
Local Model-Checking of an Alternation-Free

Value-Based Modal Mu-Calculus

Radu Mateescu
1

CWI / SEN2 group

P.O. Box 94079, NL-1090 GB Amsterdam, The Netherlands

Radu.Mateescu@cwi.nl

Abstract

Programs written in value-passing description languages such as µCrl and Lotos can be naturally
translated into Labelled Transition Systems (Ltss) containing data values. In order to express temporal
properties interpreted over these Ltss, we define a value-based alternation-free modal µ-calculus built
from typed variables, pattern-matching modalities, and parameterised fixed point operators. The verifi-
cation of a temporal formula over a (finite) Lts is reduced to the (partial) resolution of a Parameterised
Boolean Equation System (Pbes). We propose a resolution method for Pbess that leads to a local
model-checking algorithm, which could also be applied in the framework of abstract interpretation.

1 Introduction

Formal verification is essential in order to ensure reliability of critical applications such as communication
protocols and distributed systems. A state-of-the-art verification technique is the so-called model-checking.
In this approach, the application is first described using a high-level language like µCrl2 [7] or Lotos3 [9].
This description is subsequently translated into a (finite) Labelled Transition System (Lts), over which the
desired correctness properties, expressed as temporal logic formulas, are verified using appropriate model-
checking algorithms.

The modal µ-calculus [10] is a powerful formalism allowing to express temporal properties of programs.
However, in its standard version, it does not allow to handle data values, therefore being not appropriate for
value-passing description languages as µCrl or Lotos, whose underlying Lts models contain typed values.
Although several value-based extensions of the µ-calculus have been proposed and studied in the setting of
theorem-proving [12, 5], much less attention has been given to the corresponding model-checking problem
for finite-state systems.

In this paper, we propose an extension of the µ-calculus with data variables, pattern-matching modalities,
and parameterised fixed point operators, allowing to express temporal properties involving data. We focus
on the alternation-free fragment of the logic (i.e., with no mutual recursion between least and greatest fixed
points), which offers a practical compromise between the expressive power and the efficiency of model-
checking. Generalizing the approaches used for the efficient model-checking of the standard alternation-free
µ-calculus [2, 4, 1, 14], we reduce the model-checking problem of a value-based temporal formula over a
(finite) Lts to the (partial) resolution of a Parameterised Boolean Equation System (Pbes). We propose
a resolution method for Pbess that leads to a semi-decidable local (i.e., allowing to construct the Lts

“on-the-fly”, during the verification of the formula) model-checking algorithm.
The paper is organized as follows. Section 2 defines the value-based alternation-free µ-calculus and gives

various examples of temporal properties involving data. Section 3 shows how the verification problem can
be reduced to the (partial) resolution of a Pbes and describes the local model-checking algorithm. Finally,
Section 4 contains some concluding remarks and directions for future work.

1Current affiliation is: Inria Rhône-Alpes / Vasy, 655, avenue de l’Europe, F-38330 Montbonnot Saint Martin, France.
E-mail: Radu.Mateescu@inria.fr

2
micro Common Representation Language

3Language Of Temporal Ordering Specification

2 Alternation-free value-based modal µ-calculus

We first define the Lts models used in the remainder of the paper, next we describe the syntax and semantics
of the value-based µ-calculus that we propose, and we finish this section by showing various examples of
data-based temporal properties expressed in our logic.

2.1 Labelled transition systems

The Lts models we consider here are suitable for value-passing description languages, whose actions may
contain typed values exchanged during communications. An Lts is a tuple 〈S,A, T, s0〉, where:

• S is a finite set of states ;
• A is a finite set of actions . An action a ∈ A is represented as a list c ~v , where c is a channel name and

~v is a list of typed values;
• T ⊆ S × A × S is the transition relation. A transition (s1, a, s2) ∈ T , also noted s1

a
−→ s2, indicates

that the program can move from state s1 to state s2 by performing action a;
• s0 ∈ S is the initial state.

In the sequel, we implicitly consider an Lts model M = 〈S,A, T, s0〉, over which the extended µ-calculus
formulas will be interpreted.

2.2 Syntax and semantics of the logic

The logic that we propose is built from three types of entities, whose syntax is given in Figure 1.

