chunk is delivered to the receiving client at the OUTPUT gate,
accompanied by an I FST, I INC or I OK indication. I FST is used for the first (but not the last)
chunk of a packet, I INC stands for an intermediate (but not last) chunk, and I OK accompanies the
last chunk of the packet. If the whole packet has been successfully transmitted, an I OK confirmation
is issued at the INPUT gate and the protocol is ready to read a new data packet. The indications
are modeled as values of an enumerated type INDICATION (see Annex A). Two auxiliary functions
ind and conf are used to calculate the indication for the receiving client and the confirmation to the

9We follow here the description given by Helmink and al. where the empty data packets are not accepted by the
protocol. In Groote and van de Pol’s description, a special value head (empty) is sent in this case to the receiver.

INRIA

Formal Description and Analysis of a Bounded Retransmission Protocol 7

sending client. The head and tail operators are used to select the first chunk resp. the remainder of
a packet, and the len operator computes the number of chunks in a packet.

In case of transmission failure, the sending client is informed via an I NOK (“not OK”) confirmation
at the INPUT gate. If the failure occurs in the middle of a packet (i.e., after delivery of the first chunk
but before the last chunk is delivered), the receiving client is informed also by an I NOK indication
delivered without data at the OUTPUT gate.

However, if the last acknowledgement is lost, an I DK (“don’t know”) confirmation is issued at the
INPUT gate, because in this case there is no way the sending client can know whether the last chunk
has been delivered or not. After an I DK confirmation, the protocol is ready to accept a new data
packet.

The i action represents the silent action (noted τ in Ccs) and is used here to prevent the sending
client from forcing a successful result of a transmission. For example, the choice between the rendez-
vous “INPUT !I OK” and “INPUT !I DK” below cannot be influenced by the sending client, since the
protocol can always perform non-deterministically one of the silent actions i.

process SERVICE_1 [INPUT, OUTPUT] (P:Packet, L:Nat) : noexit :=

i;

OUTPUT !head (P) !ind (len (P) == L, len (P) == 1);

(

[len (P) == 1] -> (* last chunk delivered *)

(

i;

INPUT !I_OK;

SERVICE [INPUT, OUTPUT]

[]

i;

INPUT !I_DK;

SERVICE [INPUT, OUTPUT]

)

[]

[len (P) > 1] -> (* more chunks to deliver *)

(

i;

SERVICE_1 [INPUT, OUTPUT] (tail (P), L)

[]

i;

INPUT !I_NOK;

OUTPUT !I_NOK;

SERVICE [INPUT, OUTPUT]

)

)

[]

i;

(

[len (P) == L] -> (* failure at the first chunk *)

INPUT !conf (P);

SERVICE [INPUT, OUTPUT]

[]

[len (P) < L] -> (* failure at an intermediate chunk *)

RR n
�

2965

8 R. Mateescu

INPUT !conf (P);

OUTPUT !I_NOK;

SERVICE [INPUT, OUTPUT]

)

endproc

4.2 The Brp protocol

4.2.1 The protocol architecture

Like most communication protocols, the Brp protocol can be described by means of a sender and
a receiver entities exchanging messages via two channels. However, the actual architecture of the
protocol is slightly more complicated due to the need for timers. The architecture of the protocol
modeled in Lotos is shown on Figure 1.

S R

K

L

T1

T2

T1

T2

INPUT OUTPUT

LOST

SYNC

SEND K REC K

REC L SEND L

Figure 1: The architecture of the Brp protocol

The sender S communicates with the sending client via the INPUT gate, through which it receives the
data packets and sends the confirmations back. The chunks are sent to the channel K at the SEND K

gate and the acknowledgements are received from the channel L at the REC L gate. The sender is
equipped with a timer T1 that it can start and reset by sending signals at the T1 gate. The timer
can send a timeout signal via the same gate.

The receiver R receives the data chunks from the channel K via the REC K gate, delivers them at the
receiving client via the OUTPUT gate and sends the acknowledgements to channel L at the SEND L gate.
It is also equipped with a timer T2, which can be started and reset by signals at the T2 gate and can
issue a timeout signal at the same gate.

Since time cannot be explicitly manipulated in Lotos, we use extra synchronization links (represented
by dashed lines on Figure 1) to ensure that causality constraints are not violated. For example,
we must make sure that timer T1, which is started when a chunk is sent, times out only if the

INRIA

Formal Description and Analysis of a Bounded Retransmission Protocol 9

corresponding acknowledgement fails to come (which can be caused by a loss of the chunk in the
channel K or a loss of the acknowledgement in the channel L). As pointed out in [MV93], if we allow
acknowledgements to come after T1 times out, the protocol may exhibit wrong behaviours leading
to the “silent” loss of data chunks. For example, suppose that a chunk c1 sent by S is correctly
received by R and acknowledged, but T1 times out before the acknowledgement arrives. The chunk
c1 is then resent by S and it is again correctly received and acknowledged by R, which interprets it
as a repetition. Now, the first acknowledgement arrives, S associates it to the second transmission
of c1 and sends the following chunk c2. Suppose now that c2 is lost in the channel K and the second
acknowledgement arrives normally (i.e., before T1 times out); S interprets it as a correct transmission
of the chunk c2 and sends a new chunk. To solve this problem, we adopt the approach followed by
Groote and van de Pol [GvdP93], and we model this causality constraint by allowing the channels K
and L to synchronize with the timer T1 via an auxiliary gate LOST. Once started, T1 is enabled to
time out only after a signal is sent by one of the channels at the LOST gate, meaning the loss of the
data chunk or of the corresponding acknowledgement. This approach is also used by Helmink and al.
in their Brp modeling [HSV94].

Another synchronization link, which will be explained later, is added between the sender and the T2

timer via the SYNC gate, in order to properly restart the sender and the receiver when the protocol
gives up the transmission of a packet.

These auxiliary synchronization links LOST and SYNC allow a correct modeling of the Brp protocol
assuming that the values are properly set for the two timers. Under these conditions, we know
from [HSV94] that the Brp protocol can be modeled as a time-independent system. If these conditions
do not hold, then the behaviour of the Brp protocol becomes time-dependent and one should use a
timed formalism to model and analyze the Brp in presence of explicit time delays.

