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Chapter 1
Introduction

Printers, smart phones, ATMs, navigation systems and insulin pumps. They all
have something in common: they penetrate many aspects of our society and every-
day life. In addition, these devices can perform specific tasks, because they include
one or more small computers. In contrast to a general-purpose computer, such as
a personal computer (PC), they do not have a keyboard or display, nevertheless
they contain numerous programs dedicated to handle particular functions. Such
systems are called embedded systems. Embedded systems make products smarter.
For example, think about a car that is equipped with an eye-tracking system to
monitor the driver’s fatigue. Embedded systems play an important role in sol-
ving societal challenges, such as sustainable energy, health of an aging population,
national security, and safe and sustainable transportation. Another example is a
dishwasher that automatically detects the soil level and adjusts the washing cycle
accordingly to save power and water. Embedded systems have become vital to the
quality of life and society.

Reliability of embedded systems plays a very important role. Many embedded
systems are not monolithic systems built from scratch, but are constructed from
many interacting components and sub-systems. Often, these larger systems are
expected to run continuously for years. Even more critical, our lives may depend
on embedded systems. Airbags in cars have to be triggered if the deployment
threshold is met or exceeded, no matter if the occupants are belted, the road
is rough or it is scorching heat. Therefore, embedded systems are usually tested
more carefully than software for personal computers. Besides reliability, embedded
systems must satisfy many more constraints. Applications are demanding greater
functionality leading to larger and more complex systems. Also performance,
energy efficiency, security and safety constraints need to be met.

In recent years, model-driven engineering (MDE) is attracting a lot of at-
tention since it appears to be a software development methodology which can
control the increasing complexity of embedded systems. In the MDE approach,
the main objects of the software system being developed are represented at a
higher level of abstraction using models. Specifications, behavior, functionality,
development activities, and testing techniques of systems can all be described
in terms of (graphical) models. These models can be used to generate imple-
mentations (semi)automatically or to promote communication between different
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1 Introduction

stakeholders like customers, product managers, designers, developers and users of
the application domain. Moreover, models facilitate verification and validation,
which refers to testing that the implementation complies with the requirements
and the needs of the customer. Model-based techniques for verification and vali-
dation of different kinds of systems, including model checking [72, 43] and model-
based testing [35] have witnessed drastic advances in the last decades, and several
commercial tools that support model checking and/or model-based testing have
become available (e.g., FDR2 [135], Reactis [133], Conformiq Designer [50], Sepp-
Med MBTsuite [137], Axini Test Manager [16], and QuviQ [128]). Altogether,
high-level models of system components speed up development cycles and reduce
errors.

A key problem, however, is the construction of models that describe the in-
tended behavior of the system components. Usually, this should be done during
specification and design. In practice, often no models are created, because the ma-
nual construction is a very time-consuming and costly task [166]. Besides, most
software projects are critical in terms of time. Therefore, it is essential to automa-
tically generate such models, e.g. from an existing implementation. A potential
approach is to use program analysis to construct models from source code [20, 76].
In many cases, however, access to source code is restricted due to the presence of
library modules, third-party components, etc. Therefore, we consider an alterna-
tive approach by means of reverse engineering. We view the system as a black box
and observe the external behavior by supplying inputs to the system and monitor
how it responds to them. This allows us to make a significant step towards the
automatic generation of models of real-world systems.

1.1 Active Automata Learning
Automatically constructing state transition models through observations is called
automata learning (aka regular inference) and is a task which we apply frequently
in our daily life. If we want to learn the behavior of a device or computer program,
we often just press all available buttons and observe the resulting behavior. In this
way, we construct a mental model of that device. We figure out in which global
states the device can be and which state transitions and outputs occur in response
to which input. This also explains why children know exactly how to turn on a TV
or how an iPhone works without ever consulting a manual. A major challenge is to
let computers perform similar learning tasks in a systematic manner for systems
with large numbers of states.

The concept of automata learning has been studied in the literature for de-
cades. During the last few years, it is gaining increasing attention since it has
been demonstrated that automata-learning methods provide useful support for
numerous software engineering tasks, especially related to testing and verification.
An extensive list of applications in these areas is given in the related work section
later in this chapter.

Automata learning is commonly divided into two categories: passive learning
and active learning. In passive learning, a model is constructed from a given set
of traces [159, 163, 53]. These traces usually originate from system logs, which
have recorded the systems behavior over a specific period of time. A problem
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1.1 Active Automata Learning

with passive learning is that the quality of the model depends on the traces that
have been observed. The larger the set of traces, the more likely that enough
information is available to build an accurate model. However, for unobserved
behavior it is difficult to draw a conclusion, which might lead to possible errors
in the model. A solution to this problem is to request additional traces from the
system in case of uncertainty. This is the strategy followed by the active learning
approach. In active learning, a model is constructed while interacting with the
system. Depending on the reaction of the system, the learning process can be
steered and additional information from the system can be queried so that an
accurate model can be constructed. In this thesis we consider an active learning
approach.

Many active learning algorithms have been proposed since the 80s. Perhaps
the most efficient and widely used one is the L∗ algorithm of Angluin [14]. It
was introduced in 1987 as an algorithm for learning deterministic finite automata
(DFA, see, e.g., [149]). A DFA is a finite state machine that contains states, which
are connected by means of transitions labeled with a symbol. Upon reading a
symbol, a DFA jumps deterministically from a state to another by following the
corresponding transition. A DFA accepts or rejects sequences of symbols, i.e.,
if a sequence of symbols leads to an accepting state, the sequence is said to be
accepted by the DFA, otherwise rejected. Later, variations of the L∗ algorithm
were introduced [134, 96, 106, 19] differing in the data structure they use or in
the way deviations between the inferred model and the real system are handled.
Also inspired by the L∗ algorithm, active learning has been extended to Mealy
machine models [122, 107, 147]. A Mealy machine differs from a DFA in that its
transitions are labeled with both an input symbol and the corresponding output
symbol produced by the system, instead of just a single symbol. Mealy machines
are particularly suitable to model reactive systems, which respond with an output
rather than accepting or rejecting sequences of symbols. For example, a TV with a
remote control is a reactive system, reacting to the user pressing the power button.

Learner 

Output 
queries 

Equivalence 
queries 

Teacher 

Figure 1.1: Active learning

The active learning algorithm for
Mealy machines has two participants: a
learner and a teacher. The teacher knows
a Mealy machine M. The goal of the
learner is to infer M by asking queries to
the teacher. For this purpose, the learner
knows the set of input symbols (the input
alphabet) it can send to the teacher. The
learner can ask two kinds of queries: out-
put queries and equivalence queries. An
output query poses the question “What
is the output produced in response to in-
put i?”. Based on the answers from the
teacher, the learner constructs a minimal hypothesis H. The learner can test
whether H is correct by asking an equivalence query to the teacher: “Is the hypo-
thesized model H correct, i.e., equivalent to M?”. The teacher can reply with yes
or provide a counterexample. If sufficiently many queries are asked, the learned
automaton will be a model of the observed component.
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Learner 

SUT 
Output 
queries 

Equivalence 
queries 

Teacher 

MBT tool 

Figure 1.2: Active learning of real-world
systems

Figure 1.2 illustrates how active lear-
ning can be used to infer models of real-
world systems. A real-world system can
be any (physical, embedded, software)
reactive system to which we can apply in-
puts and whose outputs we may observe.
In the remainder of this thesis, we often
refer to these real-world systems as sys-
tem under test (SUT) as they are the sys-
tems being inferred through observations
and tests. The core of the teacher now
is an SUT. The learner interacts directly
with the SUT to infer a model by asking
output queries. However, the SUT cannot answer equivalence queries, because it is
a black box. Therefore, access to the internal states and transitions of the system
model is not possible and, thus, it cannot be compared to the hypothesized model.
A solution is to equip the teacher with a model-based testing (MBT) tool that
approximates the equivalence queries using some model-based testing algorithm.
For example, the MBT tool can generate long test sequences and compare whe-
ther the SUT and the hypothesis always produce the same output. Alternatively,
experts or the system documentation can be consulted to answer equivalence que-
ries. If no deviation has been found, we assume that the learned model is correct.
Otherwise, a counterexample, which shows the difference between the SUT and the
hypothesis, is returned to the learner. Hence, the task of the learner is to collect
data by interacting with the SUT and to formulate hypotheses, and the task of the
MBT tool is to test the correctness of these hypotheses. Checking correctness of a
hypothesis is often the bottleneck in the application of active learning algorithms.
The reason is that testing whether a black-box software system behaves according
to a given model is hard [52]. Constructing informative test queries (i.e., output
queries) is known as test selection and is one of the main problems dealt with in
model-based software testing [100]. Several software testing methods and tools
have been developed for this task in order to aid software development and main-
tenance, see, e.g., [25, 118, 138]. Although, these methods are able to approximate
equivalence queries by (smartly) asking many output queries, this strategy may
not be perfect: due to incomplete coverage, it may occur that the SUT passes the
test for a hypothesis H, even though it does not conform to H.

Sometimes, however, we already have some knowledge about the system we
want to learn. For example, there might exist a reference model that describes how
the system should behave. To check whether the implemented system conforms
to the reference model, we can apply active learning to generate a hypothesis of
the implementation and then compare it to the reference model instead of using
the MBT tool to approximate an equivalence query. This speeds up the learning
process significantly, because the problems related to test completeness and se-
lection can be circumvented. If the two models are equivalent, we have gained
some confidence that the implementation conforms to the reference model and can
further increase it by additional model-based testing. Otherwise, either the hypo-
thesis is incorrect and has to be refined (if the counterexample trace produced by
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the reference model is also a trace of the implementation) or a difference between
the implementation and the reference model has been found. This method for
improving conformance testing using active learning is based on the new notion of
a so-called conformance oracle, which will be introduced in this thesis.

1.2 Bridging the Gap between Active Learning and
Real-World Systems

Typically, state-of-the-art active learning algorithms only perform well if the input
alphabet is small and the state machine has a moderate size. However, real-world
systems are usually much larger, both in terms of the number of input symbols
(due to data parameters in input messages) and in the number of states (due to
the presence of state variables).

Example 1.1 Figure 1.3 depicts an extended finite state machine (EFSM) M in
Mealy machine format of a login system that we will use as an example throughout
this thesis. An EFSM may have extensions to its states and transitions. For
example, its states may contain so called state variables, in which values may be
stored. Its transitions may be extended with assignments to variables, and guards
consisting of predicates which determine whether a transition can be taken or not.
Actions in an EFSM may contain a list of parameters, each of which can assume
different concrete values.

INITstart OUT IN

Register(id0, pw0)/OK
ID:=id0
PW:=pw0

Login(id1, pw1)/
NOK

Logout()/NOK

id1=ID ∧ pw1=PW
Login(id1, pw1)/OK

id1�=ID ∨
pw1�=PW
Login(id1, pw1)/NOK

Register(id0, pw0)/
NOK

Logout()/NOK

Logout()/OK

Login(id1, pw1)/NOK

Register(id0, pw0)/NOK

Figure 1.3: Extended finite state machine in Mealy machine format of a login system

The initial state of M is INIT. Here, a user may register with an ID and pass-
word. These values are stored in the corresponding state variables ID and PW. In
the OUT state the user can login to the system by entering the values selected du-
ring the registration. Only in this case the guard statement is valid and the transi-
tion to the IN state can be taken. Being logged in, the user may log out again. The
Register and Login input both contain two parameters, for which many different
values can be entered. Alice may register with Register(Alice, Alice), login to the
system via Login(Alice, Alice), but may forget her login credentials and try to login
via Login(Alice,myPw). Bob may create two accounts via Register(Bob, secret)
and Register(Bobby, 1234). As one can see, there are infinitely many Register and
Login input symbols with different combinations of ID and password. Thus, to
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infer a good model of the login system using standard active learning techniques,
the learner has to send many queries.

The influence of data on control flow is also taken into account by several
model-based test generation tools, such as ConformiQ Designer [85] and Spec
Explorer [160, 67]. It is therefore important to extend inference techniques to
handle messages containing data parameters with large domains.

Abstraction is the key when learning models of real-world systems. In most
systems, sending the same input with different parameter values from the same
state often leads to equivalent behavior. In the login system, for instance, invalid
logins are handled in the same way. Hence, it would have been sufficient to send an
output query with parameter values that cover a valid login and one with values
that cover the invalid case. Our idea is to divide inputs with the same behavior
into equivalence classes, which are then used as a new and reduced alphabet for
the learner. The inference can be performed using the small alphabet, which is
translated (in a history-dependent manner) to concrete messages via a so-called
mapper, see Figure 1.4. In that way the communication with the SUT can be
accomplished. Answers from the system are again translated back to abstract
symbols of the reduced alphabet. By combining the abstract machine learned in
this way with information from the mapper, it is possible to effectively learn an
EFSM that is equivalent to the Mealy machine of the implementation. Roughly
speaking, the learner is responsible for learning the global “control states” in which
the system can be, and the transitions between those states, whereas the mapper
records some relevant data in terms of state variables (typically computed from
the parameters of previous input and output actions). The approach has been
inspired by ideas from predicate abstraction [103], which has been successful for
extending finite-state model checking to larger and even infinite state spaces. The
introduction of a mapper component enables us to bridge the gap between active
learning and real-world systems. However, the manual construction of a mapper
typically is very time-consuming and requires specialized knowledge of the SUT.
Therefore, it is desirable if such abstractions and mappers could be constructed
fully automatically.

Learner 

abstract 
input 

SUT Mapper 

concrete 
input 

concrete 
output 

abstract 
output 

Figure 1.4: Active learning using a map-
per

In this thesis, we discuss the entire
process of constructing a suitable map-
per component. We first formalize the
fundamental notion of a mapper and the
corresponding operations of abstraction
and concretization. Then we show how a
mapper can be constructed manually to
learn models of realistic systems such as
entities of the SIP and TCP protocol, the
biometric passport, and the EMV proto-
col embedded in bank cards. After this,
we present an algorithm to fully automa-
tically infer models of a specific type of
extended finite state machine. Automatically generating a mapper for any type of
SUT is a mammoth task since the SUT may contain any type of operation, which
is hard to infer in a black-box setting. Therefore, we to focus on a restricted class
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of systems, in which one can test for equality of data parameters, but no operations
on data are allowed. We call this class of extended finite state machines scalarset
Mealy machines, which also comprises the SIP and biometric passport case study
conducted previously. Our approach uses counterexample-guided abstraction refi-
nement (CEGAR), i.e., whenever the current abstraction is too coarse, it is refined
automatically. We have implemented our algorithm in a tool called Tomte. It is
named after the creature that shrank Nils Holgersson and after numerous adven-
tures changed him back to his normal size again [98]. This is exactly what our
Tomte tool is doing. It shrinks the input alphabet to be able to learn the system,
and after numerous experiments, we can enlarge the abstract model again to a
model of the original implementation by enriching it with information from the
mapper component.

1.3 Related Work

This section positions the topic presented in this thesis with respect to other work
in this area. After having discussed the early developments of automata learning,
particularly of active learning, in the first part of this chapter, this section gives
an overview of applications of automata learning and other used techniques as well
as advances in bridging the gap between active learning and real-world systems.

Applications of automata learning Application areas include regression tes-
ting, replacing manual testing by model-based testing, producing models of stan-
dardized protocols, or analyzing whether an existing system is vulnerable to at-
tacks. Regular inference techniques have been applied successfully to learn dif-
ferent types of complex systems such as control software embedded in printers
and copiers [145], web-services [30], network protocols [51, 15, 49], and Java pro-
grams [168, 54, 108]. Moreover, they have been used for several tasks in test
generation and verification. Related work on testing by means of automata lear-
ning techniques includes, for instance, regression testing of telecommunication
systems [73, 86], integration testing [101, 71], security protocol testing [141], fuzz
testing of protocol implementations [49], regression testing to create a specifi-
cation and test suite [73, 86], and combining conformance testing and model
checking [125, 70]. Furthermore, these methods have been used, e.g., to create
models of environment constraints with respect to which a component should be
verified [47], to perform model checking without access to source code or formal
models [70, 125], for program analysis [13], and for formal specification and veri-
fication [47].

Learning different types of models There exists a wide variety of models for
which learning algorithms have been developed: nondeterministic automata [170,
58, 165], probabilistic automata [42, 39], Petri-nets [158], timed automata [163, 68,
164, 69], I/O automata [11], Büchi automata [77], and Mealy machines [122, 107,
147, 139]. As mentioned in the previous section, the models that we consider in this
thesis are scalarset Mealy machines. The notion of a scalarset data type originates
from model checking, where it has been used for symmetry reduction [89]. Trying
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to handle large or even infinite-state systems also motivated the recent work of
Howar et al., who infer a canonical form of register automata [81, 38]. Similar to
our scalarset Mealy machines, a register automaton is capable of expressing the
influence of data on control flow. Moreover, register automata also operate on an
infinite data domain, whose values can be assigned to registers (state variables) and
compared for equality. However, register automata do not comprise parameterized
output symbols. For this purpose, the authors developed an enhanced version of
register automata, called register Mealy machines [80].

Other learning frameworks dealing with data Early work on inferring state
machines with data can be found in [27]. Berg, Jonsson, and Raffelt present a
modification of Angluin’s algorithm to cope with models where the domain over
which parameters range is large but finite. Unlike our approach, all parameters
are booleans and parameters of possible output data are not considered. However,
similar to our approach they partition input symbols into equivalence classes and
refine theses classes whenever two symbols in the same class generate different
reactions by the SUT. In this case the equivalence class is split by introducing a
new guard, which is a conjunction over positive and negated parameter values. In
later work, the authors extend regular inference to infinite-state state machines
with input and output symbols from potentially infinite domains [28]. In a first
phase they infer a Mealy machine model of the SUT using a small explicit data
domain. In a second phase the Mealy machine is folded into a symbolic Mealy
machine by capturing relations between data values.

Groz, Li, and Shahbaz [101, 140, 71] extend regular inference to Mealy machines
with data values for use in integration testing, but use only a finite set of the
data values in the obtained model. In particular, they do not infer internal state
variables. In the work of Shu and Lee [141], parameters are essentially suppressed
in order to obtain a finite subset of input symbols when learning the behavior
of security protocol implementations. This subset can be extended in response to
new information obtained in counterexamples. Lorenzoli, Mariani, and Pezzé infer
models of software components that consider both sequence of method invocations
and their associated data parameters [109, 104]. They infer a control structure of
possible sequence of method invocations. In addition, each invocation is annotated
with a precondition on method parameters, possibly also correlated with accessible
system variables. They use a passive learning approach where the model is inferred
from a given sample of traces, forming the control structure by an extension of the
k-tails algorithm, and using Daikon [36] to infer relations on method parameters.
Their setup is that of passive learning: we use an active learning approach, where
we assume that new queries may be supplied to the system; this is an added
requirement but allows to generate a more informative sample by choosing the
generated input. Furthermore, their work generates constraints that hold for the
observed sample; they do not aim to infer functional relationships between input
and output parameters, nor to infer how internal data variables of a component
are managed.

Active learning algorithms for register automata and register Mealy machines
have been implemented in the LearnLib tool [131, 114] and are presented in [81, 80].
Comparing their approach to our approach of inferring scalarset Mealy machines
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shows that the main ideas are quite similar: both techniques consider a black-box
setting, use the same underlying active Mealy machine learning algorithm, and
apply a CEGAR-based procedure. What is different is the general architecture of
the learning framework. Our structure is more modular by adding new functions
as separate components like a mapper and a lookahead oracle. In contrast, Howar
et al. perform all operations on the old learner component. They adapt the
underlying data structure of the learning algorithm such that it stores all (relevant)
data values. Comparing the details of both techniques reveals that there are more
subtle differences. Since their approach is probably the one most similar to our
approach, we dedicate a separate section on this in Chapter 7. A review of the
development of active learning methods in the last decade dealing with data can
be found in [146].

Abstraction is the key for scaling existing automata-learning methods to realis-
tic applications. In order to learn models whose alphabet is large or infinite, Maler
and Mens [105] define a symbolic representation, where transitions are labeled by
predicates that are a subset of the alphabet. Their proposed method does not
use any auxiliary variables, so that values of the input symbols can only be used
within predicates of the current transition, but cannot be registered for future use.