Expressions e ::= x
∣

∣ f(~e)

Action formulas α ::= c ~x :~t
∣

∣ c ~e
∣

∣ ¬α
∣

∣ α1 ∧ α2

State formulas ϕ ::= tt
∣

∣ e→ ϕ1 []ϕ2

∣

∣ ¬ϕ
∣

∣ ϕ1 ∧ ϕ2

∣

∣ 〈α〉ϕ
∣

∣ Y (~e)
∣

∣ µY (~x :~t :=~e).ϕ

Figure 1: Syntax of the logic

Expressions: these are algebraic terms e ∈ Exp, constructed over data variables x ∈ DVar and functions

f ∈ Func. We assume that each variable x has a unique type t, each function f has a unique profile ~t 1 → t2
(where ~t 1 is the list of argument types, and t2 is the result type of f), and each expression e is well-typed.

Action formulas: these are logical formulas α ∈ AForm , built from action predicates and the usual
boolean connectives. A predicate c ~x :~t states that an action must have the form c ~v , where ~v ∈ ~t ; if this
is the case, the values ~v are respectively assigned to the variables ~x , which are exported, i.e., can be used
outside this action formula. A predicate c ~e states that an action must have the form c ~v , where ~v are the
values of the expressions ~e . The derived boolean operators are defined as usual: tt = c∨¬c for some channel
name c, ff = ¬tt , α1 ∨ α2 = ¬(¬α1 ∧ ¬α2), α1 → α2 = ¬α1 ∨ α2, and α1 ↔ α2 = (α1 → α2) ∧ (α2 → α1).

State formulas: these are temporal formulas ϕ ∈ SForm, built from boolean, modal, and fixed point
operators. The e → ϕ1 []ϕ2 operator is a conditional construct, meaning that a state satisfies ϕ1 if the
boolean expression e is true and ϕ2 otherwise. The diamond modality 〈α〉ϕ expresses that a state has an
outgoing transition whose action satisfies α and which leads to a state satisfying ϕ. The µY (~x :~t :=~e).ϕ
construct, where Y ∈ PVar is a propositional variable parameterised by the data variables ~x , is the least
fixed point operator, denoting the least solution of the fixed point equation Y (~x :~t) = ϕ, evaluated with the
arguments ~e . Besides the usual derived boolean connectives, the following operators are also defined: the
state predicate e = e → tt []ff , the box modality [α]ϕ = ¬ 〈α〉 ¬ϕ, and the greatest fixed point operator
νY (~x :~t :=~e).ϕ = ¬µY (~x :~t :=~e).¬ϕ[¬Y/Y], where ϕ[¬Y/Y] denotes the syntactic substitution of Y by ¬Y
in ϕ. The state formulas ϕ are assumed to be alternation-free (i.e., without mutually recursive least and
greatest fixed point subformulas) and syntactically monotonic (i.e., with propositional variables occurring
inside the fixed point formulas only under an even number of negations).

The semantics of these constructs is given in Figure 2. Expressions are interpreted w.r.t. data environ-

ments ε ∈ DEnv, which are partial functions mapping data variables to values (elements of the domain
Val). An environment ε = [~v /~x] assigns the values ~v to the variables ~x , which are also called the support of
ε, noted supp(ε). The overriding of ε1 by ε2 is defined as (ε1�ε2)(x) = if x ∈ supp(ε2) then ε2(x) else ε1(x).
The denotation [[e]] ε, where [[.]] : Exp → DEnv → Val is the interpretation function for expressions, gives
the value of e in the context of ε (which must assign values to all the data variables occurring in e).

Expressions [[x]] ε = ε(x)

[[f(~e)]] ε = f([[~e]] ε)

[[c ~x :~t]] εa = if ∃~v :~t .a = c ~v then (tt, [~v /~x]) else (ff, [])

Action formulas
[[c ~e]] εa = if a = c [[~e]] ε then (tt, []) else (ff, [])

[[¬α]] εa = (not ([[α]] εa)1, [])
[[α1 ∧ α2]] εa = (([[α1]] εa)1 and ([[α2]] εa)1, [])

[[tt]] ρε = S
[[e→ ϕ1 []ϕ2]] ρε = if [[e]] ε then [[ϕ1]] ρε else [[ϕ2]] ρε

[[¬ϕ]] ρε = S \ [[ϕ]] ρε

State formulas
[[ϕ1 ∧ ϕ2]] ρε = [[ϕ1]] ρε ∩ [[ϕ2]] ρε

[[〈α〉ϕ]] ρε = {s ∈ S | ∃s′ ∈ S, a ∈ A.s
a

−→ s′ ∧ ([[α]] εa)1∧
s ∈ [[ϕ]] ρ(ε� ([[α]] εa)2)}

[[Y (~e)]] ρε =
(

ρ(Y)
)