The architecture of the Brp protocol is described in Lotos by the behaviour expression below. The
entities on Figure 1 are modeled by Lotos processes which execute concurrently. We are interested
only in the INPUT and OUTPUT actions of the protocol and, therefore, we hide all the other gates using
the “hide” operator. We use the parallel asynchronous operator “|||” to compose the processes
which do not synchronize directly (the sender and the receiver, the two communication channels, and
the two timers) and the “|[...]|” operator to connect the synchronizing groups of processes via the
appropriate gates. The sender and the receiver synchronize with the two communication channels on
the SEND K, REC K, SEND L, and REC L gates. The two timers synchronize with the sender, the receiver
and the channels on the T1, T2, LOST, and SYNC gates.

hide T1, T2, SEND_K, REC_L, REC_K, SEND_L, LOST, SYNC in

(

(

(

S [INPUT, SEND_K, REC_L, T1, SYNC] (false)

|||

R [OUTPUT, REC_K, SEND_L, T2]

)

|[SEND_K, REC_K, SEND_L, REC_L]|

(

K [SEND_K, REC_K, LOST]

|||

L [SEND_L, REC_L, LOST]

)

)

|[T1, LOST, T2, SYNC]|

RR n
�

2965

10 R. Mateescu

(

T1 [T1, LOST]

|||

T2 [T2, SYNC]

)

)

In the next sections, we detail each of these six processes.

4.2.2 The sender

The sender is described by the process S below. It reads a data packet from the sender client at the
INPUT gate and, if the packet is not empty, calls the S 1 process, which handles the transmission of
the packet. The ALT parameter represents the current value of the so-called alternating bit used by
the protocol to detect duplication of the data chunks.

process S [INPUT, SEND_K, REC_L, T1, SYNC] (ALT:Bool) : noexit :=

INPUT ?P:Packet;

(

[len (P) == 0] -> (* empty packets rejected *)

S [INPUT, SEND_K, REC_L, T1, SYNC] (ALT)

[]

[len (P) > 0] ->

S_1 [INPUT, SEND_K, REC_L, T1, SYNC] (ALT, P, len (P), 0)

)

endproc

Process S 1 scans the data packet P and sends the data chunks, one by one, on the channel K via the
SEND K gate. Each chunk is accompanied by three bits (modeled here as boolean values): the first
two bits indicate whether the chunk is the first and/or the last of the packet, and the third bit is the
alternating bit. The value parameter L stands for the initial length of the packet. RN denotes the
current number of retransmission attempts. The timer T1 is started before sending each chunk. Two
situations are possible.

In the first case, an acknowledgement arrives on the REC L gate before T1 has expired. The sender
resets the timer T1 and continues to transmit the packet. This is modeled by a recursive call to process
S 1 with the packet P truncated to its remaining part tail (P), the retransmission counter reset10

to 0, and the alternating bit switched. If the chunk was the last one of the packet, a confirmation
I OK is issued to the sending client and the sender returns to its initial state by a call to process S.

In the second case, timer T1 times out, meaning a transmission failure on one of the channels. To
avoid wrong behaviours of the protocol (such as those mentioned in Section 4.2.1), we must ensure
that an acknowledgement cannot arrive at the sender after the timer T1 has expired. Practically,
this can be achieved by setting the timeout value for T1 to the round-trip transmission time t (i.e.,
the time required for the transmission of a chunk and of its acknowledgement). If the RN counter is
inferior to the maximum number max of retransmission attempts, the current chunk is retransmitted
by a call to process S 1 with the retransmission counter incremented. If the max limit is reached,
the sender aborts the transmission of the current packet by sending an I NOK or I DK confirmation
to the sending client; before accepting another packet, the sender must ensure that the receiver has

10We follow here again the Helmink and al. description. In the Groote and van de Pol’s one, the retransmission
counter is not reset after the successful transmission of a chunk.

INRIA

Formal Description and Analysis of a Bounded Retransmission Protocol 11

also detected this situation in order to properly restart the whole protocol. Practically, this can be
guaranteed by setting the timeout value for the T2 timer to a value greater than max ∗ t, where t is
the round-trip transmission time. Since real-time aspects cannot be directly modeled in Lotos, we
use instead an auxiliary synchronization on the SYNC gate to ensure that timer T2 does not time out
until the sender has given up the transmission of the packet. Thus, the sender issues a “sender ready”
signal (modeled as a value S READY of an enumerated type) on the SYNC gate, enabling the T2 timer
to time out, waits for a “receiver ready” (R READY) reply on the same gate, and then returns to its
initial state by calling the S process.

Notice that in all the calls to process S, the ALT bit is switched and thus the alternating bit scheme
is continued for the subsequent packets.

process S_1 [INPUT, SEND_K, REC_L, T1, SYNC]

(ALT:Bool, P:Packet, L, RN:Nat) : noexit :=

T1 !START;

SEND_K !(len(P) == L) !(len(P) == 1) !ALT !head(P);

(

REC_L;

T1 !RESET;

(

[len (P) == 1] ->

INPUT !I_OK;

S [INPUT, SEND_K, REC_L, T1, SYNC] (not (ALT))

[]

[len (P) > 1] ->

S_1 [INPUT, SEND_K, REC_L, T1, SYNC] (not (ALT), tail (P), L, 0)

)

[]

T1 !TIMEOUT;

(

[RN < max] ->

S_1 [INPUT, SEND_K, REC_L, T1, SYNC] (ALT, P, L, RN + 1)

[]

[RN == max] ->

INPUT !conf (P);

SYNC !S_READY;

SYNC !R_READY;

S [INPUT, SEND_K, REC_L, T1, SYNC] (not (ALT))

)

)

endproc

The timer associated to the sender is modeled by the process T1 below. It is started by a START

signal on the T1 gate. Then, if it receives a RESET signal at the same gate, it returns to its initial
state (using a recursive call of process T1); if it receives a loss indication from one of the channels at
the LOST gate, it issues a TIMEOUT signal at the T1 gate and returns to its initial state.

process T1 [T1, LOST] : noexit :=

T1 !START;

(

T1 !RESET;

RR n
�

2965

12 R. Mateescu

T1 [T1, LOST]

[]

LOST; (* loss indication *)

T1 !TIMEOUT;

T1 [T1, LOST]

)

endproc

4.2.3 The communication channels

The unreliable communication channel K is modeled as a lossy one-slot buffer that repeatedly reads
a data chunk (accompanied by the three control bits) at the SEND K gate, eventually transmits it at
the REC K gate and returns to its initial state. After reading a data chunk, the channel K may lose
it (i.e., do not transmit it at the REC K gate) and indicate this loss by sending a signal at the LOST

gate. The choice between transmitting or losing a chunk is preceded by silent actions “i” to ensure
that the environment cannot influence the decision.

process K [SEND_K, REC_K, LOST] : noexit :=

SEND_K ?FST, LST, ALT:Bool ?D:Data;

(

i;

REC_K !FST !LST !ALT !D; (* correct transmission *)

K [SEND_K, REC_K, LOST]

[]

i;

LOST; (* loss indication *)

K [SEND_K, REC_K, LOST]

)

endproc

The channel L exhibits a similar behaviour, except that it receives acknowledgements at the SEND L

gate (instead of SEND K) and transmits them at the REC L gate (instead of REC K).

process L [SEND_L, REC_L, LOST] : noexit :=

SEND_L;

(

i;

REC_L; (* correct transmission *)

L [SEND_L, REC_L, LOST]

[]

i;

LOST; (* loss indication *)

L [SEND_L, REC_L, LOST]

)

endproc

INRIA

Formal Description and Analysis of a Bounded Retransmission Protocol 13

4.2.4 The receiver

The receiver is modeled by the process R below. It waits for an incoming data chunk (the first one of a
new packet) at the REC K gate, delivers it to the receiving client at the OUTPUT gate (together with an
I FST or I OK indication), sends an acknowledgement to the channel L and calls the process R 1, which
handles the reception of the current packet. The timer T2 is started each time an acknowledgement
is sent at the SEND L gate.

process R [OUTPUT, REC_K, SEND_L, T2] : noexit :=

REC_K ?FST, LST, ALT:Bool ?D:Data [FST];

OUTPUT !D !ind (FST, LST);

T2 !START;

SEND_L;

R_1 [OUTPUT, REC_K, SEND_L, T2] (LST, not (ALT))

endproc

The END parameter of process R 1 indicates whether the last chunk delivered was the last one of the
current packet or not. The ALT parameter is the alternating bit expected by the receiver for the next
data chunk.