Automatically generating precise interfaces for white-box components is a rela-
ted area of research. For this purpose, the L∗ algorithm is combined with predicate
abstraction techniques in [12, 142] or symbolic execution in [66] to infer correct
sequences of public method calls of an infinite-state component. For methods
with parameters, method guards are used to define which actual values passed for
the formal parameters correspond to an allowed method call [66]. In contrast to
our work, parameter values are not stored in state variables so that these guards
do not express the influence of data on control flow. Another difference is that
the method guards can be retrieved from the component’s source code using the
underlying symbolic engine. Similar to our approach, the alphabet is then re-
fined accordingly. Also the Σ∗ technique by Botinčan and Babić [34] combines
the L∗ algorithm with symbolic execution and counterexample-guided abstraction
refinement to learn symbolic models of stream filters. In this white-box approach
symbolic execution is employed to extract predicates on input values and terms ge-
nerating output values, which are then used to label the transitions of the so-called
symbolic lookback transducers.

Other applications of mappers The problem of inferring state machines of
real-world systems has gained a lot of interest in the past decade. Quite recently,
mappers have become an important role in this field of research [93]. The idea of
an intermediate component that takes care of abstraction is very natural and is
used, implicitly or explicitly, in many case studies on automata learning. Cho et al.
[40] succeeded to infer models of realistic botnet command and control protocols
by placing an emulator between botnet servers and the learning software, which
concretizes the alphabet symbols into valid network messages and sends them to
botnet servers. When responses are received, the emulator does the opposite — it
abstracts the response messages into the output alphabet and passes them on to
the learning software. In a similar way, Fiterău-Broştean, Janssen, and Vaandrager
infer fragments of the TCP network protocol by using a mapper component, which
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abstracts the large number of possible TCP packets into a limited number of
abstract actions [91, 124].

Other uses of counterexample-guided abstraction refinement The idea
to use CEGAR for learning state machines has also been explored by Howar at al.
[83], who developed and implemented a CEGAR procedure for the special case in
which the abstraction is static and does not depend on the execution history. Mo-
reover, counterexample-guided abstraction refinement techniques have been widely
used in the context of verification and model checking [44, 45, 32]. Several success-
ful software verifiers are based on abstraction and CEGAR like the SLAM toolkit
[21], the model checker BLAST [31], and the model checking tool SatAbs [46]. The
approach by Clarke et al. [44, 45] is similar to our CEGAR-based construction
of the mapper. Both approaches start with a coarse abstraction, but differ when
a counterexample is found. In this case, we always refine the abstract model. In
contrast, in the setting of Clarke et al. an actual counterexample corresponds to
a program that does not satisfy a certain property and terminates the analysis,
while a spurious counterexample is used to refine the abstraction.

More related work specific to the topics addressed in the following chapters can
be found there.

1.4 Contributions of this Thesis

This thesis consists of four parts, which are divided into eight chapters. The
contents of all chapters is based on eight publications, including two journal ar-
ticles, five peer-reviewed conference papers, and one peer-reviewed workshop pa-
per. The notation has been slightly adapted sometimes to make it uniform throu-
ghout the thesis. To avoid repetition, background information on Mealy machines
and active learning required for all chapters has been combined in a separate
chapter in Part I.

Part II is about active learning of symbolic Mealy machines. A symbolic Mealy
machine is similar to an extended finite state machine in Mealy machine format,
see Figure 1.3. It is also equipped with state variables to store data values, and the
transitions may also contain assignments and guard statements. This part presents
a general framework for learning models of systems with large or even infinite state
spaces. In addition, it shows for particular realistic case studies how a mapper can
be constructed manually. Part II contains the following major contributions:

1. We formalize the fundamental notion of a mapper and the corresponding
operations of abstraction and concretization. Moreover, we show that a
concrete model of a system can be constructed from its abstract model and
the associated mapper.

2. Several case studies and experiments show the potential of the described
technique to learn models of real-world systems. In this part we do not
restrict the class of systems to be inferred, but consider different kinds of
abstractions. In the case study about the session initiation protocol (SIP) a
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mapper is defined manually to distinguish between different sessions being
established. In contrast, in the transmission control protocol (TCP) case
study a mapper is constructed with a number of predefined conditions to
predict whether messages follow the protocol. When learning a model of the
biometric passport, abstractions are needed to divide a number of files that
contain passport data into equivalence classes, depending on when these files
are readable. In the case study about inferring the EMV protocol, which is
embedded in bank cards, the mapper is used to learn a counter. It keeps
track of the value of the counter and can abstract when the counter has been
incremented.

Part II is based on the following publications:

• Fides Aarts, Bengt Jonsson, Johan Uijen, and Frits Vaandrager. Generating
Models of Infinite-State Communication Protocols using Regular Inference
with Abstraction. To appear in Formal Methods in System Design. 2014 [7].
This is the full version of the following paper:

• Fides Aarts, Bengt Jonsson, and Johan Uijen. Generating Models of Infinite-
State Communication Protocols using Regular Inference with Abstraction. In
Proceedings ICTSS 2010, 22nd IFIP International Conference on Testing
Software and Systems, Volume 6435 of Lecture Notes in Computer Science,
pages 188–204, Natal, Brazil, November 8–12, 2010 [6].

• Fides Aarts, Julien Schmaltz, and Frits Vaandrager. Inference and Abstrac-
tion of the Biometric Passport. In Proceedings ISoLA 2010, 4th Internatio-
nal Symposium On Leveraging Applications of Formal Methods, Verification
and Validation, Volume 6415 of Lecture Notes in Computer Science, pages
673–686, Crete, Greece, October 18–20, 2010 [10].

• Fides Aarts, Joeri de Ruiter, and Erik Poll. Formal models of bank cards
for free. In Proceedings Software Testing, Verification and Validation Work-
shops (ICSTW 2013), 4th International Workshop on Security Testing (SEC-
TEST), in association with the 6th International Conference on Software
Testing, Verification and Validation (ICST), pages 461–468, Luxembourg
City, Luxembourg, March 22, 2013 [1].

In Part III we focus on active learning of scalarset Mealy machines. A scalarset
Mealy machine is a special case of a symbolic Mealy machine, in which parameter
values may only be checked for equality against other values. This part presents
techniques to automate active learning of scalarset Mealy machines. It contains
the following major contributions:

3. We formalize and describe a procedure to construct the mapper automati-
cally using a counterexample-guided abstraction refinement approach. Whe-
never the current abstraction is too coarse, it is refined automatically. Using
Tomte, a prototype tool implementing our algorithm, we have succeeded to
learn – fully automatically – models of several realistic software components,
including the biometric passport and the SIP protocol.
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4. We present the new notion of a lookahead oracle and provide algorithms to
automatically detect the memorable values of an SUT. By enhancing our
CEGAR-based approach with a lookahead extension (CEGAROLE), we can
apply it to a great extent of scalarset Mealy machines.

5. We compare our approach to another algorithm for learning scalarset Mealy
machines and highlight the differences and respective strengths.

Chapter 6 in Part III is based on the first publication mentioned below. Chapter
7 contains mainly new material and reports on joined work with Harco Kuppens
and Frits Vaandrager. The comparison of different approaches is based on the
second publication mentioned below.

• Fides Aarts, Faranak Heidarian, Harco Kuppens, Petur Olsen, and Frits
Vaandrager. Automata Learning Through Counterexample-Guided Abstrac-
tion Refinement. In Proceedings FM 2012, 18th International Symposium
on Formal Methods, Volume 7436 of Lecture Notes in Computer Science,
pages 10–27, Paris, France, August 27–31, 2012 [2].

• Fides Aarts, Falk Howar, Harco Kuppens, and Frits Vaandrager. Algorithms
for Inferring Register Automata - A comparison of existing approaches. To
appear in Proceedings ISoLA 2014, 6th International Symposium On Leve-
raging Applications of Formal Methods, Verification and Validation, Corfu,
Greece, October 8–11, 2014 [5].

Part IV demonstrates the diversity of application areas for which active learning
can be used. It shows how conformance testing can be improved by combining
automata learning and model-based testing, which is denoted by various terms
like learning-based testing [112], test-based modeling [154], or dynamic testing [132,
129]. This part contains the following main contributions:

6. We show how active learning can be used to establish correctness of an im-
plementation relative to a given reference implementation. For this purpose,
we use a well-known industrial case study from the verification literature, the
bounded retransmission protocol, and a unique combination of software tools
for model construction (Uppaal), active learning (LearnLib, Tomte), model-
based testing (JTorX, TorXakis) and verification (CADP, MRMC) that can
be used for learning models of and revealing errors in implementations.

7. We present the new notion of a conformance oracle and demonstrate how
conformance oracles can be used to speed up conformance checking.

Part IV is based on the following publications:

• Fides Aarts, Harco Kuppens, Jan Tretmans, Frits Vaandrager, and Sicco
Verwer. Improving active Mealy machine learning for protocol conformance
testing. In Machine Learning, Volume 96, Issue 1–2, pages 189–224 , October
2013 [8]. This is the journal version of the following paper:

• Fides Aarts, Harco Kuppens, Jan Tretmans, Frits Vaandrager, and Sicco
Verwer. Learning and Testing the Bounded Retransmission Protocol. In
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Proceedings ICGI 2012, 11th International Conference on Grammatical In-
ference, Volume 21 of JMLR Proceedings, pages 4–18, Washington, DC,
USA, September 5–8, 2012 [9].

These papers have been selected, because they give a good overview of how active
learning can be applied to real-world systems. They describe incrementally how
a mapper component can be constructed – manually as well as automatically and
show how our approach can be used to infer models of challenging real-world
systems. In addition, the potential of active learning is demonstrated by using
(improved) learning techniques to solve problems in new application areas like
security and conformance testing. With respect to all papers, I was mainly involved
in the development and discussion of new algorithms and ideas, the implementation
of the Tomte tool and experiments, the execution of case studies, and writing the
papers. Moreover, I contributed to the following papers, which are also related to
active learning, but are not included in this dissertation:

• Fides Aarts and Frits Vaandrager. Learning I/O Automata. In Proceedings
CONCUR 2010, 21th International Conference on Concurrency Theory, Vo-
lume 6269 of Lecture Notes in Computer Science, pages 71–85, Paris, France,
August 31 – September 3, 2010 [11].

• Fides Aarts, Faranak Heidarian, and Frits Vaandrager. A Theory of History
Dependent Abstractions for Learning Interface Automata. In Proceedings
CONCUR 2012, 23rd International Conference on Concurrency Theory, Vo-
lume 7454 of Lecture Notes in Computer Science, pages 240–255, Newcastle
upon Tyne, UK, September 3–8, 2012 [4].
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Chapter 2
Active Learning of Mealy Machines

In this chapter, in order to fix notation and terminology, we recall the definition
of a Mealy machine and the basic setup of active learning in Angluin-style.

2.1 Mealy Machines

We will use Mealy machines [110] to model real-world systems. In this thesis, real-
world systems usually refer to reactive systems, which produce an output symbol
in response to an input symbol, similar to the Mealy machine formalism.

Definition 2.1 (Mealy machine) A (nondeterministic) Mealy machine is a tuple
M = �I,O,Q, q0,→�, where

• I, O, and Q are nonempty sets of input symbols, output symbols, and states,
respectively,

• q0 ∈ Q is the initial state, and

• →⊆ Q× I ×O ×Q is the transition relation.

We write q
i/o−−→ q� if (q, i, o, q�) ∈→, and q

i/o−−→ if there exists a q� such that q
i/o−−→ q�.

Mealy machines are assumed to be input enabled (or completely specified): for each

state q and input i, there exists an output o such that q
i/o−−→. We say that a Mealy

machine is finite if the set Q of states and the set I of inputs are finite.
An intuitive interpretation of a Mealy machine is as follows. At any point in

time, the machine is in some state q ∈ Q. It is possible to give inputs to the
machine by supplying an input symbol i ∈ I. The machine then (nondeterminis-

tically) selects a transition q
i/o−−→ q�, produces output symbol o, and jumps to the

new state q�.

Example 2.1 Figure 2.1 shows a Mealy machine based on an example in [120].
The set of inputs is I = {0, 1}, the set of outputs is O = {0, 1, 2}, and the set of
states is given by Q = {q0, q1, q2}, where q0 is the initial state marked with an
extra circle. The transition relation is defined by Table 2.1:
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Input
0 1

Source state Output Target state Output Target state
q0 0 q0 1 q1
q1 2 q2 0 q0
q2 1 q1 2 q2

Table 2.1: Transition relation for the Mealy machine in Figure 2.1

q0start q1 q2

1/1

0/0

0/2

1/0 0/1

1/2

Figure 2.1: A simple Mealy machine

Behavior of Mealy Machines The transition relation → is extended to finite
sequences by defining

u/s⇒ to be the least relation that satisfies, for q, q�, q�� ∈ Q,
u ∈ I∗, s ∈ O∗, i ∈ I, and o ∈ O,

• q
�/�⇒ q, and

• if q
i/o−−→ q� and q�

u/s⇒ q�� then q
i u/o s⇒ q��.

Here we use � to denote the empty sequence. We write |s| to denote the length

of a sequence s. Observe that q
u/s⇒ q� implies |u| = |s|. A state q ∈ Q is called

reachable if q0
u/s⇒ q, for some u and s.

Example 2.2 For example, the machine in Figure 2.1 maps 010 to 012 (path:

q0
0/0−−→ q0, q0

1/1−−→ q1, q1
0/2−−→ q2), 1101 is mapped to 1001, and 1110 to 1012. As

one can see it computes residues modulo 3 for a binary input (most significant
bit first) number. Given an input word i1 . . . in, the jth output of the machine
corresponds to i1 . . . ij modulo 3. For input 010 mentioned before it computes 0
mod 3 = 0, 1 mod 3 = 1, 2 mod 3 = 2, for input 1101 it computes 1 mod 3 = 1,
3 mod 3 = 0, 6 mod 3 = 0, 13 mod 3 = 1, and for input 1110 it computes 1
mod 3 = 1, 3 mod 3 = 0, 7 mod 3 = 1, 14 mod 3 = 2.

An observation over input symbols I and output symbols O is a pair (u, s) ∈
I∗ × O∗ such that sequences u and s have the same length. For q ∈ Q, we define
obsM(q), the set of observations of M from state q, by

obsM(q) = {(u, s) ∈ I∗ ×O∗ | ∃q� : q u/s⇒ q�}.

We write obsM as a shorthand for obsM(q0). Note that, since Mealy machines are
input enabled, obsM(q) contains at least one pair (u, s), for each input sequence
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2.1 Mealy Machines

u ∈ I∗. We call M behavior deterministic if obsM contains exactly one pair (u, s),
for each u ∈ I∗. (In the literature on transducers the term single-valued is used
instead [161].)

Two states q, q� ∈ Q are observation equivalent, denoted q ≈ q�, if obsM(q) =
obsM(q�). Two Mealy machines M1 and M2 with the same sets of input symbols
are observation equivalent, notation M1 ≈ M2, if obsM1

= obsM2
. We say that

M1 implements M2, notation M1 ≤ M2, if M1 and M2 have the same sets of
input symbols and obsM1 ⊆ obsM2 .

The following lemma easily follows from the definitions.

Lemma 2.1 Suppose M1 ≤ M2 and M2 is behavior deterministic. Then M1 ≈
M2.

Proof. It suffices to prove obsM2 ⊆ obsM1 . Assume (u, s) ∈ obsM2 . Since M1

is input enabled, there exists an s� such that (u, s�) ∈ obsM1
. Since M1 ≤ M2,

(u, s�) ∈ obsM2
. Because M2 is behavior deterministic, s = s�. Thus (u, s) ∈

obsM1
, as required.

We say that a Mealy machine is finitary if it is observation equivalent to a
finite Mealy machine.

Example 2.3 Trivially, each finite Mealy machine is finitary. An example of a
finitary Mealy machine that is not finite is a Mealy machine with as states the
set IN of natural numbers, initial state 0, a single input i and a single output o,
and transitions n

i/o−−→ n + 1. This Mealy machine, which records in its state the
number of inputs that has occurred, is observation equivalent to a Mealy machine

with a single state q0 and a single transition q0
i/o−−→ q0.

Deterministic Mealy Machines A Mealy machine M = �I,O,Q, q0,→�, is
deterministic if for each state q and input symbol i there is exactly one output

symbol o and exactly one state q� such that q
i/o−−→ q�. A deterministic Mealy

machine M can equivalently be represented as a structure �I,O,Q, q0, δ,λ�, where
update function δ : Q× I → Q and output function λ : Q× I → O are defined by:

q
i/o−−→ q� ⇒ δ(q, i) = q� ∧ λ(q, i) = o.

Update function δ is extended to a function from Q × I∗ → Q by the following
classical recurrence relations:

δ(q, �) = q,

δ(q, i u) = δ(δ(q, i), u).

Similarly, output function λ is extended to a function from Q× I∗ → O∗ by

λ(q, �) = �,

λ(q, i u) = λ(q, i) λ(δ(q, i), u).

Example 2.4 It is easy to see that a deterministic Mealy machine is behavior
deterministic. Figure 2.2 gives an example of a behavior deterministic Mealy
machine that is not deterministic.
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i/o1 i/o1

i/o2 i/o2

Figure 2.2: Mealy machine that is behavior deterministic but not deterministic

2.2 Active Learning
In order to learn Mealy machines, we define a slight variation of the active learning
setting of Angluin [14]. The basic setup for active learning is illustrated in Figure
2.3, similar to the one presented in Figure 1.2.

 
Learner 

hypothesis  
Oracle 

 
Implementation 

yes/ 
counterexample 

input 

output 

input output 

Figure 2.3: Basic setting for active learning of real-world systems. A learner starts
by providing inputs (output queries) to an implementation of the system (SUT), the im-
plementation produces the corresponding outputs. By intelligently choosing these inputs,
the learner is able to form a hypothesis model of the implementation’s internal behavior.
This model is provided to an oracle (equivalence/inclusion queries). The oracle then tests
whether this model correctly describes the inner workings of the implementation. For this
purpose, the oracle (e.g. a MBT tool) may communicate with the implementation, see
the dashes lines, but it may also use other sources of knowledge. If the hypothesis is cor-
rect, the oracle returns yes. Otherwise, it returns a counterexample demonstrating this
incorrectness.

Let M = �I,O,Q, q0,→� be a behavior deterministic Mealy machine. An
implementation of M is a device that maintains the current state of M, which
at the beginning equals q0. An implementation of M accepts inputs in I, called
output queries, as well as a special reset input. Upon receiving query i ∈ I, the
implementation picks a transition q

i/o→ q�, where q is its current state, generates
output o ∈ O, and updates its current state to q�. Upon receiving a reset, the
implementation resets its current state to q0. In contrast to Angluin’s setting,
where the learner asks whether an input string is a member of a language, we ask
for the outputs produced. Therefore, the term output queries is more appropriate
than membership queries.
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2.2 Active Learning

An oracle or teacher for M is a device which accepts an inclusion query or
hypothesis H as input, where H is a Mealy machine with inputs I. Upon receiving
a hypothesis H, an oracle for M will produce output yes if the hypothesis is
correct, that is, M ≤ H, or else output a counterexample, which is an observation
(u, s) ∈ obsM−obsH. The combination of an implementation of M and an oracle
for M corresponds to what Angluin [14] calls a teacher for M.

A learner for I is a device that may send inputs in I ∪ {reset} to an implemen-
tation of M, and Mealy machines H over I to an oracle for M. The task of the
learner is to learn a correct hypothesis in a finite number of steps, by observing
the outputs generated by the implementation and the oracle in response to the
queries.

Note that inclusion queries are slightly more general than the equivalence que-
ries used by Angluin [14] and Niese [122]. However, if M ≤ H and moreover H is
behavior deterministic then M ≈ H by Lemma 2.1. Hence, a deterministic hypo-
thesis is correct in our setting iff it is correct in the settings of Angluin and Niese.
For case studies where we consider deterministic SUTs, we use both terms syno-
nymously when discussing experimental results. The reason for our generalization
will be discussed in Section 3.1.4.

The typical behavior of a learner is to start by asking sequences of output
queries (alternated with resets) until a “stable” hypothesis H can be built from
the answers. After that an inclusion query is made to find out whether H is cor-
rect. If the answer is yes then the learner has succeeded. Otherwise the returned
counterexample is used to perform subsequent output queries until converging to
a new hypothesized automaton, which is supplied in an inclusion query, etc.