([[~e]] ε)

[[µY (~x :~t :=~e).ϕ]] ρε =
(

{F : ~t → 2S | Φρε(F) v F}
)

([[~e]] ε)
where Φρε(F) = λ~v :~t . [[ϕ]] (ρ� [F/Y])(ε� [~v /~x])

Figure 2: Semantics of the logic

Action formulas are interpreted w.r.t. data environments and actions. The denotation [[α]] εa, where
[[.]] : AForm → DEnv → A→ Bool×DEnv is the interpretation function for action formulas, gives a tuple
containing a boolean value that indicates if a satisfies α in the context of ε, and a data environment that
assigns values extracted from a to the data variables exported by α. For simplicity, we allow data variables
to be exported only by the c ~x :~t action predicates. Tuple values are noted using parenthesis and projection
is denoted by subscripts: the i-th element of a tuple value (v1, ..., vn) is denoted by (v1, ..., vn)i.

State formulas are interpreted w.r.t. propositional environments ρ ∈ PEnv and data environments, the
former being partial functions mapping variables Y (~x :~t) to functions in ~t → 2S . The denotation [[ϕ]] ρε,
where [[.]] : SForm → PEnv → DEnv → 2S is the interpretation function for state formulas, gives the set
of states satisfying ϕ in the context of ρ and ε. The domain containing the values of all types ~t of the fixed
point formula parameters is noted Par. The functionals Φρε associated to the fixed point formulas being
monotonic (due to the syntactic monotonicity of the ϕ formulas) and the lattice Par → 2S being complete,
Tarski’s theorem [13] ensures that the interpretation of fixed point formulas given in Figure 2 denotes the
corresponding extremal fixed points of Φρε.

2.3 Examples

We give below several examples of typical temporal properties involving data, expressed as formulas of our
alternation-free value-based modal µ-calculus defined in the previous subsection.

Correct message transmission. The following formula states that each emission of a message must
be eventually followed by the reception of the same message:

[SEND m:Msg] µY.(〈tt〉 tt ∧ [¬(RECV m)] Y)

where SEND m and RECVm denote the emission and the reception of the message m, respectively.

Mutual exclusion. The fact that several processes (identified as values of an enumerated type Pid)
access a shared resource in mutual exclusion can be expressed by the formula below:

[OPEN p1:Pid]¬µY.(〈OPEN p2:Pid〉 (p2 6= p1) ∨ 〈¬(CLOSE p1)〉Y)

where the actions OPEN p and CLOSE p model the fact that process p has obtained and released the
resource, respectively.

Alternation between message emission and reception. The strict alternation between emissions
and receptions of messages in a communication protocol can be expressed using a fixed point formula
parameterised by a boolean flag indicating if a message has been sent or not before the current state:

νY (sent :Bool :=ff).([SEND] (¬sent ∧ Y (¬sent)) ∧ [RECV] (sent ∧ Y (¬sent)) ∧ [¬(SEND ∨ RECV)] Y (sent))

This property can also be expressed in the standard µ-calculus (since it does not refer to the values contained
in the Lts actions), but less concisely than the formula above (i.e., requiring two nested greatest fixed points).

Correct transmission of a segmented data packet. The Bounded Retransmission Protocol [8]
allows to transmit (large) data packets over an unreliable communication medium by splitting them in
(small) chunks that are sent sequentially. The correct transmission of a packet can be expressed by the
formula below, in which the parameter p stores the portion of the packet remaining to be sent:

[IN p0:Packet] νY (p:Packet :=p0).(

empty(p) → tt [] ([IN p1:Packet]ff ∧ [OUT c:Chunk] (c = head (p) ∧ Y (tail(p))) ∧

[¬((IN p2:Packet) ∨ (OUT p2:Packet))] Y (p)))

where IN p denotes the emission of a packet p, OUT c denotes the reception of a chunk c, and empty ,
head , and tail are functions testing the emptiness and returning the head and the remainder of a packet,
respectively.