After sending an acknowledgement, several situations can occur.

In the first case, a new data chunk (i.e., a chunk with an alternating bit equal to ALT) is received at
the REC K gate before T2 has expired. Then, timer T2 is reset, the chunk is delivered to the receiving
client with the appropriate indication (notice that it may be the first chunk of a new packet), an
acknowledgement is sent to the channel L, timer T2 is started again and the reception is continued
by a recursive call of the process R 1.

In the second case, a duplicated chunk is received at the REC K gate before T2 has timed out. Then,
the chunk is simply discarded and acknowledged (without resetting the timer T2), and the reception
is continued.

In the third case, a timeout signal is received from the T2 timer, meaning the loss of contact with the
sender. If the current packet has not been completely delivered, an I NOK indication is issued to the
receiving client. An R READY signal is sent to T2 in response to the timeout, and the receiver returns
to its initial state by calling the process R.

process R_1 [OUTPUT, REC_K, SEND_L, T2] (END, ALT:Bool) : noexit :=

REC_K ?FST, LST:Bool !ALT ?D:Data; (* new chunk *)

T2 !RESET;

OUTPUT !D !ind (FST, LST);

T2 !START;

SEND_L;

R_1 [OUTPUT, REC_K, SEND_L, T2] (LST, not (ALT))

[]

REC_K ?FST, LST:Bool !not (ALT) ?D:Data; (* duplicated chunk *)

SEND_L;

R_1 [OUTPUT, REC_K, SEND_L, T2] (LST, ALT)

[]

T2 !TIMEOUT;

(

[not (END)] -> (* more chunks to follow *)

OUTPUT !I_NOK;

RR n
�

2965

14 R. Mateescu

T2 !R_READY;

R [OUTPUT, REC_K, SEND_L, T2]

[]

[END] -> (* last chunk already delivered *)

T2 !R_READY;

R [OUTPUT, REC_K, SEND_L, T2]

)

endproc

The timer T2 has a more complicated behaviour than T1. If it is started, it can be reset (normal
functioning of the protocol) or it can receive an S READY signal on the SYNC gate, meaning that the
sender has given up the transmission and “enables” T2 to time out. After a TIMEOUT signal, in order
to ensure synchronization of the sender and the receiver for a new transmission, T2 waits for an
R READY signal on the T2 gate and retransmits it to the sender via the SYNC gate. If we do not model
this synchronization, the protocol may exhibit wrong behaviours leading again to the silent loss of
data chunks. For example, suppose that a chunk c0 with an alternating bit 0 is successfully received
and acknowledged by R (which also starts T2), but the next chunk c1 (with an alternating bit 1) is
systematically lost by the channel K such that S aborts the transmission of the packet. The sender
can then read another data packet and transmit its first chunk, say c′0, with an alternating bit 0
(since the alternating bit scheme is continued between subsequent data packets). Now, if the timer
T2 does not time out before c′0 arrives at R, the receiver will interpret the chunk as a repetition (since
the last chunk received was c0), will reject it and send an acknowledgement to S, which will take it as
a correct transmission of c′0. Then, the protocol can continue its normal behaviour without detecting
the loss of the chunks c1 and c′0.

The modeling of the causal constraints using synchronizations on the SYNC gate makes possible that
an S READY signal arrives at the SYNC gate even if T2 is not started (for example, this happens
when the first chunk of a packet is systematically lost by the channel K and the sender gives up the
transmission). To react properly to such event, timer T2 must respond immediately with an R READY

signal at the SYNC gate, informing the sender that it can safely begin the transmission of a new data
packet.

process T2 [T2, SYNC] : noexit :=

T2 !START;

(

T2 !RESET;

T2 [T2, SYNC]

[]

SYNC !S_READY;

T2 !TIMEOUT;

T2 !R_READY;

SYNC !R_READY;

T2 [T2, SYNC]

)

[]

SYNC !S_READY;

SYNC !R_READY;

T2 [T2, SYNC]

endproc

INRIA

Formal Description and Analysis of a Bounded Retransmission Protocol 15

5 Model generation

In order to perform verifications by model-checking, we first generated the Ltss corresponding to the
Lotos descriptions of the Brp protocol and service using the Cæsar and Cæsar.adt compilers.

Before presenting the experimental results concerning the generation of the two models, we give the
formal definition of an Lts corresponding to a Lotos program.

5.1 The Lts of a Lotos program

According to the operational semantics of Lotos [ISO88b], each Lotos description can be translated
into a (possibly infinite) Lts, which encodes all its possible execution sequences. An Lts is formally
defined as a 4-uple M =

〈

Q, A, T, qinit
〉

where:

� Q is the set of states of the program;

� A is a set of actions performed by the program. An action a ∈ A is a tuple G V1, ..., Vn where
G is a gate and V1, ..., Vn (n ≥ 0) are the values exchanged (i.e., sent or received) during the
rendez-vous at G. For the silent action τ , the value list must be empty (n = 0);

� T ⊆ Q×A×Q is the transition relation. A transition 〈q1, a, q2〉 ∈ T (written also “q1

a
−→ q2”)

means that the program can move from state q1 to state q2 by performing action a;

� qinit ∈ Q is the initial state of the program.

For each state q ∈ Q, we note Path(q) the set of all paths q(= q0)
a0−→ q1

a1−→ q2... issued from q.

5.2 Generation of the Brp protocol and service Ltss

The Lotos descriptions of the Brp protocol and service contain three parameters with infinite data
domains: the length of the data packets (type Packet), the nature of the data chunks (type Data)
and the maximum number max of retransmission attempts (type Nat). To generate finite Ltss in
order to perform verifications by model-checking, we must restrict these domains to finite sets.

We achieve this in the following way. First, to obtain data packets of finite length, we connect the
protocol and service descriptions to a particular environment (modeled as a particular sending client),
which produces data packets having a maximum fixed length. Second, since communication channels
are modeled as one-place buffers and preserve message ordering, we may identify a data chunk by
its position in the packet and do not care about its contents11. Third, for each experiment, we fix a
value for the maximum number of retransmissions.