Below we give a simplified presentation of the L∗ learning algorithm as it
has been implemented, for instance, in the LearnLib tool [131, 114]. The actual
algorithm of LearnLib contains several optimizations that are explained in [147,
114].

In order to organize the collected observations, the learner maintains an ob-
servation table O. An observation table is a tuple O = (S,E, T ) consisting of a
nonempty finite prefix-closed set S of strings, a nonempty finite suffix-closed set
E of strings and a function T , which maps (S ∪ (S · I)) · E to a symbol from the
output alphabet O, where · denotes the concatenation of strings. Intuitively, S
characterizes the states in the automaton, E is used to distinguish states by their
future behavior, and T corresponds to a function that returns the last output
symbol produced in response to a sequence of output queries.

E

S ∪ (S · I)
�

S O
S · I O

Table 2.2: Example of an observation table

An observation table can be viewed
as a table with the elements of S∪(S ·I)
representing the rows and the elements
of E labeling the columns, see Table
2.2. An entry in the table identifies the
last symbol of the output string that is
produced after the sequence of input
symbols, defined by its row and column accordingly, is executed.

To construct a Mealy machine from the observation table, it must fulfill two
criteria. It has to be closed and consistent. We say that an observation table is

• closed if all transitions lead to already established states, i.e. if for each
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2 Active Learning of Mealy Machines

w� · a ∈ S · I there exists a string w ∈ S that has the same answer to the
corresponding output query, thus row(w� · a) = row(w), and

• consistent if identically characterized states show the same future behavior,
i.e. if whenever w1, w2 ∈ S are such that row(w1) = row(w2), then for all
a ∈ I we have row(w1 · a) = row(w2 · a).

As described before, the learner maintains the observation table O = (S,E, T ),
where initially S contains the single element {ε} and E is initialized with the
whole set of input symbols I. The learner starts by asking output queries of form
((S ∪ (S · I)) ·E) to fill the fields in the table. Each entry in the table is filled with
an element of the output alphabet O representing the last symbol of the answer.
After this, it is checked whether the given observation table fulfils the conditions
of closedness and consistency.

If O is not closed, then the learner finds a w� ∈ S and a ∈ I such that
row(w� · a) �= row(w) for all w ∈ S. In this case, the learner adds w� · a to S and
asks output queries for all the strings of the form w� · a · b · e, where e ∈ E, b ∈ I
and w� · a · b corresponds to a row that has to be added to the lower part of the
table.

If O is not consistent, then the learner finds two strings w1, w2 ∈ S, e ∈ E
and a ∈ I such that row(w1) = row(w2), but T (w1 · a · e) �= T (w2 · a · e). Then
the learner adds the string a · e to E and asks output queries in order to fill the
missing fields in the new column.

When O is closed and consistent, it is possible to construct the corresponding
deterministic Mealy machine H = �I,O,Q, q0, δ,λ� as follows:

• Q = {row(w)|w ∈ S} is the set of distinct rows,

• q0 = row(ε) is the initial state,

• δ(row(w), a) = row(w · a),

• λ(row(w), a) = T (w · a).
The learner creates the hypothesized automaton H and asks an inclusion query
to the teacher. If the teacher replies with yes, then the algorithm terminates with
output H. Otherwise a counterexample (u,s) is returned, where u, including all
its prefixes u�, is added to S. Then the learner asks output queries for the missing
entries.

Example 2.5 Let us consider an example Mealy machine M based on Sipser
[143], which we want to infer. The automaton M is depicted in Figure 2.4(a).
We start by asking output queries for a, b, aa, ab, ba, and bb. The answers are
filled in the initial observation table O1 shown in Table 2.3(a), where S = {ε} and
E = {a, b}. This table is not closed since row(a) �= row(ε) and row(b) �= row(ε).
As they are equal, it is sufficient to add one of them to S. Thus, a is moved to
S and O is extended by asking output queries for aaa, aab, aba, and abb, see O2

shown in Table 2.3(b). Now the table is both closed and consistent. The learner
can make a first guess by constructing the hypothesized automaton H shown in
Figure 2.4(b) and asking an inclusion query to the teacher. The teacher rejects H
and replies with a counterexample - assume (bba,ccd), where H produces ccc. To
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q0

start

q1 q2

a/d

b/c

b/c

a/c

a/c

b/c

(a) An example Mealy machine M

ε

start

a

a/d b/c

b/c

a/c

(b) A hypothesized Mealy ma-
chine H

Figure 2.4: A Mealy machine to be inferred and a hypothesized Mealy machine

process the counterexample, we add bba and all its prefixes (b and bb) to S. S is
now {ε, a, b, bb, bba} and we ask output queries for all ((S ∪ (S · I)) ·E). The newly
constructed observation table O3 is depicted in Table 2.3(c). This observation
table is no longer consistent since row(a) = row(b) but row(aa) �= row(ba). So
we add aa to E and ask output queries to fill the new column. This results in
observation table O4, which is shown in Table 2.3(d). This table is closed and
consistent, so that we can make a second guess and ask an inclusion query to the
teacher. The teacher replies with yes, i.e. the hypothesized automaton is equal to
M and the algorithm terminates. Note that in Table 2.3(d) row(ε) = row(bb) and
row(a) = row(bba). Because Q is the set of distinct rows, the hypothesized Mealy
machine H merges these states and as a result contains three states equivalent to
the states of M.

(a) O1

O1 a b

ε d c
a c c
b c c

(b) O2

O2 a b

ε d c
a c c
b c c
aa d c
ab c c

(c) O3

O3 a b

ε d c
a c c
b c c
bb d c
bba c c
aa d c
ab c c
ba c c
bbb c c
bbaa d c
bbab c c

(d) O4

O3 a b aa

ε d c c
a c c d
b c c c
bb d c c
bba c c d
aa d c c
ab c c d
ba c c c
bbb c c c
bbaa d c c
bbab c c d

Table 2.3: Observation tables

For finitary, behavior deterministic Mealy machines the above problem is well
understood. The L∗ algorithm has been adapted to Mealy machines by Niese [122],
which again has been optimized by Steffen et al. in the L∗

M algorithm [147],
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2 Active Learning of Mealy Machines

implemented in the LearnLib tool [131, 114]. LearnLib is the winner of the 2010
Zulu competition on regular inference [82, 48] and, currently, is able to learn
state machines with at most 10,000 states. Both learning algorithms generate
deterministic hypotheses H that are the minimal Mealy machines that agree with
a performed set of output queries. In theory, we have defined an output query as
a single input symbol that is sent to an implementation. For readability, however,
and to keep numbers as small as possible, we have decided to count sequences of
inputs (separated by resets) when learning or verifying a hypothesis. Especially if
performing long test traces, counting single inputs results in huge numbers that are
difficult to compare. Since in practice there is no oracle that can answer equivalence
or inclusion queries, LearnLib “approximates” such an oracle by generating long
test sequences using standard methods like state cover, transition cover, or the
W-method. These test sequences are then applied to the implementation to check
if the produced output agrees with the output predicted by the hypothesis. In this
thesis, we use LearnLib as the basic active learning tool, but there exist also other
libraries like libalf [33] that implement active learning algorithms.

2.3 Inference Using Subalphabets
If an implementation M has a large set of input symbols, learning a model for M
may become difficult, in particular the construction of a good testing oracle. In
Section 3.1, we will explore the use of abstractions to reduce the size of the input
alphabet. A very simple orthogonal strategy, which has been successfully used in
[144], is to first learn a model for a small subset of the input alphabet, and to
extend this model in a stepwise fashion by enlarging the subset of input symbols
considered.

In this approach, rather than learning a model for a Mealy machine M =
�I,O,Q, q0,→�, we learn a model for the Mealy machine M ↓ J , for some subset
of input symbols J ⊆ I. Here M ↓ J , the restriction of M to subalphabet J , is
the Mealy machine �J,O,Q, q0,→��, where →�= {(q, i, o, q�) ∈→| i ∈ J}.
Example 2.6 The restriction operator is illustrated by a simple example of a
two-place buffer in Figure 2.5.

start
put/ok

get/nok

put/ok

get/ok

put/nok

get/ok

(a)

start
put/ok put/ok

put/nok

(b)

Figure 2.5: Mealy machine M1 for a two-place buffer (a) and the restriction M1 ↓
{put} (b).
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The next lemma, which follows immediately from the definitions, characterizes
the set of traces of the restriction.

Lemma 2.2 Let M be a Mealy machine with input alphabet I and let J ⊆ I.
Then obsM↓J = {(u, s) ∈ obsM | u ∈ J∗}.

The adjoint extension operator enlarges the set of inputs of a Mealy machine.
Whenever an input arrives that is not in the original input alphabet, the extension
moves to a “chaos” state χ in which any behavior is possible. Formally, if J ⊇ I,
then M ↑ J , the extension of M to input alphabet J , is the Mealy machine
�J,O,Q ∪ {χ}, q0,→��, where χ �∈ Q is a fresh state and

→� = → ∪{(q, i, o,χ) | q ∈ Q ∧ i ∈ J − I ∧ o ∈ O} ∪ {(χ, i, o,χ) | i ∈ J ∧ o ∈ O}.

Example 2.7 The extension operator is illustrated in Figure 2.6. Here a tran-
sition with output any abbreviates two transitions with outputs ok and nok,
respectively.

start
put/ok put/ok

put/nok

(a)

start
put/ok

get/any

put/ok

get/any

put/nok

get/any

get/any put/any

(b)

Figure 2.6: Mealy machine M2 with inputs {put} (a) and the extension M2 ↑
{put,get} (b).

The next lemma, which follows immediately from the definitions, characterizes
the set of traces of the extension.

Lemma 2.3 Let M be a Mealy machine with input alphabet I and let J ⊇ I.
Then

obsM↑J = obsM ∪
{(u1 i u2, s1 s2) ∈ J∗ ×O∗ | (u1, s1) ∈ obsM ∧ i ∈ J − I ∧
|u2| = |s2|− 1}.

Lemma’s 2.2 and 2.3 imply that the extension and restriction operators are
monotone. In combination with the following result, it follows that the restriction
and extension operators together constitute a Galois connection.

Lemma 2.4 Let, for i = 1, 2, Mi = �Ii, Oi, Qi, q
0
i ,→i� be Mealy machines with

I1 ⊇ I2 and O1 = O2. Then M1 ↓ I2 ≤ M2 iff M1 ≤ M2 ↑ I1.
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Proof. Suppose M1 ↓ I2 ≤ M2. We must prove obsM1 ⊆ obsM2↑I1 . Suppose
(u, s) ∈ obsM1 . We consider two cases.

1. u ∈ I∗2 . Then, by Lemma 2.2, (u, s) ∈ obsM1↓I2 . By assumption, (u, s) ∈
obsM2

. By Lemma 2.3, (u, s) ∈ obsM2↑I1 , as required.

2. u is of the form u2iu1 with u2 ∈ I∗2 , i ∈ I1−I2 and u1 ∈ I∗1 . Let s2 be the pre-
fix of s with length equal to u2. Since the set of observations of a Mealy ma-
chine is prefix closed, (u2, s2) ∈ obsM1

. By Lemma 2.2, (u2, s2) ∈ obsM1↓I2 .
Hence, by the assumption, (u, s) ∈ obsM2

. By Lemma 2.3, (u, s) ∈ obsM2↑I1 ,
as required.

In order to prove the converse implication, suppose M1 ≤ M2 ↑ I1. We must
prove obsM1↓I2 ⊆ obsM2 . Suppose (u, s) ∈ obsM1↓I2 . Then, by Lemma 2.2,
u ∈ I∗2 and (u, s) ∈ obsM1

. Thus, by the assumption, (u, s) ∈ obsM2↑I1 . Using
u ∈ I∗2 it follows, by Lemma 2.3, that (u, s) ∈ obsM2

, as required.

The Mealy machines of Figures 2.5 and 2.6 may be used to illustrate Lemma 2.4.
Clearly M1 ↓ {put} ≤ M2. The reader may check that M1 ≤ M2 ↑ {put,get}.
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Chapter 3
Generating Models of Infinite-State

Communication Protocols using
Regular Inference with Abstraction

In this chapter, we present a general framework for generating models of protocol
components with large or infinite structured message alphabets and state spaces.
We use an externally supplied abstraction layer, which translates between a large
or infinite message alphabet of the component to be modeled and a small finite
alphabet of the regular inference algorithm. Via regular inference, a finite-state
model of the abstracted interface is inferred. The abstraction can then be reversed
to generate a faithful model of the component.

We describe how to construct a suitable abstraction from knowledge about
which operators are sufficient to express guards and operations on data in a faithful
model of the component. We have implemented our techniques by connecting the
LearnLib tool for regular inference with an implementation of SIP in ns-2 and an
implementation of TCP in Windows 8, and generated models of SIP and TCP
components.

Contribution The main contribution of this chapter is a formalization of the
fundamental notion of a mapper component and associated operations of abstrac-
tion and concretization, and some results (in particular Theorems 3.1 and 3.3)
that allow us to construct a concrete model of a system from abstract model and a
mapper. Technically, a mapper is a deterministic Mealy machine with additional
structure, and as such a specific type of transducer (not necessarily finite state).
However, the operations that we define for mappers (abstraction and concretiza-
tion) are new and different from the operations usually considered for transducers
such as union, Kleene closure, and composition [116]. Two case studies and ex-
periments show the potential of the described technique to learn interfaces of real
protocol implementations.

Organization Our new abstraction technique is presented in Section 3.1. Sec-
tion 3.2 discusses the symbolic representation of Mealy machines and mappers.
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Section 3.3 describes how mappers can be constructed in a systematic way. The
application to SIP and TCP is reported in Section 3.4. Section 3.5 contains conclu-
sions and directions for future work. Appendices 3.A, 3.B and 3.C display the
(abstract) models that we learned for the SIP and TCP protocols.

3.1 Inference using Abstraction

Existing implementations of inference algorithms only proved effective when ap-
plied to machines with small alphabets (sets of input and output symbols). Practi-
cal systems, however, typically have large alphabets, e.g. inputs and outputs with
data parameters of type integer or string. In order to infer large- or infinite-state
Mealy machines, we adapt ideas from predicate abstraction [103, 45], which have
been successful for extending finite-state model checking to large and infinite state
spaces. The main idea is to divide the concrete input domain into a small number
of abstract equivalence classes in a history-dependent manner.

Example 3.1 (Component of a simple communication protocol) Consider a
Mealy machine MCOM that models a component of a simple communication pro-
tocol. The component accepts request messages, which are modeled as inputs of
MCOM , and generates OK/NOK reply messages, which correspond to outputs of
MCOM . The set of inputs is I = {REQ(id, sn) | id, sn ∈ N}, where parameter
id is an identifier and parameter sn is a sequence number. The set of outputs is
O = {OK,NOK}. The set of states is given by Q = N × N × B, where the two
natural numbers record the current values of id and sn, respectively, and the boo-
lean value denotes whether the component has been initialized. The initial state
is q0 = (0, 0,F). The transition relation contains the following transitions, for all
id, sn, id�, sn� ∈ N:

(id, sn,F)
REQ(id�,sn�)/OK−−−−−−−−−−−→ (id�, sn�,T)

(id, sn,T)
REQ(id�,sn�)/OK−−−−−−−−−−−→ (id�, sn�,T) if id� = id and sn� = sn+ 1

(id, sn,T)
REQ(id�,sn�)/NOK−−−−−−−−−−−−→ (id, sn,T) otherwise

With the first transition the “current” session is initialized by storing the id and sn
received in the request message. If in any subsequent request the id of the “current”
session is used in combination with the successor of the sequence number sn, an
OK output is produced, otherwise a NOK output is returned.

Since infinitely many combinations of concrete values need to be handled, e.g.
REQ(0, 0), REQ(1, 0), and REQ(1, 1), application of the L∗ algorithm is impos-
sible. To infer the machine, we place a mapper module in between the learner and
the implementation that abstracts the set of concrete parameter values to (small)
finite sets of abstract values, see Figure 3.1.

Concrete symbols of form REQ(id, sn) are abstracted to symbols of form
REQ(ID,SN), where ID and SN are from a small domain, say {CUR,OTHER}.
We abstract the parameter value id by CUR if id is the identifier of the “cur-
rent” session, and by OTHER otherwise. We abstract the parameter sn in a
similar way: to CUR if it is the successor of the current sequence number, and
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Learner Mapper Implemen-
tation

✲REQ(CUR,CUR) ∈ X ✲REQ(25, 4) ∈ I

✛ OK ∈ O✛ OK ∈ Y

Figure 3.1: Introduction of mapper component

to OTHER otherwise. Thus, for instance, input string REQ(25, 4) REQ(25, 7) is
abstracted to REQ(CUR,CUR) REQ(CUR,OTHER), whereas the input string
REQ(25, 4) REQ(42, 5) is abstracted to REQ(CUR,CUR) REQ(OTHER,CUR).
The resulting abstraction is not “state-free”, as it depends on the current values of
the session. The mapper records these values in its state.

In general, in order to learn a “large” Mealy machine M, we place a mapper in
between the implementation and the learner, which translates the concrete inputs
in I to the abstract inputs in X, the concrete outputs in O to the abstract outputs
in Y , and vice versa. This will allow us to reduce the task of the learner to
inferring a “small” Mealy machine with alphabet X and Y , which sometimes is
an over-approximation of M, see Section 3.1.4. The next subsection formalizes
the concept of a mapper and establishes some technical lemmas. After that, in
Subsection 3.1.5, we show how we can turn the abstract model that the learner
learns in the setup of Figure 3.1, into a correct model for the Mealy machine of
the implementation.

3.1.1 Mappers
The behavior of the intermediate component is fully determined by the notion of
a mapper. A mapper encompasses both concrete and abstract sets of input and
output symbols, a set of states, an initial state, a transition function that tells
us how the occurrence of a concrete symbol affects the state, and an abstraction
function which, depending on the state, maps concrete to abstract symbols.

Definition 3.1 (Mapper) A mapper for a set of inputs I and a set of outputs O
is a deterministic Mealy machine A = �I ∪O,X ∪ Y,R, r0, δ, abstr�, where

• I and O are disjoint sets of concrete input and output symbols,

• X and Y are finite sets of abstract input and output symbols, and

• abstr : R × (I ∪ O) → (X ∪ Y ), referred to as the abstraction function,
respects inputs and outputs, that is, for all a ∈ I ∪ O and r ∈ R, a ∈ I ⇔
abstr(r, a) ∈ X.

By definition of Mealy machines, R is the set of states and δ is the update function.

So a mapper is a Mealy machine A in which the concrete inputs I and outputs O
of the implementation act as inputs, and the abstract inputs X and outputs Y used
by the learner act as outputs. Since for each concrete symbol and each state of the
mapper there is a unique abstract symbol, Mealy machine A is deterministic. An
alternative definition, that would be closer to the intuitions reflected in Figure 3.1,
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would take X and O as the inputs of the mapper, and I and Y as the outputs.
However, such a Mealy machine would in general not be deterministic, and this
would complicate subsequent definitions and proofs. Technically, a mapper is just
a transducer in the sense of [116], which transforms concrete actions into abstract
actions. In fact, the natural notion of composition of mappers is just the standard
definition of composition for transducers [116].

Example 3.2 (A mapper for MCOM ) We define A = �I∪O,X∪Y,R, r0, δ, abstr�,
a mapper for the Mealy machine MCOM of Example 3.1. The sets I and O of the
mapper are the same as for MCOM . The set of abstract input symbols is

X = {REQ(CUR,CUR),REQ(CUR,OTHER),REQ(OTHER,CUR),

REQ(OTHER,OTHER)},

and the set of abstract output symbols Y equals the set of concrete outputs O. The
mapper records the current values of id and sn in its state: R = {⊥} ∪ (N × N).
Initially, no values for id and sn have been selected: r0 =⊥. The state of the
mapper only changes when a REQ(id, sn) input arrives in the initial state, or
when id is the current session identifier and sn the successor of the current sequence
number:

δ(⊥,REQ(id, sn)) = (id, sn)

δ((id, sn),REQ(id�, sn�)) = (id�, sn�) if id� = id ∧ sn� = sn+ 1

δ((id, sn),REQ(id�, sn�)) = (id, sn) if id� �= id ∨ sn� �= sn+ 1

Output actions do not change the state of the mapper: δ(r, o) = r, for r ∈ R and
o ∈ O. In the initial state the abstraction function maps all parameter values to
CUR:

abstr(⊥,REQ(id, sn)) = REQ(CUR,CUR).