3 Local model-checking

This section is devoted to the model-checking of temporal formulas over finite Ltss. We first define the
syntax and semantics of Parameterised Boolean Equation Systems (Pbess), next we describe how the model-
checking problem can be translated to the partial resolution of a Pbes, and finally we give a semi-decidable
local model-checking algorithm performing this resolution.

3.1 Parameterised Boolean Equation Systems

A Parameterised Boolean Equation System (Pbes for short) is a set of fixed point equations whose left
hand sides are boolean variables Z ∈ BVar parameterised by data variables, and whose right hand sides
are boolean formulas ψ ∈ BForm . Each equation i has a sign σi ∈ {µ, ν}. The syntax of boolean formulas
(given directly in positive form) and of Pbess is shown in Figure 3. We consider here only Pbess that are
alternation-free, i.e., without mutual recursion between least and greatest boolean variables.

Boolean formulas ψ ::= tt
∣

∣ ff
∣

∣ e→ ψ1 []ψ2

∣

∣ ψ1 ∨ ψ2

∣

∣ ψ1 ∧ ψ2

∣

∣ Z(~e)

Pbess
{

Zi(~x i:~t i)
σi= ψi

}

1≤i≤p

Figure 3: Syntax of boolean formulas and Pbess

The semantics of these constructs is defined in Figure 4. Boolean formulas are interpreted w.r.t. boolean

environments δ ∈ BEnv and data environments, the former being partial functions mapping boolean
variables Z(~x :~t) to functions in ~t → Bool. The denotation [[ψ]] δε, where [[.]] : BForm → BEnv →
DEnv → Bool is the interpretation function for boolean formulas, gives the truth value of ψ in the context
of δ and ε.

[[tt]] δε = tt

[[ff]] δε = ff

Boolean formulas
[[e→ ψ1 []ψ2]] δε = if [[e]] ε then [[ψ1]] δε else [[ψ2]] δε

[[ψ1 ∨ ψ2]] δε = [[ψ1]] δε or [[ψ2]] δε
[[ψ1 ∧ ψ2]] δε = [[ψ1]] δε and [[ψ2]] δε

[[Z(~e)]] δε =
(

δ(Z)
)

([[~e]] ε)

σ-blocks
[[{Zi(~x i:~t i)

σ
= ψi}1≤i≤p]] δ = σΨδ

where Ψδ(~G) =
(

λ~v i:~t i. [[ψi]] (δ � [~G /~Z])(ε� [~v i/~x i])
)

1≤i≤p

Pbess
[[{Bj}1≤j≤m]] δ = (~G 1, ..., ~Gm)

where ~Gj = [[Bj]] δj , δ1 = δ, δj = δj−1 � [~G j−1/~Z j−1]

Figure 4: Semantics of boolean formulas and Pbess

The interpretation of σ-blocks (i.e., Pbess having equations of the same sign σ) w.r.t. a boolean
environment δ is defined as the σ-fixed point of an associated boolean vectorial functional Ψδ. Since the
Pbess we consider are alternation-free, they can always be partitioned in σ-blocks {Bj}1≤j≤m such that
for every 1 ≤ j ≤ m, the σ-block Bj depends only on B1, ..., Bj−1. The interpretation of a Pbes w.r.t. a
boolean environment δ is defined by the union of the semantics of its σ-blocks Bj (for 1 ≤ j ≤ m), where
each Bj is interpreted w.r.t. the semantics of B1, ..., Bj−1.

3.2 Transformation of the verification problem

The model-checking problem, requiring to compute the truth value of a state formula ϕ of our logic over a
finite Lts model, can be reduced to the partial resolution of a Pbes. This transformation, which generalizes
the corresponding translations used in the framework of the standard alternation-free µ-calculus [1, 14],
consists of two phases, briefly described below.

Normalisation. This phase performs a syntactical translation of ϕ into a formula ϕ′ that is normalised ,
i.e., every fixed point subformula σiYi(~x i:~t i:=~e i).ϕi of ϕ′ satisfies the following two properties. Firstly, ϕi is
fully parameterised, i.e., all data variables free in ϕi are among the parameters ~x i (this is obtained by adding
to Yi extra data parameters, initialised with the values of the free variables of ϕi and propagated through the
calls of Yi). Secondly, ϕi is simple , i.e., all its direct subformulas are atomic boolean formulas, propositional
variables, or fixed point formulas (this is obtained by introducing dummy propositional variables, whose
signs are inherited from the immediately enclosing fixed point operator; in order to simplify the second
phase of the transformation, a dummy propositional variable is also added on top of the whole formula).