We made two series of experiments, all of them performed on a Sparc 10 machine with 64 Mbytes of
memory.

In the first series of experiments, we added to both Lotos descriptions an auxiliary process modeling
a sending client, which repeatedly sends a data packet of length 20 at the INPUT gate, waits for a
confirmation from the sender entity of the protocol, and returns to its initial state:

process SENDING_CLIENT [INPUT] : noexit :=

INPUT !cons_packet (20); (* send the packet *)

11In Groote and van de Pol’s µCrl description, the data chunks have a constant value d0.

RR n
�

2965

16 R. Mateescu

INPUT ?I0:Ind; (* receive the acknowledgement *)

SENDING_CLIENT [INPUT]

endproc

The auxiliary function cons packet (N) (see Annex A) constructs a data packet of N chunks respec-
tively numbered from 1 to N: data (1), data (2), ..., data (N).

Then, using the Cæsar and Cæsar.adt compilers, we generated the Ltss corresponding to the two
Lotos descriptions for a maximum number of retransmissions ranging between 0 and 10.

The Lts of the Brp service has 180 states and 240 transitions and was generated in about 5 seconds.
Its size is independent from the number of retransmissions, since this “implementation detail” is not
relevant to the definition of the service.

The results concerning the Lts of the Brp protocol are shown in Table 1. For each experiment,
the table gives the size (in number of states and transitions) of the Lts and the time (in minutes)
required for its generation. We remark a linear variation of the number of states and transitions, and
a quasi-linear variation of the generation time in function of the maximum number of retransmissions.

retrans. protocol time
number states trans.

0 3,927 4,309 0′27′′

1 13,765 15,757 1′37′′

2 19,329 22,563 3′20′′

3 24,893 29,369 5′49′′

4 30,457 36,175 8′49′′

5 36,021 42,981 12′38′′

6 41,585 49,787 16′58′′

7 47,149 56,593 21′18′′

8 52,713 63,399 26′20′′

9 58,277 70,205 31′19′′

10 63,841 77,011 36′14′′

Table 1: Generation of the protocol Lts for data packets of length 20

In the second series of experiments, we considered a more general sending client, which repeatedly
produces data packets of random length between 1 and 10:

process SENDING_CLIENT [INPUT] : noexit :=

choice N:Nat []

[(1 <= N) and (N <= 10)] ->

INPUT !cons_packet (N); (* send the packet *)

INPUT ?I0:Ind; (* receive the acknowledgement *)

SENDING_CLIENT [INPUT]

endproc

The “choice” operator followed by the boolean guard arbitrarily chooses the value N between 1 and
10.

INRIA

Formal Description and Analysis of a Bounded Retransmission Protocol 17

retrans. protocol time
number states trans.

0 140,511 197,478 1 : 32′48′′

1 417,379 565,050 4 : 23′52′′

2 543,725 724,460 5 : 38′06′′

3 670,071 883,870 6 : 52′20′′

Table 2: Generation of the protocol Lts for data packets with random lengths between 1 and 10

The Lts of the Brp service generated in this case has 981 states and 2145 transitions, and was
generated in about 10 seconds.

Table 2 shows the results concerning the generation of the protocol Lts (times being measured in
hours) for a maximum number of retransmissions ranging from 0 to 3.

6 Verification using bisimulations

After generating the Ltss corresponding to the Brp protocol and service, we performed verification
by means of bisimulations using the Aldébaran tool.

For each experiment presented in Section 5.2, we checked that the Lts of the protocol is equivalent
to the Lts of the service modulo branching bisimulation [vGW89].

In order to reduce the verification time, we first minimized both Ltss modulo strong equiva-
lence [Par81] before comparing them modulo branching equivalence. All verifications have been
performed on a Sparc 10 machine with 64 Mbytes of memory.

Table 3 presents the verification results for the first series of experiments described in Section 5.2.
For each experiment, the table gives the reduction and the comparison times (in minutes) obtained
using Aldébaran. The protocol is branching equivalent to its service even if we do not allow any

retrans. bisimulation times
number reduction comparison total

0 0′02′′ 0′01′′ 0′03′′

1 0′04′′ 0′03′′ 0′07′′

2 0′08′′ 0′06′′ 0′14′′

3 0′10′′ 0′09′′ 0′19′′

4 0′14′′ 0′11′′ 0′25′′

5 0′17′′ 0′15′′ 0′32′′

6 0′20′′ 0′17′′ 0′37′′

7 0′24′′ 0′19′′ 0′43′′

8 0′26′′ 0′22′′ 0′48′′

9 0′29′′ 0′24′′ 0′53′′

10 0′32′′ 0′30′′ 1′02′′

Table 3: Verification using bisimulations for data packets of length 20

retransmission attempt. We remark that the reduction time is slightly superior to the comparison
time, and both have a quasi-linear variation with the number of retransmissions.

RR n
�

2965

18 R. Mateescu

Table 4 shows the same verification results for the second series of experiments described in Section 5.2.
We remark again a quasi-linear variation of the reduction and comparison times with the number of
retransmissions.

retrans. bisimulation times
number reduction comparison total

0 1′19′′ 0′08′′ 1′27′′

1 3′45′′ 0′53′′ 4′38′′

2 4′09′′ 1′33′′ 5′42′′

3 5′44′′ 2′28′′ 8′12′′

Table 4: Verification using bisimulations for data packets with random lengths between 1 and 10

For both series of experiments, the total time required for verification by means of bisimulations is
significantly smaller than the time required for Lts generation.

7 Verification using temporal logics

As an alternative to verification using bisimulations, we also performed verification using temporal
logics.

As Lotos dynamic semantics is action-based, it is natural to choose a temporal logic interpreted over
the actions of the Lts model. In this case-study we used a simplified fragment of the Actl (Action
Ctl) temporal logic defined in [NV90], which is sufficiently powerful to express safety and liveness
properties.

The following sections present a short description of the syntax and semantics of the Actl fragment
we used, and the verification results of the Brp safety and liveness properties expressed in Actl.

7.1 The Actl temporal logic

In order to express predicates over the program actions (the so-called basic predicates), a small
auxiliary logic of actions is needed. The action formulas α of this logic have the following syntax:

α ::= true

| {G V1, ..., Vn}
| ¬α

| α ∧ α′

The construction {G V1, ..., Vn} denotes an action pattern, where G is a gate name and the values
Vi (1 ≤ i ≤ n, n ≥ 0) match the corresponding values exchanged (i.e., sent or received) when the
action is performed. For simplicity purposes, and unlike the original Actl logic, we also allow action
patterns (of the form {τ}) matching τ -actions.

Of course, the usual derived boolean operators are also allowed: we write false for ¬ true, α ∨ α′

for ¬(¬α ∧ ¬α′), and α =⇒ α′ for ¬α ∨ α′.