The abstraction function forgets the concrete parameter values of any subsequent
request and only records whether they are correct or not:

abstr((id, sn),REQ(id�, sn�)) = REQ(ID,SN),

where

ID = if id� = id then CUR else OTHER, and
SN = if sn� = sn+ 1 then CUR else OTHER.

For outputs abstr acts as the identity function.

3.1.2 The Abstraction Operator
A mapper allows us to abstract a Mealy machine with concrete symbols in I and
O into a Mealy machine with abstract symbols in X and Y , and conversely, via
an adjoint operator, to concretize a Mealy machine with symbols in X and Y into
a Mealy machine with symbols in I and O. First we show how an abstract Mealy
machine can be built from a mapper and a concrete Mealy machine, and explore
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some properties of this construction. Basically, the abstraction of Mealy machine
M via mapper A is the Cartesian product of the underlying transition systems, in
which the abstraction function is used to convert concrete symbols into abstract
ones.

Definition 3.2 (Abstraction) Let M = �I,O,Q, q0,→� be a Mealy machine and
let A = �I ∪O,X ∪ Y,R, r0, δ, abstr� be a mapper. Then αA(M), the abstraction
of M via A, is the Mealy machine �X,Y ∪ {⊥}, Q× R, (q0, r0),→�, where ⊥ is a
fresh abstract output symbol and → is given by the rules

q
i/o−−→ q�, r

i/x−−→ r�
o/y−−→ r��

(q, r)
x/y−−→ (q�, r��)

� ∃i ∈ I : r
i/x−−→

(q, r)
x/⊥−−−→ (q, r)

The first rule says that a state (q, r) of the abstraction has an outgoing x-

transition for each transition q
i/o−−→ q� of M with abstr(r, i) = x. In this case,

there exist unique r�, r�� and y such that r
i/x−−→ r�

o/y−−→ r�� in the mapper. An
x-transition in state (q, r) then leads to state (q�, r��) and produces output y. The
second rule in the definition is required to ensure that the abstraction αA(M)
is input enabled. Given a state (q, r) of the mapper, it may occur that for some
abstract input symbol x there exists no corresponding concrete input symbol i with
abstr(r, i) = x. In this case, an input x triggers the special “undefined” output
symbol ⊥ and leaves the state unchanged.

Example 3.3 (Abstraction of MCOM ) The abstraction αA(MCOM ) of our
example Mealy machine MCOM has the same abstract input and output sym-
bols as mapper A, except for an additional “undefined” abstract output symbol
⊥. States of the abstract Mealy machine αA(MCOM ) are pairs (q, r) where q is a
state of Mealy machine MCOM and r is a state of mapper A. The initial state is
((0, 0,F),⊥). We have the following transitions, for all sn, id ∈ N (only transitions
reachable from the initial state are listed):

((0, 0,F),⊥)
REQ(CUR,CUR)/OK−−−−−−−−−−−−−−−→ ((id, sn,T), (id, sn))

((0, 0,F),⊥)
REQ(CUR,OTHER)/⊥−−−−−−−−−−−−−−−−−→ ((0, 0,F),⊥)

((0, 0,F),⊥)
REQ(OTHER,CUR)/⊥−−−−−−−−−−−−−−−−−→ ((0, 0,F),⊥)

((0, 0,F),⊥)
REQ(OTHER,OTHER)/⊥−−−−−−−−−−−−−−−−−−−−→ ((0, 0,F),⊥)

((id, sn,T), (id, sn))
REQ(CUR,CUR)/OK−−−−−−−−−−−−−−−→ ((id, sn+ 1,T), (id, sn+ 1))

((id, sn,T), (id, sn))
REQ(CUR,OTHER)/NOK−−−−−−−−−−−−−−−−−−−→ ((id, sn,T), (id, sn))

((id, sn,T), (id, sn))
REQ(OTHER,CUR)/NOK−−−−−−−−−−−−−−−−−−−→ ((id, sn,T), (id, sn))

((id, sn,T), (id, sn))
REQ(OTHER,OTHER)/NOK−−−−−−−−−−−−−−−−−−−−−−→ ((id, sn,T), (id, sn))

Observe that, by the second rule in Definition 3.2, the abstract inputs REQ(CUR,
OTHER), REQ(OTHER,CUR), and REQ(OTHER,OTHER) in the initial state
trigger an output ⊥, since in this state all concrete input actions are mapped to
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h

start

h�
REQ(C,C)/OK

REQ(O,C)/ ⊥

REQ(O,O)/ ⊥
REQ(C,O)/ ⊥

REQ(C,C)/OK

REQ(C,O)/NOK

REQ(O,C)/NOK

REQ(O,O)/NOK

Figure 3.2: Minimal Mealy machine HCOM equivalent to αA(MCOM )

REQ(CUR,CUR). Mealy machine αA(MCOM ) is infinite state, but it is not hard
to see that it is observation equivalent to the finite, deterministic Mealy machine
HCOM displayed in Figure 3.2.

The abstraction function of a mapper can be lifted to observations in a straight-
forward manner: every concrete input or output string can be turned into an abs-
tract string by stepwise transforming every symbol according to abstr . First, we
need some notation. Given two sequences u and s of equal length, zip(u, s) is the
sequence obtained by zipping them together. Function zip is inductively defined
as follows:

zip(�, �) = �

zip(i u, o s) = i o zip(u, s)

Conversely, given any sequence w with an even number of elements, odd(w) and
even(w) are the subsequences obtained by picking all the odd resp. even elements
from w:

odd(�) = �

odd(a b w) = a odd(w)

even(�) = �

even(a b w) = b even(w)

By induction it follows that zip(odd(w), even(w)) = w.

Definition 3.3 (Abstraction of observations) Let A be a mapper. Then function
τA, which maps concrete observations over I and O to abstract observations over
X and Y , is defined by

τA(u, s) : I
∗×O∗ → X∗×Y ∗ = (odd(w), even(w)), where w = abstr(r0, zip(u, s)).

For a given mapper A, the abstraction operator on Mealy machines is of course
closely related to the abstraction operator on observations. The connection is
formally established in Claim 1 below. Using the claim, we link observations of
M to observations of αA(M) in Lemma 3.1.

Claim 1. Suppose q
u/s⇒ q� is a transition of Mealy machine M, r� = δ(r, zip(u, s)),

w = abstr(r, zip(u, s)), u� = odd(w) and s� = even(w). Then (q, r)
u�/s�⇒ (q�, r�) is

a transition of αA(M).
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Proof. By induction on the length of u.
Basis: |u| = 0. Then u = � and because q

u/s⇒ q� implies |u| = |s|, also s = �.

Since q
�/�⇒ q�, it follows that q = q�. Furthermore, r� = δ(r, zip(�, �)) = δ(r, �) = r,

w = abstr(r, zip(�, �)) = abstr(r, �) = �, u� = odd(�) = � and s� = even(�) = �.

This implies (q, r)
u�/s�⇒ (q�, r�), as required.

Induction step: Assume u = i ū, where i ∈ I and ū is of length n. Then we can
write s = o s̄, where o ∈ O and s̄ is of length n. Since q

u/s⇒ q�, there exists a state
q�� such that

q
i/o−−→ q�� ∧ q��

ū/s̄⇒ q�.

Let r1 = δ(r, i) and r2 = δ(r1, o). We infer

r� = δ(r, zip(u, s)) = δ(r, i o zip(ū, s̄)) = δ(r1, o zip(ū, s̄)) = δ(r2, zip(ū, s̄)).

Let w� = abstr(r2, zip(ū, s̄)), u�� = odd(w�) and s�� = even(w�). By induction
hypothesis,

(q��, r2)
u��/s��⇒ (q�, r�) (1)

is a transition of αA(M). Let x = abstr(r, i) and y = abstr(r1, o). Then by the
first rule in the definition of αA(M),

(q, r)
x/y−−→ (q��, r2). (2)

We infer

w = abstr(r, zip(u, s)) = abstr(r, i o zip(ū, s̄)) = x abstr(r1, o zip(ū, s̄))

= x y abstr(r2, zip(ū, s̄)) = x y w�,

u� = odd(w) = odd(x y w�) = x odd(w�) = x u��, (3)
s� = even(w) = even(x y w�) = y even(w�) = y s��. (4)

Combination (1), (2), (3) and (4) now gives (q, r)
u�/s�⇒ (q�, r�), as required.

Lemma 3.1 Suppose (u, s) ∈ obsM. Then τA(u, s) ∈ obsαA(M).

Proof. Let r� = δ(r0, zip(u, s)), w = abstr(r0, zip(u, s)), u� = odd(w) and s� =
even(w). Then

(u, s) ∈ obsM ⇒ (Definition of obs)

∃q� : q0
u/s⇒ q� ⇒ (Claim 1)

∃q� : (q0, r0)
u�/s�⇒ (q�, r�) ⇒ (Definition of obs)

(u�, s�) ∈ obsαA(M) ⇒ (Definition τA)

τA(u, s) ∈ obsαA(M)
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Lemma 3.1 allows us to construct, for each concrete observation of M, a unique
abstract observation of αA(M) that corresponds to it. Given an abstract observa-
tion, there may in general be many corresponding concrete observations. However,
for abstract observations containing the undefined output symbol ⊥, there exists
no corresponding concrete observation since by definition τA(u, s) contains no ⊥’s.
According to the following claim and lemma, for each observation of αA(M) wi-
thout output ⊥ there exists at least one corresponding observation of M.

Claim 2. Suppose (u, s) is an observation over X and Y , and (q, r)
u/s⇒ (q�, r�) is a

transition of αA(M). Then there exists an observation (u�, s�) such that q
u�/s�⇒ q�,

u = odd(w) and s = even(w), where w = abstr(r, zip(u�, s�)).

Proof. By a routine induction on the length of u.
Basis: |u| = 0. Then u = � and because (u, s) is an observation over X and Y ,

also s = �. But this implies that q� = q. Let u� = s� = �. Then q
u�/s�⇒ q�, w = �,

and thus u = odd(w) and s = even(w), as required.
Induction step: Assume u = xū where x ∈ X. Since (u, s) is an observation over X
and Y , we can write s = ys̄ where y ∈ Y . Then (ū, s̄) is also an observation over X

and Y . By definition of
u�/s�⇒ , there exists an intermediate state (q��, r��) such that

(q, r)
x/y−−→ (q��, r��)

ū/s̄⇒ (q�, r�). By the first rule in the definition of αA(M), there

exist concrete actions i and o, and a state r̄ such that q
i/o−−→ q�� and r

i/x−−→ r̄
o/y−−→ r��.

Moreover, by induction hypothesis, there exists an observation (ū�, s̄�) such that

q��
ū�/s̄�⇒ q�, ū = odd(w̄) and s̄ = even(w̄), where w̄ = abstr(r��, zip(ū�, s̄�)). Let

u� = iū�, s� = os̄�, and w = xyw̄. Then q
u�/s�⇒ q�. Moreover:

odd(w) = odd(xyw̄) = x odd(w̄) = xū = u,

even(w) = even(xyw̄) = y even(w̄) = ys̄ = s, and
w = xyw̄ = xyabstr(r��, zip(ū�, s̄�)) = abstr(r, i o zip(ū�, s̄�))

= abstr(r, zip(iū�, os̄�)) = abstr(r, zip(u�, s�)).

Lemma 3.2 Suppose (u, s) ∈ obsαA(M) is an observation over X and Y . Then
∃(u�, s�) ∈ obsM : τA(u�, s�) = (u, s).

Proof. By assumption, αA(M) has a state (q, r) such that (q0, r0)
u/s⇒ (q, r). By

Claim 2, there is an observation (u�, s�) such that q0
u�/s�⇒ q, u = odd(w) and s =

even(w), where w = abstr(r0, zip(u
�, s�)). Thus τA(u�, s�) = (u, s) and (u�, s�) ∈

obsM, as required.

3.1.3 The Concretization Operator
We now define the concretization operator, which is the adjoint of the abstraction
operator. For a given mapper A, the corresponding concretization operator turns
any abstract Mealy machine with symbols in X and Y into a concrete Mealy
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machine with symbols in I and O. Basically, the concretization of Mealy machine
H via mapper A is the Cartesian product of the underlying transition systems, in
which the abstraction function is used to convert abstract symbols into concrete
ones.

Definition 3.4 (Concretization) Let H = �X,Y ∪ {⊥}, H, h0,→� be a Mealy
machine and let A = �I ∪ O,X ∪ Y,R, r0, δ, abstr� be a mapper for I and O.
Then γA(H), the concretization of H via A, is the Mealy machine �I,O ∪ {⊥
}, R×H, (r0, h0),→�, where → is given by the rules

r
i/x−−→ r�

o/y−−→ r��, h
x/y−−→ h�

(r, h)
i/o−−→ (r��, h�)

r
i/x−−→ r�, h

x/y−−→ h�, � ∃o ∈ O : r�
o/y−−→

(r, h)
i/⊥−−→ (r, h)

States of the concretization γA(H) are pairs (r, h) of a state h of the hypothesis

and a state r of the mapper. Each transition h
x/y−−→ h� of the hypothesis corres-

ponds to potentially many transitions of the concretization: (r, h) has an outgoing
i/o transition whenever abstr(r, i) = x and abstr(r�, o) = y, where r� is the unique
state such that r

i−→ r�. The second rule in the definition is required to ensure the
concretization γA(H) is input enabled. Consider a state (r, h) of the concretization
and a concrete input i. Since A is deterministic and input enabled, there exists a
unique state r� such that r i−→ r�. Let x = abstr(r, i) be the corresponding abstract
input. Since H is input enabled, there also exists a state h� and an abstract output
y such that h

x/y−−→ h�. However, there does not necessarily exist an output o with
abstr(r�, o) = y. This means that the first rule cannot always be applied to infer
an outgoing i-transition of state (r, h). In order to ensure input enabledness, the
second rule is used in this case to introduce a transition with “undefined” output
⊥ that leaves the state (r, h) unchanged.

Example 3.4 (Concretization of HCOM ) Let us now concretize the abstract
Mealy machine HCOM of Figure 3.2, which is observation equivalent to
αA(MCOM ). The Mealy machine γA(HCOM ) has the same concrete input and
output symbols as MCOM , except for the additional output ⊥. States of the
concretization are pairs of states of A and states of HCOM . The initial state is
(⊥, h). We have the following transitions, for all id, id�, sn, sn� ∈ N with id� �= id
and sn� �= sn+ 1 (only transitions reachable from the initial state are listed):

(⊥, h)
REQ(id,sn)/OK−−−−−−−−−−→ ((id, sn), h�)

((id, sn), h�)
REQ(id,sn+1)/OK−−−−−−−−−−−−→ ((id, sn+ 1), h�)

((id, sn), h�)
REQ(id,sn�)/NOK−−−−−−−−−−−−→ ((id, sn), h�)

((id, sn), h�)
REQ(id�,sn+1)/NOK−−−−−−−−−−−−−→ ((id, sn), h�)

((id, sn), h�)
REQ(id�,sn�)/NOK−−−−−−−−−−−−→ ((id, sn), h�)

Note that the transitions with output ⊥ in HCOM play no role in γA(HCOM )
since there exists no concrete output of A that is abstracted to ⊥: the only use of
these transitions is to make HCOM input enabled. Also note that in this specific
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example the second rule of Definition 3.4 does not play a role, since abstr acts
as the identity function on outputs. The reader may check that γA(HCOM ) is
observation equivalent to MCOM .

Claim 3 and Lemma 3.3 below link the behavior of the concretization γA(H)
to the behavior of H.

Claim 3. Let (u, s) be an observation over inputs I and outputs O, let r ∈ R,
r� = δ(r, zip(u, s)), w = abstr(r, zip(u, s)), u� = odd(w) and s� = even(w). Then

h
u�/s�⇒ h� is a transition of H iff (r, h)

u/s⇒ (r�, h�) is a transition of γA(H).

Proof. Proof by induction on length of u.
Basis: |u| = 0. Then u = � and, because (u, s) is an observation, also s = �.
Hence r� = δ(r, zip(�, �)) = δ(r, �) = r, w = abstr(r, zip(�, �)) = abstr(r, �) = �,
u� = odd(�) = � and s� = even(�) = �. We infer

h
u�/s�⇒ h� iff h

�/�⇒ h� iff h = h� iff (r, h)
�/�⇒ (r, h�) iff (r, h)

u/s⇒ (r�, h�).

Induction step: Assume u = i ū, where ū is of length n. Then we can write s = o s̄,
where s̄ is of length n. Let r1 = δ(r, i) and r2 = δ(r1, o). Then

r� = δ(r, zip(u, s)) = δ(r, i o zip(ū, s̄)) = δ(r1, o zip(ū, s̄)) = δ(r2, zip(ū, s̄)).

Let w� = abstr(r2, zip(ū, s̄)), u�� = odd(w�), s�� = even(w�), x = abstr(r, i) and
y = abstr(r1, o). We infer

w = abstr(r, zip(u, s)) = abstr(r, i o zip(ū, s̄)) = x abstr(r1, o zip(ū, s̄))

= x y abstr(r2, zip(ū, s̄)) = x y w�,

u� = odd(w) = odd(x y w�) = x odd(w�) = x u��,

s� = even(w) = even(x y w�) = y even(w�) = y s��.

Thus

h
u�/s�⇒ h� ⇔

∃h�� : h
x/y−−→ h�� u��/s��⇒ h� ⇔ (first rule in definition γA(H) and IH)

∃h�� : (r, h)
i/o−−→ (r2, h

��)
ū/s̄⇒ (r�, h�) ⇔

(r, h)
u/s⇒ (r�, h�)

Lemma 3.3 Let (u, s) be an observation over inputs I and outputs O. Then
τA(u, s) ∈ obsH iff (u, s) ∈ obsγA(H).

Proof. Let w = abstr(r0, zip(u, s)), u� = odd(w), s� = even(w), and r� =
δ(r0, zip(u, s)). We infer

τA(u, s) ∈ obsH ⇔
(u�, s�) ∈ obsH ⇔
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∃h� : h0
u�/s�⇒ h� ⇔ (by Claim 3)

∃h� : (r0, h0)
u/s⇒ (r�, h�) ⇔

(u, s) ∈ obsγA(H)

The following theorem, which builds on the previous lemmas in this section,
establishes the duality of the concretization and abstraction operators.

Theorem 3.1 αA(M) ≤ H implies M ≤ γA(H).

Proof. Suppose αA(M) ≤ H. Let (u, s) ∈ obsM. It suffices to prove (u, s) ∈
obsγA(H). By Lemma 3.1, τA(u, s) ∈ obsαA(M). By the assumption, τA(u, s) ∈
obsH. Hence, by Lemma 3.3, (u, s) ∈ obsγA(H).

Example 3.5 The example of Figure 3.3 shows that the converse of Theorem 3.1
does not hold. All the Mealy machines in the example have just a single state.

i1/o

i2/o

(a) M

x1/o

x2/o

(b) H

i1/x1

o/o

i2/x1

(c) A

x1/o

x2/⊥

(d) αA(M)

Figure 3.3: Counterexample for M ≤ γA(H) implies αA(M) ≤ H

Mapper A abstracts both concrete inputs i1 and i2 to the abstract input x1.
However, there is also another abstract input x2, which messes things up. The
reader may check that γA(H) ≈ M. However, it is not the case that αA(M) ≤ H,
since αA(M) may generate an output ⊥ whereas H only generates output o.

It turns out that the converse of Theorem 3.1 holds if we add the assumption
that αA(M) does not generate the undefined output ⊥.

Theorem 3.2 Suppose αA(M) has no observations with output ⊥. Then M ≤
γA(H) implies αA(M) ≤ H.

Proof. Suppose M ≤ γA(H). Let (u, s) ∈ obsαA(M). It suffices to prove (u, s) ∈
obsH. By assumption, (u, s) is an observation over X and Y . Hence, by Lemma 3.2,
there exists (u�, s�) ∈ obsM with τA(u�, s�) = (u, s). By the assumption, (u�, s�) ∈
obsγA(H). Hence, by Lemma 3.3, τA(u�, s�) = (u, s) ∈ obsH.