It can be shown that the normalisation preserves the semantics of state formulas and may cause at most
a linear blow-up of their size.

Composition. This phase builds a Pbes by composing a normalised formula ϕ and an Lts model
M = 〈S,A, T, s0〉 in the following manner. For each fixed point subformula σiYi(~x i:~t i:=~e i).ϕi of ϕ and for
each state s ∈ S of the Lts, an equation of sign σi is constructed, whose left hand side is a boolean variable
Zi,s(~x i:~t i) and whose right hand side is a boolean formula (ϕi)s. Intuitively, a state s satisfies a subformula
σiYi(~x i:~t i:=~e i).ϕi iff Zi,s(~e i) is true. The construction of a Pbes from a state formula (containing the
propositional variables Y1, ..., Yn) and an Lts is illustrated in Figure 5. (Note: in the translation of the
modal formulas (〈α〉ϕ)s and ([α]ϕ)s, the notation (ϕ)′s([[α]] []a)2 represents the substitution in (ϕ)′s of the
variables exported by α with the values extracted from a using the data environment ([[α]] []a)2 produced
by interpreting α on a.)

A partition of the resulting Pbes in σ-blocks can be naturally obtained by grouping together the equa-
tions corresponding to the fixed point operators that were adjacent in the normalised formula ϕ. Since the
transition relation of the Lts is explored forward during the translation, the Pbes can be constructed by
generating the Lts locally, i.e., in a demand-driven way.

{Zi,s(~x i:~t i)
σi= (ϕi)s}1≤i≤n,s∈S

(e→ ϕ1 []ϕ2)s = e→ (ϕ1)s [] (ϕ2)s

(ϕ1 ∨ ϕ2)s = (ϕ1)s ∨ (ϕ2)s

(ϕ1 ∧ ϕ2)s = (ϕ1)s ∧ (ϕ2)s

(〈α〉ϕ)s =
∨

s
a

−→s′

(

a |= α ∧ (ϕ)s′ ([[α]] []a)2
)

([α]ϕ)s =
∧

s
a

−→s′

(

a |= α → (ϕ)s′ ([[α]] []a)2
)

(Yi(~e i))s = Zi,s(~e i)

G′ ~v ′ |= G ~x :~t = (G′ = G) ∧ (~v ′ ∈ ~t)
G′ ~v ′ |= G ~e = (G′ = G) ∧ (~v ′ = ~e)
G′ ~v ′ |= ¬α = ¬(G′ ~v ′ |= α)

G′ ~v ′ |= α1 ∧ α2 = (G′ ~v ′ |= α1) ∧ (G′ ~v ′ |= α2)

Figure 5: Construction of a Pbes from a state formula and an Lts

3.3 Resolution algorithm

As shown in Section 3.2, the verification of a formula ϕ on the initial state s0 of an Lts can be reduced
to the calculation of a variable instance Z0,s0

(~v 0) of a Pbes (where Y0 is the propositional variable on top
of the normalised form of ϕ and ~v 0 are the values of its data parameters). We provide here a resolution
algorithm for computing a variable instance belonging to a σ-block. This algorithm can also be used to
compute a variable instance of an alternation-free Pbes, by applying it iteratively on the σ-blocks resulted
from a partition of the Pbes. We focus here on the case σ = µ, the case σ = ν being completely dual.

The resolution algorithm, shown in Figure 6, consists of a main function Solve and an auxiliary function
Eval. The Solve function uses an algorithm similar in spirit to, but more general then, the local boolean
resolution algorithm given in [14]. Starting from the instance Zi(~v i) to be calculated, Solve performs a
forward exploration of the Pbes, repeatedly expanding (i.e., evaluating ψj with the arguments ~v j , using
the Eval function) the instances Zj(~v j) already reached, which are stored in a variable visited . The
instances already expanded and the dependencies between them are stored in the variables expanded and
depend , respectively. The instances evaluated to tt (which are therefore “stable”) are kept in a work
list to be propagated and (since they may cause other instances to become “unstable”) their effects are
propagated in the dependency graph, by reevaluating the other instances depending on them. The process
stops when no new instances are needed in order to establish the truth value of Zi(~v i). The Eval function
uses additional counter variables in order to optimize the reevaluation of instances (this technique has been
used in the linear-time model-checking algorithms [4, 1] for the standard alternation-free µ-calculus).