The action formulas α are interpreted over the actions a ∈ A of the model M =
〈

Q, A, T, qinit
〉

corresponding to a Lotos program. The satisfaction of an action formula α by an action a ∈ A,
written a |=M α (or simply a |= α if the model M is understood), is defined inductively by:

INRIA

Formal Description and Analysis of a Bounded Retransmission Protocol 19

a |= true always;
a |= {G V1, ..., Vn} iff a = G V1, ..., Vn;
a |= ¬α iff a 6|= α;
a |= α ∧ α′ iff a |= α and a |= α′.

The formulas ϕ of the Actl fragment we used are defined by the following syntax:

ϕ ::= true

| ¬ϕ

| ϕ ∧ ϕ′

| EXαϕ

| AXαϕ

| E [ϕαUϕ′]
| A [ϕαUϕ′]

The satisfaction of an Actl formula ϕ by a state q ∈ Q of an Lts M =
〈

Q, A, T, qinit
〉

, written
q |=M ϕ (or simply q |= ϕ if the model M is understood), is defined inductively by:

q |= true always;
q |= ¬ϕ iff q 6|= ϕ;
q |= ϕ ∧ ϕ′ iff q |= ϕ and q |= ϕ′;

q |= EXαϕ iff ∃q
a

−→ q′ ∈ T such that a |= α and q′ |= ϕ;

q |= AXαϕ iff ∀q
a

−→ q′ ∈ T , a |= α and q′ |= ϕ;

q |= E [ϕαUϕ′] iff ∃q(= q0)
a0−→ q1

a1−→ ... ∈ Path(q),
∃k > 0 such that qk |= ϕ′ and ∀i ∈ [0; k − 1], qi |= ϕ and ai |= α;

q |= A [ϕαUϕ′] iff ∀q(= q0)
a0−→ q1

a1−→ ... ∈ Path(q),
∃k > 0 such that qk |= ϕ′ and ∀i ∈ [0; k − 1], qi |= ϕ and ai |= α.

A model M =
〈

Q, A, T, qinit
〉

satisfies a formula ϕ, noted M |= ϕ (or simply ϕ if the model M is
understood), if and only if q |= ϕ for all q ∈ Q.

The usual derived modalities are defined as follows:

〈α〉ϕ = EXαϕ

[α] ϕ = ¬ 〈α〉 ¬ϕ

EFαϕ = E [trueαUϕ]
AFαϕ = A [trueαUϕ]
EGαϕ = ¬AFα¬ϕ

AGαϕ = ¬EFα¬ϕ

The 〈α〉ϕ and [α] ϕ operators are the well-known Hennessy-Milner modalities [HM85]. A state q

satisfies 〈α〉ϕ (resp. [α] ϕ) if some (resp. all) of its direct successors reached after an action satisfying
α satisfies (resp. satisfy) ϕ. A state q satisfies EFαϕ (resp. AFαϕ) iff some path (resp. all paths)
issued from q leads (resp. lead) via actions satisfying α to a state satisfying ϕ. A state q satisfies
EGαϕ (resp. AGαϕ) iff for some path (resp. all paths) issued from q, every prefix consisting of
actions that satisfy α leads to a state satisfying ϕ.

To verify the Brp protocol, we defined in Actl a set of 21 safety and liveness properties, which, we
expect, characterize the essential functioning properties of the protocol (although it is notoriously
difficult to find a minimal set of temporal logic formulas that completely characterize the behaviour
of a parallel program).

We decided to limit the size of the data packets to 3 chunks, because this allows to take in account
all the interesting cases of the Brp protocol behaviour: all the types of indications and confirmations
(I FST, I INC, I OK, I NOK, I DK) issued by the protocol to the sending and receiving clients are
present.

RR n
�

2965

20 R. Mateescu

To express formulas about data packets of arbitrary lengths, one should use a more powerful formalism
than the Actl temporal logic, for example the modal µ-calculus [Koz83].

7.2 Safety properties

Informally, a safety property of a concurrent program specifies that “something bad never happens.”

All the safety properties we exhibited for the Brp protocol have a common form. Therefore, we define
a “not α to α1, α2, ..., αn unless α′” shorthand notation, meaning that after an action satisfying α it
is not possible to reach and execute a sequence of actions satisfying α1, α2, ..., αn without performing
an action which satisfies α′. This can be expressed in Actl as follows:

not α to α1, α2, ..., αn unless α′ =
[α]¬EF¬α′ 〈α1〉EFtrue 〈α2〉 ...EFtrue 〈αn〉 true

For conciseness, we will use the “not ... to ... unless” notation throughout this Section.

Also, for clarity, we will use suggestive names for the action patterns in the α basic predicates instead
of the precise syntax defined in Section 7.1. For example, instead of the action pattern “{ INPUT

cons (data (1), nil) }”, which characterizes the action of reading a one-chunk packet at the
INPUT gate, we will simply write “IN d1.”

First, we examine the behaviour from the sending client point of view. A sending client has the
following cyclical behaviour: it sends a data packet to the sender entity of the protocol (action
IN d1 dn), waits for an I OK, I NOK or I DK confirmation (action IN CONF), and returns to its initial
state. This alternation between the IN d1 dn and IN CONF actions can be expressed by the two Actl

formulas below:

not IN d1 dn to IN d1 dn unless IN CONF

not IN CONF to IN CONF unless IN d1 dn

In a similar way, the receiving client must observe an alternation between the chunks marking the
packet beginnings (actions OUT d1 FST) and the chunks (actions OUT dn OK) or indications (actions
OUT NOK) delimiting packet endings. The data packets of length one must be treated as a particular
case, since the reception of the single chunk (action OUT d1 OK) marks both the beginning and the
ending of the packet. The proper orderings of actions at the receiving client are specified by the
following Actl formulas:

not OUT d1 FST to OUT d1 FST unless OUT dn OK ∨ OUT NOK

not OUT dn OK ∨ OUT NOK to OUT dn OK ∨ OUT NOK unless OUT d1 FST

not OUT d1 FST to OUT d1 OK unless OUT dn OK ∨ OUT NOK

We examine now the properties concerning the sequencing of the actions at both sending client and
receiving client sides.

After accepting a data packet, the protocol cannot issue an I OK confirmation (action IN OK) to
the sending client unless the same indication (action OUT dn OK) has been delivered to the receiving
client:

not IN d1 dn to IN OK unless IN d1 dn ∨ OUT dn OK

Here (and also for the subsequent formulas in this section) we added the IN d1 dn action predicate
to the “unless” clause to ensure that the property deals with the same data packet (no other packet
has been accepted meanwhile from the sending client).