In fact, the above result can be slightly strengthened: in general, if M ≤ γA(H)
and one takes any observation of αA(M) and removes the undefined inputs, then
one obtains an observation of H.
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3.1.4 Learned Models as Over-Approximations
For many applications it is difficult to predict exactly which output will occur
when. In these cases it makes sense to define mappers that abstract away infor-
mation from the implementation. With such mappers we will not learn a Mealy
machine that is observation equivalent to the Mealy machine of the implementa-
tion, but rather a nondeterministic over-approximation of it. In order to allow
for such over-approximations, we have replaced Angluin’s equivalence queries by
inclusion queries in our learning framework.

Example 3.6 In order to illustrate this, we consider an alternative mapper for
MCOM :

A� = �I ∪O,X � ∪O, {⊥} ∪ N,⊥, δ�, abstr ��.

The sets I and O are the same as for MCOM . Mapper A� only records the selected
value of the identifier and ignores the sequence number parameter. The state of
A� only changes when the first REQ(id, sn) input arrives:

δ�(⊥,REQ(id, sn)) = id,

δ�(id,REQ(id�, sn�)) = id.

Output actions do not change the state of A�: δ�(r, o) = r, for r ∈ {⊥}∪N and o ∈
O. There are two abstract input symbols: X � = {REQ(CUR),REQ(OTHER)}.
In the initial state the abstraction function maps to REQ(CUR), and for sub-
sequent actions it only records whether the identifier is correct:

abstr �(⊥,REQ(id, sn)) = REQ(CUR),

abstr �(id,REQ(id�, sn�)) = REQ(ID),

where ID = if id� = id then CUR else OTHER. For outputs abstr � acts as the
identity function.

States of the abstract Mealy machine αA�(MCOM ) are pairs (q, r) where q is a
state of Mealy machine MCOM and r is a state of mapper A�. The initial state is
((0, 0,F),⊥). We have the following transitions, for all sn, id ∈ N (only transitions
reachable from the initial state are listed):

((0, 0,F),⊥)
REQ(CUR)/OK−−−−−−−−−−−→ ((id, sn,T), id)

((0, 0,F),⊥)
REQ(OTHER)/⊥−−−−−−−−−−−−−→ ((0, 0,F),⊥)

((id, sn,T), id)
REQ(CUR)/OK−−−−−−−−−−−→ ((id, sn+ 1,T), id)

((id, sn,T), id)
REQ(CUR)/NOK−−−−−−−−−−−−→ ((id, sn,T), id)

((id, sn,T), id)
REQ(OTHER)/NOK−−−−−−−−−−−−−−−→ ((id, sn,T), id)

The last three transitions correspond to the cases in which, respectively, both the
identifier and sequence number of a request are correct, the identifier is correct but
the sequence number is not, and the identifier is incorrect. It is easy to see that
αA�(MCOM ) is behaviorally equivalent to the nondeterministic Mealy machine
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hstart h�
REQ(C)/OK

REQ(O)/ ⊥ REQ(C)/OK

REQ(C)/NOK

REQ(O)/NOK

Figure 3.4: Minimal Mealy machine H�
COM equivalent to αA�(MCOM )

H�
COM displayed in Figure 3.4: all states in the set {((id, sn,T), id) | sn, id ∈ N}

are equivalent (bisimilar).
The concretization γA�(H�

COM ) has the following transitions, for all id, id�, sn ∈
N with id� �= id (only transitions reachable from the initial state are listed):

(⊥, h)
REQ(id,sn)/OK−−−−−−−−−−→ (id, h�)

(id, h�)
REQ(id,sn)/OK−−−−−−−−−−→ (id, h�)

(id, h�)
REQ(id,sn)/NOK−−−−−−−−−−−→ (id, h�)

(id, h�)
REQ(id�,sn)/NOK−−−−−−−−−−−−→ (id, h�)

By Theorem 3.1, we have MCOM ≤ γA�(H�
COM ). This time γA�(H�

COM ) is
an over-approximation of MCOM since, for instance, γA�(H�

COM ) has a trace
REQ(1, 2)/OK REQ(1, 2)/OK, which is not allowed by MCOM .

Whenever we succeed to learn a hypothesis H such that M ≤ γA(H) and γA(H)
is behavior deterministic, then M ≈ γA(H) by Lemma 2.1. This means that, even
though we have used a mapper component, we have lost no information. If we
use LearnLib to construct hypothesis H, H will be a deterministic Mealy machine.
We will now present some conditions under which γA preserves determinism.

Let y ∈ Y be an abstract output. Then mapper A is output-predicting for y if,
for all concrete outputs o, o� ∈ O and for all mapper states r ∈ R, abstr(r, o) = y
and abstr(r, o�) = y implies o = o�. We call A output-predicting if it is output-
predicting for all y ∈ Y , that is, abstr is injective on outputs for fixed r.

Using the next lemma, which follows immediately from the definitions, we may
infer that γA(H) is deterministic.

Lemma 3.4 Suppose H is deterministic and A is output-predicting for all out-
puts y that occur in transitions of H. Then γA(H) is deterministic.

Example 3.7 The mapper A for Mealy machine MCOM introduced in Example
3.2 acts as the identity operation on outputs and is thus trivially output-predicting.
This mapper is just right: Mealy machine αA(MCOM ) is simple and has only
two states, it is deterministic, and if we concretize it again then the resulting
Mealy machine γA(αA(MCOM )) is deterministic and observation equivalent to
the original MCOM .

In Section 3.4.1, we will see a less trivial application of Lemma 3.4, where it is
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used to establish that the concretization of a learned model of the SIP protocol is
deterministic.

3.1.5 The Behavior of the Mapper Component
We are now prepared to formalize the ideas of Example 3.1 and establish that,
by using an intermediate mapper component, a learner can indeed learn a correct
model of the behavior of an implementation.

Consider a mapper A = �I ∪O,X ∪ Y,R, r0, δ, abstr�. The mapper component
that is induced by A records the current state, which initially is set to r0. The
behavior of the component can informally be described as follows:

• Whenever the component is in a state r and receives an abstract input symbol
x ∈ X from the learner, it nondeterministically picks a concrete input symbol
i ∈ I such that abstr(r, i) = x, forwards i to the implementation, and jumps
to state δ(r, i). If there exists no concrete input i such that abstr(r, i) = x,
then the component returns output ⊥ to the learner.

• Whenever the component is in a state r and receives a concrete answer o
from the implementation, it forwards the abstract version abstr(r, o) to the
learner and jumps to state δ(r, o).

• Whenever the component receives a reset query from the learner, it changes
its current state to r0, and forwards a reset query to the implementation.

We claim that, from the perspective of a learner, an implementation for M and
a mapper component for A together behave exactly like an implementation for
αA(M). Since we have not formalized the notion of behavior for implementation
and mapper, the mathematical content of this claim may not be immediately
obvious. Clearly, it is routine to describe the behavior of an implementation and a
mapper formally as state machines in some concurrency formalism, for instance in
Milner’s CCS [115] or another process algebra [29]. More precisely, we may define,
for each Mealy machine M, a CCS process Impl(M, reset), the implementation of
M with resetting action reset, where reset is a fresh name not in I ∪ O, and for
each mapper A a CCS process Mapper(A, reset, reset�), the implementation of A
with input reset and output reset�, where reset and reset� are fresh action names.

The implementation and the mapper may synchronize via actions taken from
the set L = I ∪ O ∪ {reset�}. If we compose Impl(M, reset�) and Mapper(A, reset,
reset�) using the CCS composition operator |, and apply the CCS restriction ope-
rator \ to internalize communications from L between the two processes, the resul-
ting CCS process is observation congruent (weakly bisimilar) to the CCS process
Impl(αA(M), reset). In order to avoid confusion, we write ≈wb instead of = (as in
[115]) to denote observation congruence:

(Impl(M, reset�) | Mapper(A, reset, reset�)) \ L ≈wb Impl(αA(M), reset).

It is in this precise, formal sense that one should read the following theorem.
The reason why we do not refer to the CCS formalization in the statement and
proof of this theorem is that we feel that the resulting notational overhead would
obscure rather than clarify.
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Theorem 3.3 An implementation for M and a mapper for A together behave
like an implementation for αA(M).

Proof. Initially, the state of the implementation for M is q0 and the current state
of the mapper is r0, which is consistent with the initial state (q0, r0) of an imple-
mentation for αA(M).

Suppose that the current state is (q, r) and an output query x ∈ X arrives. If

there exists a r� such that r
i/x−−→ r�, then the mapper nondeterministically picks one

such concrete i, passes it on to the implementation (which accepts concrete input
symbols), and jumps to state r�. In response, the implementation picks a transition

q
i/o−−→ q�, jumps to state q� and returns the concrete output symbol o ∈ O to the

mapper. Next, the mapper takes the corresponding transition r�
o/y−−→ r��, forwards

y to the learner, and jumps to state r��. By inspection of the first transition rule for
αA(M), it follows that the implementation for M and mapper together behave
like an implementation for αA(M) in this case. If there exists no r� such that

r
i/x−−→ r�, then the mapper returns output ⊥ to the learner. By inspection of the

second transition rule for αA(M), it follows that the implementation of M and
mapper together again behave like an implementation for αA(M).

Now suppose the mapper receives a reset query from the learner. Then the
mapper moves to its initial state r0 and forwards the reset query to the implemen-
tation, who also returns to its initial state q0. This behavior is consistent with
the behavior of an implementation for αA(M), which returns to its initial state
(q0, r0) upon receiving a reset query.

3.1.6 Mappers and Oracles

In order to learn a model, a learner does not only need an implementation allo-
wing it to construct hypotheses, but also an oracle to establish the correctness of
these hypotheses. In the previous subsection, we discussed how an implementa-
tion of αA(M) can be constructed out of an implementation of M and a mapper
component for A. We will now discuss how an oracle for αA(M) can be obtained.

A first approach, also explored in [4], is to construct an oracle for αA(M) from
an oracle for M. When the learner produces a hypothesis H for αA(M), the idea
is to forward the concretization γA(H) to the oracle for M. There are two cases.

If the concrete hypothesis is incorrect, that is, M �≤ γA(H), then the oracle
for M will produce a counterexample (u, s) ∈ obsM − obsγA(H). By Theorem 3.1,
we know that αA(M) �≤ H, that is, the abstract hypothesis H is incorrect. Since
(u, s) ∈ obsM, Lemma 3.1 gives τA(u, s) ∈ obsαA(M). We also know that (u, s)
is an observation over I and O. Hence, since (u, s) �∈ obsγA(H), Lemma 3.3 gives
τA(u, s) �∈ obsH. Thus τA(u, s) ∈ obsαA(M) − obsH is a counterexample that
demonstrates that H is incorrect. We forward this counterexample to the learner,
in accordance with the required behavior for an oracle for αA(M).

If the concrete hypothesis is correct, that is, M ≤ γA(H), then the oracle
for M will produce output yes. Due to the example of Figure 3.3, we may not
conclude αA(M) ≤ H, and thus we may not forward the yes to the learner (except
if somehow we manage to infer that αA(M) will never generate an output ⊥).
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However, remember that the whole motivation for using a mapper is that this
will allow us to construct a correct model for M. Since M ≤ γA(H), we have
accomplished our mission and may thus abort the learning process.

A second approach for constructing an oracle for αA(M), which we used in
the experiments described in Section 3.4, consists of forwarding the test sequences
for H computed by LearnLib to the mapper, which then forwards the concretized
version of this sequence to the implementation of M, and returns the abstracted
version of the output of M to the learner. If, for all test sequences, the produced
output agrees with the output predicted by the hypothesis then we consider the
hypothesis to be correct, otherwise we have obtained a counterexample. In this
approach, a key issue is how the mapper selects a concrete input symbol for a
given abstract input symbol. In our experiments we used randomization (more
specifically, a uniform distribution over the possible concrete inputs). Although
the initial results in our experiments were very positive, more research will be
required to find out under which conditions this is a good “approximation” of an
oracle for αA(M).

Given that we have an implementation of αA(M), assuming that αA(M) is
finite and behavior deterministic, and assuming that the oracle for αA(M) behaves
correctly, LearnLib should succeed in inferring a deterministic Mealy machine H
that is behaviorally equivalent to αA(M). It then follows by Theorem 3.1 that
M ≤ γA(H).

3.2 Symbolic Mealy Machines and Mappers

Even though our general approach for using abstraction in automata learning is
phrased most naturally at the semantic level, an actual implementation of our
approach requires a syntactic (symbolic) representation of Mealy machines and
abstractions. Therefore, in this section, we present a general syntax for symbolic
representation of Mealy machines and mappers.

We assume a language with (typed) variables, function, predicate, and constant
symbols. We assume that each variable v comes equipped with a type type(v),
which is the (nonempty) set of values that it may take. We postulate that for each
variable v there is a primed version v�, which has the same type. If V is a set of
variables then we write V � to denote the set {v� | v ∈ V }. We assume that, using
the variables, function, predicate, and constant symbols, it is possible to construct
terms and formulas. Each term t has an associated type type(t). We use ≡ to
denote syntactic equality of terms. If V is a set of variables, then a valuation for
V is a function that maps each variable in V to an element of its domain. We
write Val(V ) for the set of all valuations for V . If ξ is a valuation for V and ϕ is a
formula with (free) variables in V , then we write ξ |= ϕ to denote that ξ satisfies
ϕ. Similarly, if t is a term then we write �t�ξ for the value in type(t) to which t
evaluates under valuation ξ. If V � ⊆ V then ξ�V � denotes the restriction of ξ to
the variables in V �. If v1, . . . , vn are variables in V and t1, . . . , tn are terms with
matching types, then we write ξ[v1, . . . , vn := t1, . . . , tn] for the valuation in which
all variables have the same values as in ξ except for v1, . . . , vn which are evaluated
to �t1�ξ, . . . , �tn�ξ, respectively.

44



3.2 Symbolic Mealy Machines and Mappers

3.2.1 Symbolic Mealy Machines

We employ a slight variation of Jonsson’s [92] approach for specification of distri-
buted systems and define a symbolic Mealy machine by means of a program-like
notation with guarded multiple assignments. Each assignment statement is labeled
with two events which denote reception and transmission of a message.

An event signature specifies the possible interactions between a symbolic Mealy
machine and its environment.

Definition 3.5 (Event signature) An event term is an expression of the form
ε(p1, . . . , pm), where ε is a symbol referred to as the event primitive, and p1, . . . pm
pairwise different variables referred to as parameters. An event signature Σ is a
pair �TI , TO�, where TI and TO are disjoint, finite sets of event terms. We require
that the event primitives of different event terms in TI ∪ TO are distinct.

Using event signatures, we can define the notion of a symbolic Mealy machine.

Definition 3.6 (Symbolic Mealy machine) A symbolic Mealy machine (SM) is
a tuple SM = �Σ, V,Θ,Δ�, where

• Σ = �TI , TO� is an event signature,

• V is a finite set of variables, referred to as state variables, disjoint from the
set of parameters of Σ,

• Θ is a formula, the initial condition, with (free) variables in V . We require
that there is a unique valuation q0 ∈ Val(V ) such that q0 |= Θ, and

• Δ is a finite set of transitions of the form

event εI(p1, . . . , pm) when ϕ event εO(pm+1, . . . , pl),

where εI(p1, . . . , pm) ∈ TI , εO(pm+1, . . . , pl) ∈ TO, {p1, . . . , pm} ∩ {pm+1,
. . . , pl} = ∅, and ϕ is a formula with (free) variables in {p1, . . . , pl}∪V ∪V �.
We require that SM is input enabled. Formally, if there are k transitions
with event primitives εI(p1, . . . , pm) and εO(pm+1, . . . , pl), with formulas
ϕ1, . . . ,ϕk, respectively, and V = {v1, . . . vn}, then the formula

∃v�1, . . . , v�n ∃pm+1, . . . , pl : ϕ1 ∨ · · · ∨ ϕk

should evaluate to true.

Example 3.8 (Symbolic representation of MCOM ) The Mealy machine MCOM

of our running Example 3.1 can be described as an SM SMCOM = �Σ, V,Θ,Δ�,
where

• Σ = �{REQ(p1, p2)}, {OK,NOK}�, where REQ , OK and NOK are event pri-
mitives and p1 and p2 are parameters of type N.

• V = {ID, SN, INIT}, where ID and SN have type N and INIT has type B.
Variable ID stores the current session identifier, SN stores the current se-
quence number, and INIT records whether a session has been initialized.
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• Initially, ID and SN are 0 and no session has been initialized:

Θ ≡ ID = 0 ∧ SN = 0 ∧ ¬INIT.

• Set Δ contains three transitions:

event REQ(p1, p2) when ¬INIT ∧ ID� = p1 ∧ SN� = p2 ∧ INIT�

event OK

event REQ(p1, p2) when INIT ∧ p1 = ID ∧ p2 = SN + 1 ∧
ID� = ID ∧ SN� = p2 ∧ INIT� event OK

event REQ(p1, p2) when INIT ∧ (p1 �= ID ∨ p2 �= SN + 1) ∧
ID� = ID ∧ SN� = SN ∧ INIT� event NOK

Every transition contains an input event, an output event, and a when clause
that determines the conditions that need to hold in the current and the next
state. For example, in the first transition a REQ(p1, p2) input triggers an
OK output whenever the session needs to be initialized. In the next state,
the initialization is completed by assigning to ID the value of p1 and to SN
the value of p2.

The semantics of symbolic Mealy machines is defined, in a straightforward
manner, in terms of Mealy machines.

Definition 3.7 (Semantics of symbolic MM) The semantics of an event term
ε(p1, . . . , pm) is the set

�ε(p1, . . . , pm)� = {ε(d1, . . . , dm) | d1 ∈ type(p1), . . . , dm ∈ type(pm)}.

The semantics of a set T of event terms is defined by pointwise extension:

�T � =
�

ε(p1,...,pm)∈T

�ε(p1, . . . , pm)�.

Let SM = �Σ, V,Θ,Δ� be a symbolic Mealy machine with Σ = �TI , TO�. The
semantics of SM, notation �SM�, is the Mealy machine �I,O,Q, q0,→� where

• I = �TI� ,

• O = �TO�,
• Q = Val(V ),

• q0 ∈ Val(V ) is the unique valuation satisfying q0 |= Θ, and

• →⊆ Q× I ×O ×Q is the smallest relation that satisfies

(event εI(p1, . . . , pm) when ϕ event εO(pm+1, . . . , pl)) ∈ Δ
∀j ≤ l, ξ(pj) = dj

∀v ∈ V, ξ(v) = q(v) and ξ(v�) = q�(v)
ξ |= ϕ

q
εI(d1,...,dm)/εO(dm+1,...,dl)−−−−−−−−−−−−−−−−−−→ q�
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The reader may check that the semantics of the symbolic Mealy machine
SMCOM described in Example 3.8 indeed yields the Mealy machine MCOM of
Example 3.1: the only difference is that states (id, sn, b) of MCOM correspond to
valuations in SMCOM , in which variable ID has value id, variable SN has value sn,
and variable INIT has value b. In this chapter, we only consider symbolic Mealy
machines whose semantics is input enabled, as required for a Mealy machine.

In the same way as symbolic Mealy machines constitute a syntactic represen-
tation of Mealy machines, the definition below introduces symbolic mappers as a
syntactic representation of mappers. The abstract event signature of a symbolic
mapper is the same as its concrete event signature, except that the parameters
have a different (typically smaller) domain.