The Solve function has a complexity linear in the size of the dependency graph between instances
generated during the resolution, since each edge of the dependency graph is traversed (at most) twice:
firstly, when its source instance is expanded, and secondly, when its target instance is (possibly) propagated.
However, due to the fact that the data parameters of the Pbes (inherited from the initial formula ϕ) may
belong to infinite domains (e.g., natural numbers, lists, sets, etc.), the termination of Solve becomes
undecidable in the general case, therefore making (extremely) difficult to predict the size of the dependency
graph explored. We can nevertheless examine the complexity for particular classes of formulas: e.g., for
fixed point formulas without parameters (but containing data variables in the modalities), the size of the
dependency graph cannot exceed the size of the whole Pbes, which is linear in the size of the initial
formula (number of operators) and of the Lts (number of states and transitions). This happens also for the
“pure” µ-calculus fragment of our logic (without any data variables), in which case Solve has the linear-
time complexity of the best local algorithms available for the standard alternation-free µ-calculus [1, 14].
Moreover, for many of the data-based properties usually encountered (such as those presented in Section 2.3),
the domains of the fixed point data parameters are bounded by the values contained in the Lts (number
of processes, number of messages transmitted, etc.), thus ensuring the termination of the Solve function.
Therefore, we expect in practice a good performance of our resolution algorithm.

function Solve ({Zk(~x k:~t k)
µ
= ψk}1≤k≤p : BSys , Zi : BVar , ~v i : ~t i, δ : BEnv) : Bool is

var expanded : (BVar ×Par) → (Bool×Nat),
visited , to be propagated , needed : 2BVar×Par,
depend : (BVar ×Par) → 2BVar×Par, b : Bool, c : Nat;

visited := {(Zi, ~v i)}; expanded := [];
to be propagated := 6©; depend := [];
repeat

if visited 6= 6© then

let (Zj , ~v j) ∈ visited ; visited := visited \ {(Zj , ~v j)};
(needed , b, c) := Eval (ψj , δ, [~v j/~x j], expanded);
expanded := expanded ∪ [(b, c)/(Zj , ~v j)];
if b then to be propagated := to be propagated ∪ {(Zj , ~v j)} endif;
forall (Zl, ~v l) ∈ needed do

depend := depend ∪ [{(Zj , ~v j)}/(Zl, ~v l)];
if (Zl, ~v l) 6∈ visited then visited := visited ∪ {(Zl, ~v l)} endif

end

elsif to be propagated 6= 6© then

let (Zl, ~v l) ∈ to be propagated ; to be propagated := to be propagated \ {(Zl, ~v l)};
forall (Zj , ~v j) ∈ depend(Zl, ~v l) do

(b, c) := expanded (Zj , ~v j);
if ¬b then

expanded := expanded � [(c = 1, c− 1)/(Zj , ~v j)];
if c = 1 then to be propagated := to be propagated ∪ {(Zj , ~v j)} endif

endif

end

endif

until visited = 6© ∧ to be propagated = 6©;
return (expanded(Zi, ~v i))1

end

function Eval (ψ : BForm , δ : BEnv, ε : DEnv,
expanded : (BVar ×Par) → (Bool×Nat)) : 2BVar×Par ×Bool×Nat

is var needed1, needed2 : 2BVar×Par, b1, b2 : Bool, c1, c2 : Nat;
case ψ in

tt → return (6©, tt, 0)
ff → return (6©,ff, 0)
Zj(~e j) → if Zj ∈ supp(δ) then return ({(Zj , [[~e j]] ε)}, (δ(Zj))([[~e j]] ε), 0)

elsif (Zj , [[~e j]] ε) ∈ supp(expanded) then

return ({(Zj , [[~e j]] ε)}, expanded (Zj , [[~e j]] ε))
else return ({(Zj , [[~e j]] ε)}, ff, 1) endif

ψ1 or ψ2 → (needed1, b1, c1) := Eval (ψ1, δ, ε, expanded);
(needed2, b2, c2) := Eval (ψ2, δ, ε, expanded);
return (needed1 ∪ needed2, b1 or b2, max (c1, c2))