INRIA

Formal Description and Analysis of a Bounded Retransmission Protocol 21

After accepting a data packet, the protocol cannot issue an I NOK indication to the receiving client
(action OUT NOK) before issuing an I NOK or I DK confirmation (action IN NOK, resp. IN DK) to the
sending client:

not IN d1 dn to OUT NOK unless IN d1 dn ∨ IN NOK ∨ IN DK

After a one-chunk data packet has been accepted from the sending client (action IN d1), the receiving
client cannot get an I NOK indication:

not IN d1 to OUT NOK unless IN d1 dn

After accepting a data packet of length 2 (action IN d1 d2), the receiving client cannot get the second
chunk successfully (action OUT d2 OK) before receiving the first chunk (action OUT d1 FST):

not IN d1 d2 to OUT d2 OK unless IN d1 dn ∨ OUT d1 FST

After accepting a data packet of length 3 (action IN d1 d2 d3), the receiving client cannot successfully
get the third chunk (action OUT d3 OK) before receiving the second chunk (action OUT d2 INC):

not IN d1 d2 d3 to OUT d3 OK unless IN d1 dn ∨ OUT d2 INC

Finally, after accepting a data packet of length 3, the protocol cannot deliver the second and third
chunk to the receiving client before delivering the first one:

not IN d1 d2 d3 to OUT d2 INC, OUT d3 OK unless IN d1 dn ∨ OUT d1 FST

7.3 Liveness properties

Informally, a liveness property of a concurrent program specifies that “something good eventually
happens.”

The liveness properties that we exhibited for the Brp protocol deal, on one hand, with the reachability
of certain actions, and on the other hand, with the system responses to certain actions.

An important reachability property is that from every state of the system, it is inevitable to reach
and execute the action of reading a data packet from the sending client (action IN d1 dn):

AGtrue AFtrue AXIN d1 dn true

This is a powerful liveness property, which implies both deadlock freedom and reachability of IN d1 dn

actions independently from the (fair or unfair) scheduling of actions.

Besides this property, we can examine the responses of the system after reading a data packet.

We start by looking at the sender side. The sending client always gets an I OK, I NOK or I DK

confirmation (action IN CONF) after sending a data packet:

[IN d1 dn]AF
¬IN d1 dn AXIN CONF true

Here, we added the ¬IN d1 dn clause to the AF operator to ensure that the formula deals with the
same data packet (no other packet has been read until the IN CONF action).

We consider now the messages issued at both the sender and receiver sides in response to the actions
performed by the sending and receiving clients. Each property given below has two parts.

The first part states the fact that, after an action sequence has occurred, some response is eventually
reached and executed. We can express this using an “after α1, α2, ..., αn inev α” shorthand notation,

RR n
�

2965

22 R. Mateescu

meaning that after a sequence of actions satisfying α1, α2, ..., αn (possibly separated by τ -actions), it
is inevitable to execute (maybe via some τ -actions) an action satisfying α. This can be translated in
Actl as follows:

after α1, α2, ..., αn inev α =
[α1]AGτ [α2] ...AGτ [αn]AFτ AXα true

The second part states that the action sequence causing the desired response exist in the model.
This can be expressed using an “after α pot α1, α2, ..., αn” shorthand notation, meaning that after
an action satisfying α, it is possible to execute (maybe via some τ -actions) a sequence of actions
(possibly separated by τ -actions) that satisfy α1, α2, ..., αn. The Actl translation is the following:

after α pot α1, α2, ..., αn =
[α]EFτ 〈α1〉EFτ 〈α2〉 ...EFτ 〈αn〉 true

For conciseness, we will use these two notations in the sequel.

After a data packet of length 3 has been accepted (action IN d1 d2 d3) and an I NOK confirmation
(action IN NOK) has been issued to the sending client (meaning a loss of the first chunk), the protocol
eventually reads a new packet without issuing any indication to the receiving client:

after IN d1 d2 d3, IN NOK inev IN d1 dn

after IN d1 d2 d3 pot IN NOK

After a data packet of length 3 has been read, the first chunk has been successfully delivered to the
receiving client (action OUT d1 FST), and an I NOK confirmation has been received at the sending
client (meaning the loss of the second chunk), the protocol eventually issues an I NOK indication to
the receiving client:

after IN d1 d2 d3, OUT d1 FST, IN NOK inev OUT NOK

after IN d1 d2 d3 pot OUT d1 FST, IN NOK

After a data packet of length 3 has been read, the first two chunks have been delivered to the
receiving client (actions OUT d1 FST and OUT d2 INC), and an I DK confirmation has been received at
the sending client (meaning the loss of the third chunk), the protocol eventually informs the receiving
client via an I NOK indication:

after IN d1 d2 d3, OUT d1 FST, OUT d2 INC, IN DK inev OUT NOK

after IN d1 d2 d3 pot OUT d1 FST, OUT d2 INC, IN DK

Finally, after a data packet of length 3 has been accepted and all the chunks have been successfully
delivered to the receiving client, the sending client eventually gets either an I DK confirmation (mean-
ing the loss of the last acknowledgement) or an I OK confirmation (meaning a successful transmission
of the packet):

after IN d1 d2 d3, OUT d1 FST, OUT d2 INC, OUT d3 OK inev IN DK ∨ IN OK

after IN d1 d2 d3 pot OUT d1 FST, OUT d2 INC, OUT d3 OK

7.4 Verification

The 21 safety and liveness properties given in Sections 7.2 and 7.3 have been verified on the Lts

corresponding to the Brp protocol using the Xtl [Mat94] prototype model-checker.

INRIA

Formal Description and Analysis of a Bounded Retransmission Protocol 23

It is worth noticing that, since the Xtl language allows the definition of macro-notations (for both
basic predicates and temporal operators), the Actl formulas given in Sections 7.2 and 7.3 are almost
identical to those written in the Xtl source code.

The Lts of the Brp protocol was generated using Cæsar (for data packets of random lengths between
1 and 3 and a maximum number of 5 retransmissions) and then minimized with Aldébaran modulo
strong equivalence. We checked the properties on the reduced Lts, which had 457 states and 559
transitions.

The verifications were performed on a Sparc 10 machine with 64 Mbytes of memory. The average
time needed to evaluate each temporal logic formula was less than one minute.

8 Conclusion

Verification techniques allow an early detection of errors in the software life-cycle and significantly
contribute to the improvement of program quality.

In this paper, we presented the formal description of the Brp protocol in Lotos and its verification
by model-checking using the Cadp (Cæsar/Aldébaran) protocol engineering toolbox.

The Lotos descriptions of the Brp protocol and service (i.e., external behaviour) were derived from
the corresponding ones written in µCrl by Groote and van de Pol [GvdP93]. The Lotos descriptions
we obtained are quite compact (4 pages and a half of Lotos instead of 11 pages of MurΦ description
language in [HS96]). Although the µCrl descriptions are more compact (1 page), they seem harder
to read.

To perform model-checking verifications, we generated the Labelled Transition Systems (Ltss) of
the protocol and service descriptions using the Cæsar and Cæsar.adt compilers, by limiting the
domains of the protocol parameters. We were able to generate the Ltss for data packets of length
10 and a number of 10 retransmissions in a few minutes on a Sparc 10 machine with 64 Mbytes of
memory.