Definition 3.8 (Symbolic mapper) Let Σc = �TI , TO� be an event signature. A
symbolic mapper for Σc is a structure SA = �Σc,Σa, V,Θ,Δ,Ψ�, where

• Σa = �TX , TY � is an event signature, referred to as the abstract event signa-
ture. We require that, for each ε(p1, . . . , pm) ∈ TI , TX contains an element
ε(q1, . . . , qm). Similarly, we require that, for each ε(p1, . . . , pm) ∈ TO, TY

contains a corresponding element ε(q1, . . . , qm),

• V = {v1, . . . , vn} is a finite set of variables, disjoint from the set of parameters
of Σc,

• Θ is a formula, the initial condition, whose free variables are in V . We
require that there exists a unique valuation r0 ∈ Val(V ) such that r0 |= Θ,

• Δ is a finite set of transitions given by

event ε(p1, . . . , pm) when ϕ do �v1, . . . , vn� := �t1, . . . , tn�,
where ε(p1, . . . , pm) ∈ TI∪TO, ϕ is the guard, a formula with variables in V ∪
{p1, . . . , pm}, and t1, . . . , tn are terms with variables in V ∪{p1, . . . , pm}. We
require that SA is input and output enabled: for each ε(p1, . . . , pm) ∈ TI ∪
TO, the disjunction of the set of guards of transitions for that event primitive
is equivalent to true. Furthermore, we require that SA is deterministic:
whenever we have two different transitions for the same event primitive then
the conjunction of their guards is equivalent to false, and

• Ψ is a finite set of event abstractions which contains, for each event term
ε(p1, . . . , pm) ∈ TI ∪ TO, an expression ε(e1, . . . , em), where, for each j, ej is
a term with variables in V ∪ {p1, . . . , pm} and type(ej) = type(qj).

Example 3.9 (Symbolic mapper) We illustrate how the mapper A for Mealy
machine MCOM , which we defined in Example 3.2, can also be described as a
symbolic mapper AS :

• Σc = �{REQ(p1, p2)}, {OK,NOK}�, where REQ , OK and NOK are event
primitives and p1 and p2 are parameters of type N.
Note that Σc equals the event signature Σ of Example 3.8.

• V = {curId, curSn}, where curId and curSn are variables of type N ∪ {⊥},
used to store the identifier and sequence number, respectively, of the current
session.
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• In the initial state both variables are undefined:

Θ ≡ curId =⊥ ∧ curSn =⊥ .

• Set Δ contains five transitions:

event REQ(p1, p2) when curId =⊥
do �curId, curSn� := �p1, p2�

event REQ(p1, p2) when curId �=⊥ ∧p1 = curId ∧ p2 = curSn + 1

do �curSn� := �p2�
event REQ(p1, p2) when curId �=⊥ ∧(p1 �= curId ∨ p2 �= curSn + 1)

do �� := ��
event OK when TRUE do �� := ��
event NOK when TRUE do �� := ��

The first transition, for instance, states that when receiving a REQ input and
variable curId still has its initial value, we need to assign the state variables
the values received in the input message.

• Σa = �{REQ(q1, q2)}, {OK,NOK}�, where REQ , OK and NOK are event
primitives and q1 and q2 are parameters of type {CUR, OTHER}.

• Set Ψ contains three event abstractions:

– REQ(
if curId =⊥ ∨ curId = p1
then CUR else OTHER

,
if curSn =⊥ ∨ curSn + 1 = p2
then CUR else OTHER

)

– OK

– NOK

The semantics of symbolic mappers is defined, again in a straightforward man-
ner, in terms of mappers.

Definition 3.9 (Semantics of symbolic mapper) Let SA = �Σc,Σa, V,Θ,Δ,Ψ�
be a symbolic mapper for Σc. Let Σa = �TX , TY �. The semantics of SA, notation
�SA�, is the mapper A = �I ∪O,X ∪ Y,R, r0, δ, abstr�, where

• I = �TI�,

• O = �TO�,

• X = �TX�,

• Y = �TY �,

• R = Val(V ),

• r0 is the unique valuation satisfying r0 |= Θ,
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• δ(r, ε(d1, . . . , dm)) = r�, where r� is given by the rule

(event ε(p1, . . . , pm) when ϕ do �v1, . . . , vn� := �t1, . . . , tn�) ∈ Δ
∀j ≤ m, ξ(pj) = dj r ∪ ξ |= ϕ

r� = ((r ∪ ξ)[v1, . . . , vn := t1, . . . , tn])�V
r

ε(d1,...,dm)−−−−−−−→ r�

• for all r ∈ R, ε(p1, . . . , pm) ∈ TI ∪ TO, ξ a valuation of {p1, . . . , pm} such
that, for 1 ≤ j ≤ m, ξ(pj) = dj , and ε(e1, . . . , em) ∈ Ψ,

abstr(r, ε(d1, . . . , dm)) = ε(�e1�r∪ξ, . . . , �em�r∪ξ).

Given a symbolic mapper SA and a Mealy machine (hypothesis) H, we may
construct a symbolic Mealy machine γS

SA(H) such that �γS
SA(H)� is isomorphic to

γ�SA�(H). Since the construction is routine and not required for the remainder of
this chapter, we leave it to the reader to work out the details.

3.3 Systematic Construction of Abstractions
The construction of a suitable mapper component is an important part of our
technique for generating a model of an SM SM. In general, the construction of
the mapper will rely on insights into what aspects of the data parameters are
important for the behavior of SM. But it is also possible to present guidelines
for constructing them systematically, from which also automated support can be
developed. In this section, we suggest a set of such guidelines.

To simplify our presentation, we assume that output event primitives do not
have parameters, as is the case, e.g., in Example 3.9. Then the main purpose
of the mapper is to provide an abstraction of the parameters of input symbols,
which preserves the information that determines which output symbols will sub-
sequently be generated in an observation. More precisely if (u, s) and (u�, s�) are
different observations of SM, which the mapper abstracts to τA(u, s) = (U, S)
and τA(u�, s�) = (U �, S�), then S �= S� should imply U �= U �, otherwise the abs-
traction αA(SM) will behave nondeterministically, something that the learning
algorithm is not designed for. The requirement to produce a behavior deterministic
abstraction suggests a methodology for constructing mappers, in which observed
nondeterminism in αA(SM) triggers a modification of the mapper. The modifi-
cation of the mapper can be performed on the fly: Whenever nondeterminism is
observed during learning, the abstraction is refined and the entire learning process
is restarted from scratch.

One can start from an initial mapper, whose event abstractions are trivial, i.e.,
they map any value of any parameter in any input symbol to a single abstract value.
Whenever a sequence of output queries shows that the composition of mapper and
SM is nondeterministic, i.e., there is a pair of observations, (u, s) and (u�, s�),
such that with τA(u, s) = (U, S) and τA(u�, s�) = (U �, S�) we have S �= S� but
U = U �, then some event abstraction that contributes to generating U or U � must
be refined. This refinement is constructed by first performing additional output
queries to determine in what way the parameters in u and u� cause S and S�
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to be different. In many cases, it is possible to find a particular condition that
determines whether the output will be S or S�. This condition is then introduced
into the mapper in order to differentiate between τA(u, s) and τA(u�, s�). In the
case that the new condition refers to parameters in different symbols of u and u�,
variables must be introduced into the mapper that remember received data values,
in order that the new condition can refer to them.

Let us illustrate how these guidelines can be applied in Example 3.9. We start
from an initial (too coarse) abstraction, in which the mapper does not distinguish
between different parameter values in input symbols of form REQ(d1, d2). By
performing output queries, we discover that the resulting composition of mapper
and SM is nondeterministic. Namely, an input of form REQ(d1, d2) may give rise
either to an output OK or an output NOK. Additional investigation by means of
output queries, in order to find a distinction between these two cases, reveals that
the OK output occurs precisely in the case that

• d1 occurred in the first input of form REQ(d�1, d
�
2) (with d�1 = d1), and

• d2−1 occurred in the most recent input of form REQ(d�1, d
�
2), which resulted

in an OK response from SM.

As a result of these insights, we let the mapper have

• one variable (say, curId) which stores the value of d�1 in the first input of
form REQ(d�1, d

�
2), and

• one variable (say, curSn) which stores the value of d�2 whenever an input of
form REQ(d�1, d

�
2) arrives and results in an OK response.

Furthermore, we refine the event abstraction for REQ(p1, p2), as follows.

• p1 is mapped to one abstract value (say, CUR) if its value is equal to the
value of curId, and to another value (say, OTHER) otherwise.

• p2 is mapped to one abstract value (say, CUR) if its value is equal to the
value of curSn + 1, and to another value (say, OTHER) otherwise.

By completing the mapper based on this abstraction, e.g., also investigating how
to handle initialization of variables, we obtain the mapper that is presented in
Example 3.9.

In Chapter 6, we show how, following the approach sketched above, mappers
can be constructed fully automatically for a restricted class of symbolic Mealy
machines in which one can test for equality of data parameters, but no operations
on data are allowed.

3.4 Experiments
We implemented and applied our approach to infer models of two implemented
standard protocols: the session initiation protocol (SIP) and the transmission
control protocol (TCP). As learner, we used an efficient implementation of the L∗

algorithm in LearnLib [131, 114]. LearnLib also provides several implementations
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of model-based test algorithms in order to realize equivalence queries, including
random test suites of user-controlled size. Hence, in our experiments, the teacher
consisted of an SUT, which is a protocol implementation, in combination with
a model-based test algorithm implemented in LearnLib. We postulate that the
behavior of the SUT can be modeled as a Mealy machine (cf. the notion of test
hypothesis from model-based testing [151]) and our task is to learn this unknown
Mealy machine.

3.4.1 The Session Initiation Protocol (SIP)
The session initiation protocol (SIP) is an application layer protocol for creating
and managing multimedia communication sessions [136]. Although extensive do-
cumentation is available, there is no reference model in the form of a state machine.
We aimed to infer the behavior of a SIP Server entity when setting up connections
with a SIP Client. As system under test (SUT) we used an implementation of SIP
in the protocol simulator ns-2 [123], Messages were represented as C++ structures,
saving us the trouble of parsing messages represented as bitstrings. The set of mes-
sages that can be exchanged between a SIP Client and a SIP Server can be descri-
bed by the event signature ΣSIP = �TI , TO�. Set TI contains event terms of the
form Method(CallId, CSeq, V ia), where Method = {INVITE,PRACK,ACK} is
the set of input event primitives, which correspond to the different types of requests
that can be made by the client:

• an INVITE request is an initial request needed for session establishment.
It indicates that a SIP Client wants to establish a connection with the SIP
Server. This activity can be compared with dialing someone’s telephone
number.

• a PRACK request is an acknowledgement, which is used to confirm provi-
sional responses that could have been lost otherwise.

• an ACK request confirms that a Client has received a final response to an
INVITE request. Unlike PRACK, an ACK request does not have a response.

Set TO contains event terms of the form StatusCode(CallId, CSeq, V ia), where
StatusCode = {100, 180, 183, 200, 481, 486} is the set of output event primitives.
The three digit status codes indicate the outcome generated by the Server in
response to a previous request by the Client:

• 1xx responses are provisional responses. A provisional response is sent when
the associated request was received but the request still needs to be proces-
sed. Possible 1xx responses are 100 (Trying), 180 (Ringing), which means
that the recipient’s phone is ringing, and 183 (Session Progress),

• 2xx responses are positive final responses. They indicate that the request
was successful. A 200 (OK) response is sent when a user accepts invitation
to a session, and

• 4xx responses are negative final responses. They indicate that the request
contains bad syntax or cannot be fulfilled at the Server. Possible 4xx res-
ponses are 481 (Call/Transaction Does Not Exist) and 486 (Busy Here).
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A typical interaction between a Client and a Server is visualized in Table 3.1.

Client Server
INVITE(CallId:4, CSeq:1,
Via:1.1.2;branch=z9hG4bK3) →

← 100(CallId:4, CSeq:1,
Via:1.1.2;branch=z9hG4bK3) Trying
← 183(CallId:4, CSeq:1,
Via:1.1.2;branch=z9hG4bK3) Session
Progress

PRACK(CallId:4, CSeq:2,
Via:1.1.2;branch=z9hG4bK3) →

← 200(CallId:4, CSeq:2,
Via:1.1.2;branch=z9hG4bK3) OK

ACK(CallId:4, CSeq:1,
Via:1.1.2;branch=z9hG4bK3) →

Table 3.1: Typical session establishment in SIP

All of the above event terms have the same parameters:

• CallId is a unique session identifier,

• CSeq is a sequence number that orders transactions in a session, and

• Via specifies the transport path that is used for the transaction. The Via
parameter is a pair, consisting of a default address and a variable branch.

The actual messages that are used within SIP carry some additional parameters,
specifying the addresses of the originator and receiver of a request, and the address
where the Client wants to receive input messages. These parameters must be pre-
configured in a session with ns-2, so they are set to constant values throughout
the experiment, and play no role in the learning. The parameters Via, CallId,
and CSeq are potentially interesting parameters. A priori, they can be handled
as parameters from a large domain, on which test for equality and potentially
incrementation can be performed.

The SUT does not always respond to each input message, and sometimes re-
sponds with more than one message. To stay within the Mealy machine formalism,
set TI contains an additional event term NIL(), which denotes the absence of input
(in order to allow sequences of outputs), and set TO contains an additional event
term TIMEOUT(), denoting the absence of output.

Following Definition 3.8, a symbolic mapper SA for SIP can be defined as
follows. Monitoring of output queries, as described in Section 3.3 reveals that
for each of these parameters, the ns-2 SIP implementation remembers the value
which is received in the first INVITE message (presumably, it is interpreted as
parameters of the connection that is being established), and also the value received
in the most recent input message when producing the corresponding reply. We
therefore equip the mapper with six state variables. Variable firstInviteId stores the
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CallId parameter of the first Invite message, and variable lastId stores the CallId
parameter value of the most recently received message. Variables firstInviteCSeq
and lastCSeq store the analogous values for the CSeq parameter, and the variables
firstInviteVia and lastVia for the Via parameter. Initially, all six variables have
the undefined value ⊥. Note that we have to remember these six state variables,
because all of them are employed to construct the correct reply, i.e., they are
needed to map a concrete output message to an abstract output message.

The transitions define when which state variables have to be updated, e.g.

event INVITE(CallId, CSeq, V ia) when firstInviteId =⊥

do �firstInviteId,firstInviteCSeq,firstInviteVia� := �CallId, CSeq, V ia�;
�lastId, lastCSeq, lastVia� := �CallId, CSeq, V ia�

states that when receiving an INVITE input and the firstInviteId state variables
still has its initial value, the mapper needs to assign the firstInvite and last state
variables the values received in the input message. If the firstInviteId state variable
does not have its initial value when an INVITE input is received, the following
transition occurs:

event INVITE(CallId, CSeq, V ia) when firstInviteId �=⊥

do �lastId, lastCSeq, lastVia� := �CallId, CSeq, V ia�
For PRACK and ACK inputs, the update of state variables is defined by

event (PR)ACK(CallId, CSeq, V ia) when TRUE

do �lastId, lastCSeq, lastVia� := �CallId, CSeq, V ia�
For event term NIL() and all output event terms no state variables are updated,
and we have trivial transitions of the form when TRUE do �� := ��.

Additional monitoring of output queries reveals that the mapper needs to consi-
der two cases in the abstraction of the CallId parameter in input messages:

1. The concrete value of CallId is a fresh value or equal to the firstInviteId state
variable. In this case CallId should be mapped to the abstract value FIRST.

2. The concrete value of CallId is NOT a fresh value and NOT equal to the
firstInviteId state variable. In this case, CallId should be mapped to the
abstract value LAST.

Both events require the use of the firstInviteId state variable. We define the relation
between concrete and abstract input symbols by the event abstractions

Method(
if (firstInviteId =⊥ ∨ firstInviteId = CallId)

then FIRST else LAST ,ANY,ANY),

where Method can be any input event primitive. The input parameters Via and
CSeq are always mapped to the abstract value ANY, since we found that ns-2
always behaves in the same way - no matter which concrete value has been selected.
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To cope with unexpected values that might be returned by the SUT, different from
the values recorded in the state variables, we added an abstract value OTHER.
We define the relation between concrete and abstract output symbols by the event
abstraction StatusCode(e1, e2, e3), where StatusCode can be any output event
primitive,

e1 = if CallId = firstInviteId then FIRST
elseif CallId = lastId then LAST else OTHER,

e2 = if CSeq = firstInviteCSeq then FIRST
elseif CSeq = lastCSeq then LAST else OTHER, and

e3 = if V ia = firstInviteVia then FIRST
elseif V ia = lastVia then LAST else OTHER.

Since event terms NIL() and TIMEOUT() carry no parameters, the event abstrac-
tion for these terms is trivial.

Results The inference performed by LearnLib needed about one thousand out-
put queries (sequences of inputs) and one equivalence query, took about one hour,
and resulted in an abstract model H with 9 locations and 63 transitions. This
model can be found in Appendix 3.B. For presentation purposes, we have also
included a simplified version of model H in Appendix 3.A. In this pruned mo-
del, we removed transitions with output symbol ⊥ and transitions with an empty
input and output symbol, i.e., NIL/TIMEOUT. In Appendix 3.A, we show the
pruned abstract model with 9 locations and 48 transitions. For readability, some
transitions with same source location, output symbol and next location (but with
different input symbols) are merged: the original input method types are listed,
separated by a bar (|). Due to space limitations, we have suppressed the (abs-
tract) parameter values. However, the CallId parameter of the input messages
with abstract value FIRST is depicted in the model with solid transition lines,
the remaining transitions have a dashed line pattern. We suppressed all other
parameters in the figure.

The abstract model H does not contain any output parameter value OTHER:
apparently all concrete output values generated by the SUT are mapped to either
FIRST or LAST. This implies that mapper �SA� is output-predicting for all
the outputs that occur in transitions of H, since the abstract values FIRST and
LAST always correspond to a single concrete value. Hence, by Lemma 3.4, Mealy
machine �γS

SA(H)� is deterministic. If M is a Mealy machine that models the SUT
then, according to Lemma 2.1, M ≈ �γS

SA(H)�. Thus, using our approach, we have
succeeded to learn a model that is observation equivalent to the (unknown) model
M of the ns-2 implementation of the SIP protocol.

3.4.2 The Transmission Control Protocol (TCP)1

As a second case study, we studied the implementation of the transmission control
protocol (TCP) [126, 148] in Windows 8. TCP is a transport layer protocol,

1Paul Fiterău-Broştean helped us with the TCP experiments, using the setup developed by
Ramon Jansen in his bachelor’s thesis [91].
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which provides reliable and ordered delivery of a byte stream from one computer
application to another. It is one of the core protocols of the Internet Protocol
Suite. We considered the connection establishment and closing between a Client
and a Server, but left out the data transfer phase. As SUT, we consider an
implementation of the Server component of the protocol in Windows 8. Our setup
was restrictive, in that we did not explicitly use triggers, like CONNECT, SEND,
LISTEN, and CLOSE. Thus our learned model reflects only setup and closing of
connections that are initiated by the Client communicating with the Server. To
include setup and closing initiated by the learned Server, we should also have
included the above triggers in the set of input symbols of output queries.

For our experiments we used virtualization through Virtual Box. LearnLib,
a Java implementation of the mapper and an adapter were deployed on a guest
Ubuntu 12.04 LTS operating system, while the server was deployed on a host Win-
dows 8 machine. A Python adapter based on Scapy was used to construct and send
request packets and retrieve response packets. In our experiments, we considered
Request messages, which are input to the SUT, and Response messages, which are
output by the SUT. We ignored a number of fields in TCP messages (these are
kept to a constant value in our learning experiments) and consider messages of the
form Request/Response(Flag,SeqNr,AckNr). Parameter Flag consists of four bits
SYN, ACK, FIN and RST that define what type of message is sent: SYN syn-
chronizes sequences numbers, ACK acknowledges the previously received sequence
number, FIN signals the end of the data transfer phase, and RST resets the proto-
col to its initial state. Table 3.2 lists the seven possible values for parameter Flag
that we considered in our experiments.2 We write RST(Flag) as shorthand for
Flag ∈ {RST,RST+ACK}. Notation ACK(Flag) is defined similarly. Parameter

Flag SYN ACK FIN RST
SYN 1 0 0 0
SYN+ACK 1 1 0 0
ACK 0 1 0 0
FIN 0 0 1 0
FIN+ACK 0 1 1 0
RST 0 0 0 1
RST+ACK 0 1 0 1

Table 3.2: Possible values for Flag parameter.

SeqNr is a sequence number that needs to be synchronized with both sides of
the connection, and parameter AckNr acknowledges a previous sequence number.
TCP sequence and acknowledgement numbers have 32 bits and thus the values of
SeqNr and AckNr are contained in the interval [0, 232 − 1]. In addition, there is
an output symbol timeout, which corresponds to the scenario in which the Server
does not generate any response.