ψ1 and ψ2 → (needed1, b1, c1) := Eval (ψ1, δ, ε, expanded);
(needed2, b2, c2) := Eval (ψ2, δ, ε, expanded);
return (needed1 ∪ needed2, b1 and b2, c1 + c2)

e→ ψ1 []ψ2 → if [[e]] ε then return Eval(ψ1, δ, ε, expanded)
else return Eval(ψ2, δ, ε, expanded) endif

endcase

end

Figure 6: The Solve and Eval functions

4 Conclusion and future work

We defined in this paper an extended alternation-free µ-calculus allowing to express temporal properties
involving data. The formulas are interpreted over Ltss generated from programs written in value-passing
description languages such as µCrl or Lotos. We proposed a model-checking method for this logic, based
on the reduction of the verification problem to the partial resolution of a Parameterised Boolean Equation
System (Pbes), and we gave a semi-decidable local model-checking algorithm performing this resolution.

Several directions for further work can be considered. Firstly, the algorithm has to be completely
implemented within the µCrl verification toolbox [6] and experimented on real-life applications. Secondly,
the model-checking method presented here should be extended to the full µ-calculus (i.e., of arbitrary
alternation depth), for instance by investigating the extension with data of the efficient local model-checking
algorithm recently proposed in [11]. Finally, it would be interesting to apply the resolution algorithm
proposed here in the framework of abstract interpretation, where similar techniques are used for efficient
fixed point computation [3].

Acknowledgements

We are grateful to the anonymous referees for their valuable comments on this paper.

References

[1] H. R. Andersen. Model checking and boolean graphs. Theoretical Computer Science, 126(1):3–30, April 1994.

[2] A. Arnold and P. Crubillé. A linear algorithm to solve fixed-point equations on transition systems. Information

Processing Letters, 29:57–66, 1988.

[3] L-L. Chen. Efficient Computation of Fixpoints that Arise in Abstract Interpretation. Technical Report
UIUCDCS-R-94-1866, Univ. of Illinois, Urbana-Champaign, July 1994.

[4] R. Cleaveland and B. Steffen. A Linear-Time Model-Checking Algorithm for the Alternation-Free Modal Mu-
Calculus. In K. G. Larsen and A. Skou, editors, Proceedings of CAV’91, volume 575 of LNCS, pages 48–58,
Berlin, July 1991. Springer Verlag.

[5] M. Dam, L a. Fredlund, and D. Gurov. Compositional Verification of Erlang Programs. In J.F. Groote,
B. Luttik, and J. van Wamel, editors, 3rd Int. Workshop on Formal Methods for Industrial Critical Systems,
pages 127–156, CWI, Amsterdam, May 1998.

[6] D. Dams and J. F. Groote. Specification and Implementation of Components of a µCRL Toolbox. Technical
Report Logic Group Preprint Series 152, Utrecht University, December 1995.

[7] J. F. Groote and A. Ponse. The syntax and semantics of µCRL. Technical Report CS-R9076, CWI, Amsterdam,
December 1990.

[8] J. F. Groote and J. C. van de Pol. A bounded retransmission protocol for large data packets. Technical Report
Logic Group Preprint Series 100, Utrecht University, October 1993.

[9] ISO/IEC. LOTOS — A Formal Description Technique Based on the Temporal Ordering of Observational
Behaviour. International Standard 8807, ISO – OSI, Genève, September 1988.

[10] D. Kozen. Results on the Propositional µ-calculus. Theoretical Computer Science, 27:333–354, 1983.

[11] X. Liu, C. R. Ramakrishnan, and S. A. Smolka. Fully Local and Efficient Evaluation of Alternating Fixed
Points. In Bernhard Steffen, editor, Proceedings of TACAS’98, volume 1384 of LNCS, Berlin, March 1998.
Springer Verlag.

[12] J. Rathke and M. Hennessy. Local model checking for a value-based modal µ-calculus. Report 5/96, School of
Cognitive and Computing Sciences, University of Sussex, June 1996.

[13] A. Tarski. A Lattice-Theoretical Fixpoint Theorem and its Applications. Pacific Journal of Mathematics,
(5):285–309, 1955.

[14] B. Vergauwen and J. Lewi. Efficient Local Correctness Checking for Single and Alternating Boolean Equation
Systems. In S. Abiteboul and E. Shamir, editors, Proceedings of the 21st ICALP, volume 820 of LNCS, pages
304–315, Berlin, July 1994. Springer Verlag.