We performed verification by means of two complementary methods: bisimulations (using the
Aldébaran tool) and temporal logics (using the Xtl prototype model-checker).

In the first approach, we checked that the Ltss corresponding to the Brp protocol and service are
branching equivalent. In the second approach, we expressed a set of safety and liveness properties
in the Actl temporal logic and verified them on the Lts of the Brp protocol. In both cases, the
average time for each verification was of the order of a few minutes.

It is interesting to compare our results with those obtained using other approaches. The Brp protocol
has been already studied in the framework of theorem-proving [GvdP93, HSV94]. These approaches
followed the same steps: first, a hand-written correctness proof is constructed, and then it is computer-
checked using a theorem prover (like Coq or Pvs). An intermediate approach [HS96] consists in
combining the advantages of model-checking and theorem-proving, by using a theorem-prover to
extract a finite-state abstraction of the system that preserves correctness and then verify it by model-
checking.

It is significant to mention that hand-written, computer-checked correctness proofs of the Brp proto-
col require a large amount of manpower (five man-months in [HSV94] and one man-month in [HS96]),
whereas the case-study described in this paper was performed in a few days (less than a week). It is
clear that model-checking techniques, although limited to finite-state systems, are simple, efficient,
and automated. The future goes certainly through a combination of different methods, in which the
model-checking techniques have a significant role to play.

RR n
�

2965

24 R. Mateescu

Acknowledgements

Thanks are due to Hubert Garavel, Mihaela Sighireanu, and Laurent Mounier for their suggestions
and careful reading of this paper.

A Description of the data structures

We give below the Lotos description of the data structures used. The types Boolean and
NaturalNumber are taken from the Lotos libraries given in the Iso standard [ISO88b]. The spe-
cial comments (*! constructor *) are used to explicitly indicate the constructor operators to the
Cæsar.adt compiler.

type DATA is NaturalNumber

sorts Data

opns data (*! constructor *) : Nat -> Data

endtype

type PACKET is Boolean, NaturalNumber, DATA

sorts Packet

opns nil (*! constructor *) : -> Packet

cons (*! constructor *) : Data, Packet -> Packet

head : Packet -> Data

tail : Packet -> Packet

len : Packet -> Nat

max : -> Nat

cons_packet : Nat -> Packet

cons_pack : Nat, Packet -> Packet

eqns forall P:Packet, D:Data, N:Nat

ofsort Data

head (cons (D, P)) = D;

ofsort Packet

tail (cons (D, P)) = P;

ofsort Nat

len (nil) = 0;

len (cons (D, P)) = len (P) + 1;

ofsort Nat

max = succ (9);

ofsort Packet

cons_packet (N) = cons_pack (N, nil);

ofsort Packet

cons_pack (0, P) = P;

cons_pack (succ (N), P) = cons_pack (N, cons (data (succ (N)), P));

endtype

type INDICATION is PACKET

sorts Ind

opns I_FST (*! constructor *), I_NOK (*! constructor *),

I_INC (*! constructor *), I_DK (*! constructor *),

I_OK (*! constructor *) : -> Ind

INRIA

Formal Description and Analysis of a Bounded Retransmission Protocol 25

conf : Packet -> Ind

ind : Bool, Bool -> Ind

eqns forall P:Packet, B:Bool

ofsort Ind

len (P) == 1 => conf (P) = I_DK;

conf (P) = I_NOK;

ofsort Ind

ind (true, false) = I_FST;

ind (false, false) = I_INC;

ind (B, true) = I_OK;

endtype

type SIGNAL is

sorts Sig

opns START (*! constructor *), S_READY (*! constructor *),

RESET (*! constructor *), R_READY (*! constructor *),

TIMEOUT (*! constructor *) : -> Sig

endtype

References

[BB88] Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO Specification Language
LOTOS. Computer Networks and ISDN Systems, 14(1):25–59, January 1988.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of Finite-State
Concurrent Systems using Temporal Logic Specifications. ACM Transactions on Pro-
gramming Languages and Systems, 8(2):244–263, April 1986.

[CGM+96] Ghassan Chehaibar, Hubert Garavel, Laurent Mounier, Nadia Tawbi, and Ferruccio Zu-
lian. Specification and Verification of the PowerScale Bus Arbitration Protocol: An
Industrial Experiment with LOTOS. In Reinhard Gotzhein and Jan Bredereke, edi-
tors, Proceedings of the Joint International Conference on Formal Description Techniques
for Distributed Systems and Communication Protocols, and Protocol Specification, Test-
ing, and Verification FORTE/PSTV’96 (Kaiserslautern, Germany), pages 435–450. IFIP,
Chapman & Hall, October 1996. Full version available as INRIA Research Report RR-
2958.

[DFH+93] G. Dowek, A. Felty, H. Herbelin, G. P. Huet, C. Murthy, C. Parent, C. Paulin-Mohring,
and B. Werner. The Coq proof assistant user’s guide. Version 5.8. Technical Report,
INRIA – Rocquencourt, Rocquencourt, May 1993.

[dMRV92] Jan de Meer, Rudolf Roth, and Son Vuong. Introduction to Algebraic Specifications
Based on the Language ACT ONE. Computer Networks and ISDN Systems, 23(5):363–
392, 1992.

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1 — Equations and Initial
Semantics, volume 6 of EATCS Monographs on Theoretical Computer Science. Springer
Verlag, 1985.

[Fer90] Jean-Claude Fernandez. An Implementation of an Efficient Algorithm for Bisimulation
Equivalence. Science of Computer Programming, 13(2–3):219–236, May 1990.

RR n
�

2965

26 R. Mateescu

[FGK+96] Jean-Claude Fernandez, Hubert Garavel, Alain Kerbrat, Radu Mateescu, Laurent
Mounier, and Mihaela Sighireanu. CADP (CÆSAR/ALDEBARAN Development Pack-
age): A Protocol Validation and Verification Toolbox. In Rajeev Alur and Thomas A.
Henzinger, editors, Proceedings of the 8th Conference on Computer-Aided Verification
(New Brunswick, New Jersey, USA), volume 1102 of Lecture Notes in Computer Science,
pages 437–440. Springer Verlag, August 1996.

[FKM93] Jean-Claude Fernandez, Alain Kerbrat, and Laurent Mounier. Symbolic Equivalence
Checking. In C. Courcoubetis, editor, Proceedings of the 5th Workshop on Computer-
Aided Verification (Heraklion, Greece), volume 697 of Lecture Notes in Computer Science.
Springer Verlag, June 1993.

[Gar89] Hubert Garavel. Compilation of LOTOS Abstract Data Types. In Son T. Vuong, edi-
tor, Proceedings of the 2nd International Conference on Formal Description Techniques
FORTE’89 (Vancouver B.C., Canada), pages 147–162. North-Holland, December 1989.