To define the mapper, we use information obtained from the standard [126].
The mapper uses variables lastSeqSent and lastAckSent to record the last se-

2Uijen [156] also describes a more general learning experiment in which all possible combi-
nations of the control bits SYN, ACK and FIN are allowed, including the so-called Kamikaze
packet [126] in which all the flag bits are turned on.
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quence number and acknowledgement, respectively, that have been transmitted
to the SUT in a valid request message. Similarly, the mapper uses variables
lastSeqReceived and lastAckReceived to record the last sequence number and ack-
nowledgement, respectively, that have been received from the SUT in a valid
response message. The variables lastSeqSent, lastAckSent, lastSeqReceived and
lastAckReceived all have domain [0, 232 − 1] and initial value 0. Boolean variable
INIT, which is TRUE initially, is used to record whether client and host have al-
ready exchanged sequence and acknowledgment numbers in the current session.
We formally define the update function of the mapper by the following three tran-
sitions:

event Request(Flag,SeqNr,AckNr) when TRUE do
�lastSeqSent, lastAckSent, INIT� := �SeqNr,AckNr, INIT ∨

RST(Flag)�
event Response(Flag,SeqNr,AckNr) when TRUE do
�lastSeqReceived, lastAckReceived, INIT� := �SeqNr,AckNr,RST(Flag)�

event timeout() when TRUE do �� := ��

Our abstraction function partitions parameter values into two classes: valid and
invalid. The sequence number of the first request is always valid. The sequence
number of a subsequent request is valid if it equals the last acknowledgement
that has been received. The acknowledgement number of the initial request is
always valid. An acknowledgement is also always valid when the ACK bit is 0.
For the remaining requests the acknowledgement is valid when it is obtained by
incrementing (modulo 232) the last sequence number that has been received:

ValidReqSeq ≡ INIT ∨ SeqNr = lastAckReceived
ValidReqAck ≡ INIT ∨ AckNr = lastSeqReceived + 1

Validity of response messages is defined similarly. In the initial state, we cannot
predict the sequence number of an incoming response message. In all the other
states there is a unique valid sequence number. In all states, including the initial
one, we are able to predict the acknowledgement number of an incoming response
message.

ValidResSeq ≡ INIT ∨ SeqNr = if (Flag = RST+ACK) then 0

else lastAckSent fi
ValidResAck ≡ (ACK(Flag) ∧ AckNr = lastSeqSent + 1) ∨

(Flag = RST ∧ AckNr = lastAckSent)

The relation between concrete and abstract symbols is concisely specified by
following three event abstractions:

timeout()
Request(Flag,ValidReqSeq,ValidReqAck)
Response(Flag,ValidResSeq,ValidResAck)
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Note that these abstractions preserve the value of the Flag parameter. Altogether
we have 7× 2× 2 = 28 abstract inputs. Our abstraction is not output-predicting
since we (obviously) cannot predict the sequence number in the initial state.

Results During the learning experiments we initially only used the 7 valid in-
puts, following the approach of Section 2.3. After inference, LearnLib produced a
model with 4 locations and 4×7 = 28 transitions. In order to display the model in
this paper, we suppressed all the self-loop transitions with output timeout. This
results in the model H with 4 states and 15 transitions shown in Appendix 3.C.
LearnLib needed 239 membership (output) queries to learn the model, which re-
quired 92439 ms. The first hypothesis was already the final model; no refinements
were needed. We tested the correctness of the learned model using the test ge-
neration algorithm of LearnLib (5000 traces with length varying from 50 to 100).
These testing experiments took about 7.5 hours. If the behavior of the SUT can
be described by Mealy machine M, the above mapper is denoted by A and the set
of valid abstract inputs by Xv, then, assuming the hypothesis model H is correct,
αA(M) ↓ Xv ≤ H. If X is the set of all abstract inputs then, by Lemma 2.4,
αA(M) ≤ H ↑ X and, by Theorem 3.1, M ≤ γA(H ↑ X). Thus we may use
the abstract model H to construct an over-approximation of the TCP host beha-
vior. This learned model is clearly consistent with the state diagram given in the
standard [126, 148]. TCP hosts just ignore incoming requests messages with inva-
lid sequence numbers. This means it is easy to extend our learning experiments
to larger alphabets with inputs Request(Flag,ValidReqSeq,ValidReqAck) satisfying
ValidReqSeq ⇒ ValidReqAck: we obtain the same model with extra self-loops for
the invalid inputs. Handling request messages with valid inputs but invalid ack-
nowledgements, and in particular defining a mapper that predicts the outputs for
these messages turns out to be more involved, and is left as future work.

3.5 Conclusions and Future Work
We have presented an approach to infer models of entities in communication pro-
tocols, which also handles message parameters. The approach adapts abstraction,
as used in formal verification, to the black-box inference setting. We have shown
the applicability of our approach for inference of (fragments of) realistic commu-
nication protocols, by feasibility studies on SIP and TCP. In Chapters 4 and 8,
we describe the successful application of our approach for learning models of the
Biometric passport and the Bounded Retransmission Protocol. In future work,
we intend to apply our approach to larger fragments of SIP and TCP, and also to
other protocols. Our work shows how regular inference can infer the influence of
data parameters on control flow, and how data parameters are produced. Thus,
models generated using our extension are more useful for thorough model-based
test generation, than are finite-state models where data aspects are suppressed. In
future work, we plan to supply a library of different inference techniques specia-
lized towards different data domains that are commonly used in communication
protocols. Initial steps in this direction are reported in Chapter 6 and in [38, 113].
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Chapter 4
Inference and Abstraction of the

Biometric Passport

In this chapter, we apply the abstraction techniques described in the previous
chapter to learn a model of the new generation of biometric passports [87, 37].
This speeds up the learning process and reduces model size. In contrast to the SIP
and TCP experiments in Section 3.4, we validate our automatically derived model
against a previous hand-made specification of the passport [118]. This specification
was used to validate the Dutch implementation of the biometric passport using the
ioco-theory for MBT [152]. We implemented our abstraction as a mapping module
and connected it to the LearnLib library for regular inference [130, 131, 114].
After translating our automatically derived Mealy machine to a labeled transition
system (LTS), we used the tool JTorX [25] to show that this learned model is
ioco-conforming to the hand-made specification. Our model can be learned within
one hour and is of comparable complexity and readability as the hand-made one.
It took several hours to develop the latter.

Our main contribution is to demonstrate and validate the applicability of our
abstraction technique for learning automata to a practical and realistic case-study.
The main result is that the model learned is comparable in size and correct w.r.t.
to a previously hand-made specification. The time needed for a computer to learn
the model from an existing implementation is much less than the time needed by
a human to develop it.

The rest of this chapter is organized as follows. In the next section, we give an
overview of our approach. Section 4.2 gives a short overview of the biometric pas-
sport; the experiments and according results are reported in Section 4.3. Finally,
Section 4.4 contains conclusions and directions for future work.

4.1 Approach and Implementation

Our approach works as follows. The goal is to learn a model of an SUT - the
biometric passport. For the learning process we use three components: a learner
(LearnLib, see Section 2.2), a teacher (SUT), and an intermediate layer called Abs-
traction mapping that reduces the alphabet of the SUT, see Learning box in Figure
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4 Inference and Abstraction of the Biometric Passport

4.1. The abstraction mapping is created using a priori knowledge extracted from
informal specifications, observing the behavior of the SUT, and several interviews
with experts from our university’s security department [118, 117]. Eventually, the
learning algorithm generates a Mealy machine model of the SUT. If a reference
model is available, we can validate the learned implementation to check whether
it is correct with respect to the specification. In our approach, we use the testing
relation ioco [152, 153], which is implemented in the JTorX tool [25]. The Mealy
machine model has to be transformed to an input-output transition system (IOTS)
to allow comparison with the specification represented as a LTS, see Validation
box in Figure 4.1. We use an abstracted version of the specification to conform to
the alphabet defined in the IOTS. The abstract LTS is based on a formal model
created by Mostowski et al. [118] to adopt model-based testing. Their model was
fed to the testing tool TorXakis (based on TorX [155]) that automatically gene-
rates and executes test cases on the fly. By comparing the responses of the SUT to
those specified in the model, a verdict can be made, see MBT box in Figure 4.1.

Informal 
specification/
Observations,

Interviews, etc.

A priori 
knowledge

LearnLib
small alphabet

Abstraction 
mapping

SUT (Biometric 
passport)

possibly large 
alphabet

Mealy machine

IOTS

Specification 
as LTS

Learning

Validation

abstract input

abstract output

concrete input

concrete output

verdictJTorX Formal 
specification

TorXakisverdict

MBT 
[Mostowski et al.]

abstraction

Figure 4.1: Approach and tool implementation

4.2 Biometric Passport
The biometric passport is an electronic passport provided with a computer chip
and antenna to authenticate the identity of travelers. The data stored on the
passport are highly confidential, e.g. they might contain fingerprints or an iris scan
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4.2 Biometric Passport

of its owner, and are protected via several mechanisms to avoid and detect attacks.
Examples of used protocols are basic access control (BAC), active authentication
(AA), and extended access control (EAC) [37]. Official standards are documented
in the international civil aviation organization’s (ICAO) Doc 9303 [87].
In this chapter, we take a look at the interaction of the following messages:

• Reset resets the system.

• GetChallenge followed by CompleteBAC forms a BAC, which establishes
secure messaging with the passport by encrypting transmitted information.

• FailBAC constitutes an invalid BAC.

• ReadFile(int file) tries to access highly sensitive data specified in a certain
file, which is represented as an integer value in the range from 256 up to
(and including) 511.

• AA prevents cloning of passport chips.

• CA followed by TA forms an EAC, which uses mutual authentication and
stronger encryption than BAC to control access to highly confidential data.

• FailEAC constitutes a valid CA and an invalid TA.

For each of these messages a value OK or NOK may be returned by the SUT. A
global overview of the behavior is depicted in Figure 4.2, where a BAC consists
of a GetChallenge followed by a CompleteBAC and an EAC constitutes a CA
followed by a TA. The files 257 and 258 should be readable after a BAC (and
EAC). File 257 contains machine readable zone (MRZ) data, i.e. name, date of
birth, nationality, document number, etc. whereas file 258 contains a facial image.
File 259 comprises biometric data like fingerprints or an iris scan, which are only
readable after a BAC followed by an EAC. All other files should not be readable
at any point in time.

Startstart BAC EAC
BAC/OK

ReadFile(257)/OK
ReadFile(258)/OK

ReadFile(256)/NOK
ReadFile(259)/NOK
...
ReadFile(511)/NOK

EAC/OK

ReadFile(257)/OK
ReadFile(258)/OK
ReadFile(259)/OK

ReadFile(256)/NOK
ReadFile(260)/NOK
...
ReadFile(511)/NOK

Figure 4.2: Simplified model of the biometric passport
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4.3 Experiments
We have implemented and applied our approach to infer a model of the biometric
passport described in Section 4.2. In this section, we first describe our experimen-
tal setup, thereafter its application and a validation of our technique.

We used an authentic biometric passport as SUT. The data on the chip could
be accessed via a smart card reader; JMRTD1 provided the API. We connected
the SUT to an abstraction mapping, which performed a translation as described
in Section 4.3.1. As before, the LearnLib library [131, 114] served as learner. For
equivalence approximation we used the W-Method by Chow [41] implemented in
LearnLib.

4.3.1 Abstraction Mapping
As described in Section 4.2, only the ReadFile message has a parameter called file,
which can take on integer values in the range from 256 up to (and including) 511.
Actually, each of these numbers has to be considered separately in the inference
process, which would require a lot of time and memory space. By taking a closer
look at the informal specification of the passport, we discovered that different files
should be treated in the same way by the SUT. As one can see in Figure 4.2, files
257 and 258 should be readable after a BAC, 259 after a BAC followed by an EAC
and the rest of the files should never be readable. Using this a priori knowledge
about the passport, we can divide the values into three disjoint equivalence classes,
which are:

• ValidAfterBAC refers to the files that can be read after a BAC, i.e. 257 and
258.

• ValidAfterEAC refers to the files that only can be read after a BAC followed
by an EAC, i.e. 259.

• NotValid refers to the files that can never be read, i.e. all files except for
257, 258 and 259.

For the construction of the abstraction mapping, we apply the same technique
as presented in Section 3.3. Initially, all values are in one large equivalence class.
The mapper component translates an abstract value to a concrete one by randomly
choosing an element within the equivalence class. If the numbers are partitioned
incorrectly, then there are two values in the same class that will produce a different
response, e.g. BAC followed by ReadFile(257) will result in an OK output while
for BAC followed by ReadFile(402) a NOK is produced. This nondeterministic
behavior will be detected by LearnLib, which will give an error message. As a
result, we refine the partitioning and start from scratch.

4.3.2 Results
The inference performed by LearnLib needed about one thousand output que-
ries (sequences of inputs) and one equivalence query, and resulted in a model H

1http://jmrtd.org/
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with five states and 55 transitions. Without our abstraction mapping, the Mealy
machine would have had 1320 transitions, but also five states. The total learning
time took less than one hour2. This is significantly shorter than deriving the model
manually from the informal specs, which took about 5 hours. All results are sum-
marized in Table 4.1. For presentation purposes, we have depicted the model as
follows: (1) we removed self-transitions with NOK as output. Because the model
is input-enabled all missing entries refer to this kind of transition. (2) Transitions
with same source location, output symbol and next location (but with different
input symbols) are merged by concatenating the input symbols, separated by a
bar (|). The resulting transition diagram has five locations and 19 transitions as
shown in Figure 4.3.

Output queries (sequences of inputs) 1078
Total input symbols used in output queries 4158
Average output query length 3.857
Equivalence queries 1
Total learning time < 60 minutes

Table 4.1: Learning statistics

The implementation of the biometric passport does not respond to a Reset
input. For all other outputs the reaction time is dependent on the input symbol.
If the waiting time for an output is too short, then an output symbol may be
returned after a timeout has been assumed. In contrast, if the waiting time is too
long, then the passport application crashes after certain inputs. As a solution, we
changed the API of the SUT, so that it returns an OK symbol for each Reset input.
By always returning an output symbol, we do not have to struggle with appro-
priate waiting times per input symbol. Instead, we wait until an output is received.

According to the passport specification, the implementation should be determi-
nistic. However, surprisingly, the passport application sometimes exhibits nonde-
terministic behavior. LearnLib is restricted to infer behavior deterministic Mealy
machines and cannot cope with nondeterministic behavior. Analyzing the external
behavior of the system revealed that after a GetChallenge, CompleteBAC, CA, TA
input sequence mostly an OK is returned, but in some rare cases it can also be a
NOK. Together with Mostowski et al. we tried to examine the internal behavior of
the application to understand where the nondeterminism originates from. During
their work this problem has also been encountered, but it has never been reported.
Because a TA call includes numerous complex and long calculations, a problem
can arise at several places. Moreover, external circumstances may influence the
produced results like connection to or temperature of the smart card reader. In
the end, we could not clearly determine the fault location and had to accept that
the inference can fail once in a while.

2The experiments have been carried out on a PC with an Intel Pentium M 1.86GHz processor
and 1GB of RAM.
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Start

start

Get
Chal

Compl
BAC

CA

TA

Reset/OK

GetChallenge/OK

GetChallenge/OK

CompleteBAC/OK

Reset/OK
FailBAC/NOK

ReadFile(ValidAfterBAC) |
AA/OK

CA/OK
FailEAC/NOK

Reset/OK
GetChallenge |
CompleteBAC |
FailBAC/NOK

ReadFile(ValidAfterBAC) |
AA | CA/OK

TA/OK

Reset/OK
GetChallenge |
CompleteBAC |
FailBAC/NOK

ReadFile(ValidAfterBAC) |
ReadFile(ValidAfterEAC) |
AA | CA | TA/OK

FailEAC/NOK

Reset/OK
GetChallenge |
CompleteBAC |
FailBAC/NOK

Figure 4.3: Learned model H of the biometric passport

4.3.3 The Behavior of the SUT

We assume that the behavior of the digital passport can be modeled in terms of
a behavior deterministic Mealy machine M. Clearly, due to the abstraction that
we applied, the learned model H is not equivalent to M: even the alphabets are
different. Let αA(M) be the Mealy machine obtained from M via mapper A by
renaming each action ReadFile(file) in accordance with the abstraction mapping
defined in Section 4.3.1. We assume that also αA(M) is behavior deterministic.
Since the SUT and the mapper together behave like αA(M), the learned model
H should include the behavior of αA(M), i.e. αA(M) ≤ H. LearnLib constructs
a deterministic automaton H and implements several algorithms that can be used
to “approximate” inclusion queries, that is, to establish that the hypothesized
machine H includes the behavior of the model αA(M) of the teacher. We have
used the well-known W-method of [41] (see also [100]). This method assumes a

66



4.3 Experiments

known upper bound on the number of states n of αA(M). Depending on n the
W-method provides a test sequence of input symbols u with the property that the
output produced by αA(M) in response to u is also included in the observations
of H. But assuming that we have established behavior inclusion of αA(M), i.e.
αA(M) ≤ H, what have we learned about M?

We reverse the abstraction mapping and construct a “concrete” model γA(H)
of the passport as follows. We replace each ValidAfterBAC transition in HA by
two transitions with the same source and target but with labels ReadFile(257)
and ReadFile(258), respectively. Similarly, we replace each transition with label
ValidAfterEAC by an identical transition with label ReadFile(259). Finally, we
replace each transition with label NotValid by 253 identical transitions with labels
ReadFile(256), ReadFile(260), ReadFile(261), . . ., ReadFile(511), respectively.

Theorem 3.1 states that if αA(M) implements H, then M implements γA(H).
Provided that γA(H) is deterministic, M is observation equivalent to γA(H), i.e.
M ≈ γA(H), according to Lemma 2.1. This is indeed the case since for the
biometric passport mapper A is output-predicting as it acts as the identity on
outputs, H is deterministic and, accordingly, Lemma 3.4 states that γA(H) is
deterministic.

4.3.4 Validation

To validate the learned model of the biometric passport, we compared it to a re-
ference model taken from Mostowski et al. [118]. The specification is a LTS made
in Haskell3 and has to be transformed to a different format to allow comparison
with the inferred Mealy machine described in the DOT4 language.

For the comparison, we used JTorX [25], a tool to test whether the ioco testing re-
lation holds between a given specification and a given implementation. Intuitively,
an implementation i ∈ IOT S(LI , LU ) is input-output conforming to specification
s ∈ LT S(LI , LU ) if any experiment derived from s and executed on i leads to an
output from i that is foreseen by s. For a formal definition, we refer to [153]. We
have supplied JTorX with the specification and implementation as LTS - repre-
sented in Aldebaran5 format. The learned Mealy machine has been transformed
to a LTS by splitting each transition into two with the input symbol on the first
transition and the output on the second one connected by an additional state. As
a result, the input-enabledness of the Mealy machine gets lost. To convert the
learned LTS to an IOTS, JTorX adds self-loop transitions to the according states.
Furthermore, we removed the output OK for a Reset input, because it is unknown
by the specification, see Section 4.3.2.

According to JTorX, the implementation is ioco conforming to the specification,
but not vice versa. This is not surprising as the learned model is input-enabled
while the specification is not. For example, the specification does not specify a
CompleteBAC input in the initial state while the learned implementation does, see

3http://www.haskell.org/
4http://www.graphviz.org/
5http://www.inrialpes.fr/vasy/cadp/man/aldebaran.html
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4 Inference and Abstraction of the Biometric Passport

Figure 4.4 for a fragment of the specification. We only show the inputs in the initial
state with according outputs, because the entire model contains too many states
and transitions. As one can see, the automaton corresponds to a Mealy machine.
Except for the Reset input, each input is followed by an output. If we would
transform the specification to a Mealy machine, it would not be input-enabled.
Because LearnLib infers an input-enabled Mealy machine of the implementation,
it contains more behavior than described by the specification, which is allowed by
the ioco testing relation.

l0

start

l1

l2

l3

l4

l5

l6

l7

l8

?Reset

?CA

?FailBAC

?FailEAC

?GetChallenge

?ReadFile(ValidAfterBAC)
?ReadFile(ValidAfterEAC)
?ReadFile(NotValid)

?AA

?TA!NOK

!NOK

!NOK

!OK?GetChallenge

!NOK

!NOK

!NOK

Figure 4.4: Specification fragment of the biometric passport

4.4 Conclusions and Future Work

Using regular inference and abstraction, we have managed to infer a model of
the biometric passport that describes how the passport responds to certain input
sequences. As mentioned in the introduction of this thesis, quite a number of papers
have been written on regular inference of state machines. However, the number
of real applications to reactive systems is still limited. The case study that we
describe here is a small but real application. The new biometric passport is used
by millions of people, and it is vital that the confidential information stored on
this passport is well-protected. Our model, which slightly refines the earlier model
of [118], may serve as a reference model for testing different implementations of
the biometric passport.