[GP90] J-F. Groote and A. Ponse. The syntax and semantics of µCRL. Technical Report CS-
R9076, CWI, Amsterdam, December 1990.

[GS90] Hubert Garavel and Joseph Sifakis. Compilation and Verification of LOTOS Specifica-
tions. In L. Logrippo, R. L. Probert, and H. Ural, editors, Proceedings of the 10th Interna-
tional Symposium on Protocol Specification, Testing and Verification (Ottawa, Canada),
pages 379–394. IFIP, North-Holland, June 1990.

[GT93] Hubert Garavel and Philippe Turlier. CÆSAR.ADT : un compilateur pour les types ab-
straits algébriques du langage LOTOS. In Rachida Dssouli and Gregor v. Bochmann, edi-
tors, Actes du Colloque Francophone pour l’Ingénierie des Protocoles CFIP’93 (Montréal,
Canada), 1993.

[Gut77] J. Guttag. Abstract Data Types and the Development of Data Structures. Communica-
tions of the ACM, 20(6):396–404, June 1977.

[GvdP93] J-F. Groote and J. C. van de Pol. A bounded retransmission protocol for large data
packets. Technical Report Logic Group Preprint Series 100, Utrecht University, October
1993.

[HM85] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency. Journal
of the ACM, 32:137–161, 1985.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[HS96] K. Havelund and N. Shankar. Experiments in Theorem Proving and Model Checking for
Protocol Verification. In Proceedings of FME ’96, 1996. To appear.

[HSV94] L. Helmink, M. P. A. Sellink, and F. W. Vaandrager. Proof-checking a data link protocol.
In H. P. Barendregt and T. Nipkow, editors, Proceedings of the 1st International Workshop
“Types for Proofs and Programs,” May 1993 (Nijmegen), volume 806 of Lecture Notes in
Computer Science, pages 127–165, Berlin, 1994. Springer Verlag.

[ISO88a] ISO/IEC. File Transfer, Access and Management. International Standards 8571-*, Inter-
national Organization for Standardization — Information Processing Systems — Open
Systems Interconnection, Genève, 1988.

INRIA

Formal Description and Analysis of a Bounded Retransmission Protocol 27

[ISO88b] ISO/IEC. LOTOS — A Formal Description Technique Based on the Temporal Ordering
of Observational Behaviour. International Standard 8807, International Organization for
Standardization — Information Processing Systems — Open Systems Interconnection,
Genève, September 1988.

[ISO89a] ISO/IEC. LOTOS Description of the Session Protocol. Technical Report 9572, Interna-
tional Organization for Standardization — Open Systems Interconnection, Genève, 1989.

[ISO89b] ISO/IEC. LOTOS Description of the Session Service. Technical Report 9571, Interna-
tional Organization for Standardization — Open Systems Interconnection, Genève, 1989.

[ISO92a] ISO/IEC. Approved Algorithms for Message Authentication — Part 2: Message Au-
thenticator Algorithm. International Standard 8731-2, International Organization for
Standardization — Banking, Genève, 1992.

[ISO92b] ISO/IEC. Distributed Transaction Processing — Part 3: Protocol Specification. Interna-
tional Standard 10026-3, International Organization for Standardization — Information
Technology — Open Systems Interconnection, Genève, 1992.

[ISO92c] ISO/IEC. Formal Description of ISO 8072 in LOTOS. Technical Report 10023, In-
ternational Organization for Standardization — Telecommunications and Information
Exchange between Systems, Genève, 1992.

[ISO92d] ISO/IEC. Formal Description of ISO 8073 (Classes 0, 1, 2, 3) in LOTOS. Technical
Report 10024, International Organization for Standardization — Telecommunications
and Information Exchange between Systems, Genève, 1992.

[ISO95a] ISO/IEC. LOTOS Description of the CCR Protocol. Technical Report 11590, Interna-
tional Organization for Standardization — Open Systems Interconnection, Genève, 1995.

[ISO95b] ISO/IEC. LOTOS Description of the CCR Service. Technical Report 11589, International
Organization for Standardization — Open Systems Interconnection, Genève, 1995.

[Koz83] D. Kozen. Results on the Propositional µ-calculus. Theoretical Computer Science, 27:333–
354, 1983.

[LL95] R. Lai and A. Lo. An Analysis of the ISO FTAM Basic File Protocol Specified in LOTOS.
Australian Computer Journal, 27(1):1–7, February 1995.

[LT89] N. A. Lynch and M. R. Tuttle. An introduction to input/output automata. In CWI
Quarterly, volume 2, pages 219–246. September 1989.

[Mat94] Radu Mateescu. Définition et compilation d’un méta-langage pour l’implémentation des
logiques temporelles. DEA, Institut National Polytechnique de Grenoble, June 1994.

[MDI92] R. Melton, D. L. Dill, and C. Norris Ip. Murphi annotated reference manual. Version 2.6.
Technical Report, Stanford University, Palo Alto, California, November 1992.

[Mil89] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

[Mun91] Harold B. Munster. LOTOS Specification of the MAA Standard, with an Evaluation of
LOTOS. NPL Report DITC 191/91, National Physical Laboratory, Teddington, Middle-
sex, UK, September 1991.

RR n
�

2965

28 R. Mateescu

[MV93] S. Mauw and G. J. Veltink. Algebraic Specification of Communication Protocols. Num-
ber 36 in Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
1993.

[NV90] R. De Nicola and F. W. Vaandrager. Action versus State based Logics for Transition
Systems. In Proceedings Ecole de Printemps on Semantics of Concurrency, volume 469
of Lecture Notes in Computer Science, pages 407–419. Springer Verlag, 1990.

[ORS92] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system. In Pro-
ceedings of the 11th International Conference on Automated Deduction (CADE), volume
607 of Lecture Notes in Artificial Intelligence, pages 748–752, Saratoga - NY, June 1992.

[Par81] David Park. Concurrency and Automata on Infinite Sequences. In Peter Deussen, editor,
Theoretical Computer Science, volume 104 of Lecture Notes in Computer Science, pages
167–183. Springer Verlag, March 1981.

[QS83] Jean-Pierre Queille and Joseph Sifakis. Fairness and Related Properties in Transition
Systems — A Temporal Logic to Deal with Fairness. Acta Informatica, 19:195–220, 1983.

[Tur93] Kenneth J. Turner, editor. Using Formal Description Techniques – An Introduction to
ESTELLE, LOTOS, and SDL. John Wiley, 1993.

[vGW89] R. J. van Glabbeek and W. P. Weijland. Branching-Time and Abstraction in Bisimula-
tion Semantics (extended abstract). CS R8911, Centrum voor Wiskunde en Informatica,
Amsterdam, 1989. Also in proc. IFIP 11th World Computer Congress, San Francisco,
1989.

INRIA

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe - 38330 Montbonnot-St-Martin (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route desLucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