The data abstraction that we applied when learning the passport may seem
rather obvious (and indeed is much simpler than the abstractions applied in Chap-
ter 3 of this thesis), but is nevertheless crucial for the successful application of our
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learning framework. In order to prevent brute force attacks, the biometric pas-
sport only allows for about one input message per second. Without abstraction,
the time needed to apply the framework (and in particular the approximation of
equivalence queries via e.g. the W-method) would become prohibitively large. We
have proven that under some reasonable assumptions about the behavior of the
biometric passport, our abstraction does not lead to any loss of information.

The earlier model of [118] has been created manually in about 5 hours, whereas
our model has been produced automatically in less than one hour. Our ambition
is to further develop the learning framework, so that also for other applications it
becomes feasible to mechanize and speed-up the time-consuming and error prone
process of constructing reference models.

Due to the problems with the occasional nondeterministic behavior of the pas-
sport, an obvious topic for future research is to extend our approach to inference
of nondeterministic systems. Such an extension will be essential, when doing more
real-world case studies like this one.

If inferring an input-enabled Mealy machine is too time-consuming and we are
only interested in parts of the implementation, we may extend our abstraction
mappings with an interface automaton (IA) as suggested by [11]. An interface
automaton [56] is a labeled transition system with input and outputs, where certain
input actions may be illegal in certain states. When an input symbol or sequence
generated by the learning algorithm is not allowed by the specified IA, this part
of the implementation will not be inferred. By adding restrictions, we can focus
on those parts of the implementation that are described by the specification.
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Chapter 5
Formal Models of Bank Cards

For Free

Software for banking or credit cards is developed using a very strict and regimented
software engineering process. After all, this software is highly security-critical and
patching is usually not an option. The software will be subjected to rigorous
compliance tests and security certifications, possibly even costly Common Criteria
certifications.

Establishing security here is often more difficult than just establishing cor-
rectness, or compliance with a standard. In checking compliance (e.g. for inter-
operability) the emphasis tends to be on the presence of required functionality :
if some functionality is missing, the implementation is incorrect and it will not
work correctly in all circumstances. Security on the other hand is also concerned
with the absence of unwanted functionality ; if an implementation provides more
functionality than what is required, then it may be considered compliant – after
all, it does what it is supposed to do – but it might be insecure, as it does more
than what it is supposed to do, and this additional functionality may be a source
of insecurity. This makes it hard to test for security bugs, and to discover them in
the field: unlike functional bugs, security bugs may never show up under normal
circumstances.

Testing of security applications using model-based testing techniques appears
to be an interesting approach to test for security vulnerabilities [63], as a generali-
zation of fuzzing. It does however require formal models that specify the intended
behavior of the system. In this chapter, we show how standard active learning
methods together with the abstraction techniques of Chapter 3 can be used to
learn formal models of bank cards quickly without much effort. The inferred mo-
dels can be a useful addition to testing or security evaluations of these products.
The technique is not just applicable to bank cards, but can be applied to any
smartcard.
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5.1 Background: Smartcards and EMV

5.1.1 Smartcards

All smartcards follow the ISO/IEC 7816 standard [90]. Here communication is
in master-slave mode: the terminal sends a command to the card, and the card
returns a response, after which the terminal can send another command, etc.
Commands and responses are simply sequences of bytes with a fixed format and
meaning, called APDUs (application protocol data units).

The second byte in a command APDU is the instruction byte, and specifies the
instruction that the smartcard is requested to perform. The last two bytes of a
response APDU are the status word, which indicates if execution of the command
went OK or if some error occurred. The ISO/IEC 7816 standard defines some
standard instruction bytes and error codes.

Standard instructions we used to infer the behavior of bank cards include:

• the SELECT instruction to select which of the possibly several applications
on the smartcard the terminal wants to interact with;

• the VERIFY instruction to provide a PIN code to the card for authentication
of the cardholder;

• the READ RECORD instruction to read some data from the simple file system
that the card provides;

• the GET DATA instruction to retrieve a specific data element from the card
(for example the PIN try counter, which records how often the PIN can still
be guessed);

• the INTERNAL AUTHENTICATE instruction to authenticate the card; the
terminal supplies a random number as argument to this command which the
smartcard then encrypts or signs to prove knowledge of a secret key.

For the purposes of this research the difference between the ‘files’ retrieved using
READ RECORD and the ‘data elements’ retrieved using GET DATA is not impor-
tant.

5.1.2 EMV

Most smartcards issued by banks or credit cards companies adhere to the EMV
(Europay-MasterCard-Visa) standard [61]. This standard is defined on top of
ISO/IEC 7816. It uses some of standard instruction bytes (incl. those listed above),
but also defines additional ones specific to EMV, including:

• the GENERATE AC instruction to let the card generate a so-called application
cryptogram (AC);

• the GET PROCESSING OPTIONS instruction to initialize the transaction,
provide the necessary information to the card and retrieve the capabilities
of the card.
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A normal EMV session consists of the following steps:

1. selection of the desired application on the smartcard using SELECT. There
may be several applications on a smartcard. Some bank cards will provide
multiple EMV-applications for different uses, e.g. one to be used by ATMs
and one to be used by a hand-held reader for internet banking.

2. initialization of the transaction using GET PROCESSING OPTIONS. The
terminal provides the card with data, specified in the response to the selection
of the application. The card initializes the transaction and sends a response
containing its capabilities.

3. optionally: cardholder verification and/or card authentication. Card authen-
tication can, for example, be done using a challenge-response mechanism (cal-
led DDA in the EMV standard) by invoking the INTERNAL AUTHENTICATE
instruction. Cardholder verification can be done offline by checking the PIN
code using the VERIFY instruction; here the PIN can be sent to the smart-
card either in plaintext or encrypted. Checking the PIN can also be done
online, in which case the PIN is sent to the bank back-end to check it.

4. the transaction. For the actual transaction one or two cryptograms are re-
quested using the GENERATE AC instruction, as discussed in more detail
below.

5. scripting. After completing a transaction, the terminal may send additional
Issuer-to-Card scripting commands, that allow the issuer to update cards in
the field.

The cryptograms generated for a transaction can have one of the following three
types:

• an authorization request cryptogram (ARQC), which is a request to perform
a transaction online;

• a transaction certificate (TC), which indicates acceptance of a transaction;

• an application authentication cryptogram (AAC), which indicates rejection
of a transaction.

All these cryptograms contain a MAC (message authentication code), a hash over
some data encrypted with a secret key.

An EMV transaction involves at most two of these cryptograms. The types of
these cryptograms depend on the transaction. EMV transactions can be offline or
online. For an offline transaction, the terminal sends data about the transaction
to the card, and the card returns a TC to approve the transaction. For an online
transaction, the card first provides an ARQC that is sent back to the issuing
bank. The bank’s response is sent to the card, which will then return a TC if the
response is correct. Every transaction by the card is identified by a unique value
of the application transaction counter (ATC), that the card keeps track of.

The terminal requests these cryptograms using the GENERATE AC command.
The terminal will indicate which type of cryptogram it wants, but the card may
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return a different type than requested. For example, when the terminal requests
a TC, the card may return an ARQC (namely in case the card wants the terminal
to go online to get approval for the transaction from the bank) or it may decline
the transaction by responding with an AAC.

The EMV protocol as described above is also used for internet banking in the
EMV-CAP protocol. Here bank customers use a handheld smartcard reader with
a small display in which they insert their bank card. EMV-CAP is a proprietary
standard of MasterCard. Unlike the EMV specs, the EMV-CAP specs are not
public, but they have been largely reverse-engineered [60, 150]. In EMV-CAP the
card is requested for an ARQC to authorize an transaction (e.g. an internet bank
transfer). This is then followed by a request for an AAC, thus completing (or,
more precisely, aborting) a regular EMV transaction so that the card is left in a
‘clean’ state.

5.2 Setup and Procedure

We used authentic bank cards as SUT/teacher. Access to the smartcards was
realized via a standard smartcard reader and a testing harness discussed in Sec-
tion 5.2.1. We connected the SUT to the LearnLib library [131, 114], which served
as learner, see Figure 5.1. In our experiments we used the LearnLib random test
suite with 1000 test traces of length 10 to 50 as equivalence oracle. We verified
our results with the W-Method by Chow [41] by checking if it will find at least
one more state than the random test suite.

Learner
Test har-

ness /
Mapper

Bank card

command type
(plus possibly
cryptogram type)

ISO7816
command

status word
(plus possibly
cryptogram type)

response

Figure 5.1: Set-up

For our tests we used a collection of MasterCard and Visa branded debit and
credit cards from the Netherlands, Germany, Sweden and the UK. All the Mas-
terCard credit cards contain a MasterCard application, whereas on the bank cards
there is a Maestro application. Both these applications are used for payments
in shops and to withdraw cash from ATMs. The Dutch bank cards also contain
a SecureCode Aut application, which is used for online banking with a handheld
EMV-CAP reader provided by the bank. The Visa branded debit card contains
the Visa Debit application.
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5.2.1 Test Harness

As illustrated in Figure 5.1, our test harness1 translates the abstract command
(from the input alphabet of our Mealy machine model) to a concrete command
APDU, and translates a response APDU to a more abstract response (in the
output alphabet of the Mealy machine model). It supports the commands listed
in Section 5.1.2.

The test harness is just over 300 lines of Java code. Most of this code is generic
code to set-up a connection to the smartcard reader. A regular smartcard reader
was used, and communication was performed using the standard Java Smart Card
I/O library. The code specific to EMV is just over 100 lines of code, and consists
of 15 methods that define some command APDU to be sent to the card. The input
alphabet corresponds to these 15 methods.

For many parameters of these commands the test harness uses some fixed value,
for instance for the random number sent as argument of INTERNAL
AUTHENTICATE, the payload data for the cryptograms generated by the card,
and the (correct) guess for the PIN code. One would not expect a different ran-
dom number to affect the control flow of the application in any meaningful way,
so by fixing values here we are unlikely to miss interesting behavior. Note that
we have two different payloads when requesting the cryptograms due to the diffe-
rence between the first and second request for a cryptogram. As these payloads
are different, both a correct and an incorrect payload is used when requesting
cryptograms. Obviously, entering an incorrect PIN code would affect the control
flow, but learning about the behavior in response to incorrect PIN guesses is very
destructive as it will quickly block the card.

For several commands different variants are provided by the test harness:

• For the commands GET DATA, READ RECORD and GET PROCESSING
OPTIONS, both a variant with correct arguments and one with incorrect
arguments is provided. E.g., for GET DATA we have variants requesting a
data element that is present or one that is not.

• For the GENERATE AC command 6 variants are provided, as there are 3
cryptogram types, each of which can be used with one of 2 sequences of
arguments (one for the first and one for the second cryptogram).

The test harness does not output the entire response of the smartcard to the
learner. It only returns the 2 byte status word, but not any additional data
returned by the card. For most commands, like GET PROCESSING OPTIONS,
this additional data returned will always be the same, so there is not much interest
in learning it. The only exception to this is the GENERATE AC command: here
the test harness does return the type of cryptogram that was returned by the card
(but not the cryptogram itself; as this is computed using a cryptographic function
on the input and the card’s ATC, the response will never be the same and there
is nothing we could hope to learn from it).

A limitation of our test harness is that we do not know the bank’s secret
cryptographic keys that are needed to complete one ‘correct’ path of the protocol,

1Available from http://www.cs.ru.nl/~joeri/

75



5 Formal Models of Bank Cards For Free

namely the path where the card produces an ARQC as first cryptogram and a TC
as second. For this a correct reply to the first ARQC is needed, which requires
knowledge of the cryptographic keys used by the bank’s back end.

To be able to include the VERIFY command in the learning, the PIN code of
the corresponding card has to be known. We did not try to learn the behavior
of the card in response to incorrect PIN codes, to avoid blocking the card. The
cards we used are real bank cards for which we cannot reset the PIN. (With access
to functionality to reset the PIN, which the issuing bank might have, one could
also try to learn the behavior in response to incorrect PINs.) The German card
only supported encrypted PIN verification. Since the public key of MasterCard is
needed for this, we were unfortunately not able to use VERIFY with this card.

The Visa branded card can perform the GET DATA command to retrieve the
current value of the ATC. This functionality is used by a mapper component in
the sense of Chapter 3 to be able to learn the transitions where a counter is increa-
sed. The mapper is integrated in the test harness of the SUT, and uses variable
lastATCReceived to keep track of the value of the counter. The GET DATA com-
mand only returns the current value of the ATC if the Visa Debit application is
selected. Since the mapper depends on the value of the ATC, the Visa Debit appli-
cation is automatically selected by the test harness when a reset is performed. We
assume that the initial state of the mapper coincides with the ATC value of the
SUT. We can implement this by performing the GET DATA command right after
the reset. The mapper retrieves the value of the ATC when it receives an output
from the SUT and stores it in the lastATCReceived variable. We formally define
the update function of the mapper by the following transition:

event Output(ATC) when TRUE do
�lastATCReceived� := �ATC�

For all input event terms no state variables are updated, and we have trivial
transitions of the form event Input() when TRUE do �� := ��.

The mapper adds the difference with the lastATCReceived variable to the
abstract response, e.g. ‘1’ in an output indicates the ATC was increased by one
in this transition. We define the relation between concrete and abstract output
symbols by the event abstraction Output(e), where Output(ATC) can be any
output event term, and

e = ATC − lastATCReceived.

Since the input event terms carry no parameters, the event abstraction for these
terms is trivial.

5.2.2 Trimming the Inferred State Diagrams

The state diagrams returned by LearnLib as .dot file look quite unintelligible at
first sight, because there are so many transitions: for each state, one for every
possible command. However, many transitions from a given state are errors and
simply return to the same or an error state (e.g. the ‘Selected’ or ‘Finished’ state).
By simply collapsing all these transitions into one transition marked ‘Other’ or
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Figure 5.2: Automaton of Dutch Maestro application. Just to highlight one observation
that can be made from this diagram: the VERIFY operation, i.e. the verification of the
PIN code by the smartcard, is optional; this makes sense because the terminal may check
the PIN code with the bank (so-called online PIN verification), or choose not to verify
the PIN at all.

‘All’, and drawing multiple transitions between the same states with different
labels as one transition with a set of labels, we obtain simple automata such
as Figures 5.2, 5.3, 5.4 and 5.5. In these figures the responses are omitted for
readability. We simply obtained these by manually editing the .dot files. This
could easily be automated. At the same time we chose meaningful names for the
different states.

The transition labels for GENERATE AC commands indicate (i) if it is the
1st or 2nd request for a cryptogram in this session (i.e. whether the argument
is for the first or second request), (ii) the type of cryptogram that was reques-
ted (ARQC, AAC, or TC), and (iii) the type of cryptogram that was returned.
E.g. GENERATE AC 1st ARQC ARQC means the type requested was ARQC, the
arguments supplied for the first request, and the type returned was an ARQC.
We have combined arrows if different parameters yield the same response; e.g.
GENERATE AC 2nd TC/AAC AAC means that requests for a TC or AAC, with
the arguments for the second request, both result in an AAC.

5.3 Results

We learned models of EMV applications on bank cards issued by several Dutch
banks (ABN-AMRO, ING, Rabobank) and one German bank (Volksbank), and on
MasterCard credit cards issued by Dutch and Swedish banks (SEB, ABN-AMRO,
ING) and of one UK Visa Debit card (Barclays). The Dutch bank cards contain
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Figure 5.3: Automaton of Dutch SecureCode Aut application. Note that here the
VERIFY operation – i.e. verification of the PIN code – must be passed successfully be-
fore cryptograms can be generated, except for the AAC cryptogram to abort the session.

two EMV applications, one for internet banking (SecureCode Aut) and one for
ATMs and Point-of-Sales (Maestro). All cards resulted in different models, with
as only exception that the Maestro applications on all Dutch bank cards were
identical, as were the SecureCode Aut applications. An educated guess would be
that these implementations come from the same vendor.

To learn the models LearnLib performed between 855 and 1695 output queries
(sequences of inputs) for each card and produced models with four to eight states.
The total learning time depended on the algorithm and corresponding parame-
ters used for equivalence approximation. The time needed to construct the final
hypothesis was less than 20 minutes for every card.

When analyzing the state diagrams for the different categories, we made the
following observations.

The state diagrams for the ABN-AMRO and ING credit cards are very si-
milar. There are only a few subtle differences, e.g in the initial state different
error codes are returned in response to some instructions. Also the handling of
the INTERNAL AUTHENTICATE instruction differs: both cards respond with the
error 6D00 (‘Instruction code not supported or invalid’), indicating that the ins-
truction is not supported, but for the ING card this does not have any influence
on the state, whereas the ABN-AMRO card is ‘reset’ to the ‘Selected’ state.

Comparing the Maestro (Figure 5.2) and the SecureCode Aut application (Fi-
gure 5.3) on the Dutch bank cards, we can observe the following:
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Figure 5.4: Automaton of Maestro application on Volksbank bank card
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Figure 5.5: Automaton of Visa Debit application on Barclays card. Note that the
INTERNAL AUTHENTICATE can be performed at any stage of the protocol.

1. In both applications, if data that is not available is requested, either using
the READ RECORD or the GET DATA instruction, the application returns
to the ‘Selected’ state. This seems a bit strict, as the terminal has no way
of knowing whether certain data that can be retrieved using GET DATA is
available. Apparently, here the developers have chosen a ‘safe by default’
approach. Though this seems a sensible approach, one can imagine this can
lead to compatibility problems with terminals that expect certain data to be
present on the card while it is not, as the card will reset to a state that the
terminal might not expect.

2. With the SecureCode Aut application it is possible, after successfully veri-
fying the PIN code, to request a TC cryptogram using the GENERATE AC
instruction. This is surprising, as this does not have any meaning in EMV-
CAP: in an EMV-CAP session the terminal must always first ask for an
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ARQC (as explained at the end of Section 5.1). One would expect that
requesting a TC cryptogram type would result in an error (as e.g. happens
when a second ARQC is requested) or in an AAC being returned to abort
the session (as e.g. happens when any type of cryptogram is requested before
PIN verification). Still, it does not seem that this spurious TC cryptogram
can be exploited to cause a security vulnerability, at least insofar as we know
the EMV-CAP protocol [60, 150].

3. The error code that is given in response to the INTERNAL AUTHENTICATE
instruction is different depending on the state in the SecureCode Aut appli-
cation. In those states where it is possible in the Maestro application to
perform this action, the error code is 6987 (‘Expected secure messaging
data objects missing’), while in the other states, an error code 6985 (‘Usage
conditions not satisfied’) is returned.

Compared to the cards considered before, the Volksbank card handles things
a bit differently (see Figure 5.4):

1. Where the other cards return to the ‘Selected’ state when an error oc-
curs, the Volksbank card goes into a ‘Finished’ state. From a ‘Finished’
state there is one transition using the SELECT command to get to the ‘Se-
lected’ again, and one to get to the ‘GPO performed’ state using a valid
GET PROCESSING OPTIONS command.

2. Data authentication using DDA is also handled differently with this card.
First, the card forces DDA to be performed, i.e. if no INTERNAL
AUTHENTICATE command is given, transactions cannot be performed: the
GENERATE AC command will then always return an error. Also, it is pos-
sible to perform DDA even if the card is in a ‘Finished’ state. This suggests
that the INTERNAL AUTHENTICATE command is handled separately from
the other commands and keeps it’s own state to indicate whether it is already
performed. Below we compare this with what the MasterCard’s specifica-
tions say.

3. If in the first GENERATE AC a TC is requested, the card indicates it wants
to go online by returning an ARQC. However, after an ARQC is returned
the first time, when requesting a TC in the second GENERATE AC, this is
actually returned. This seems odd since one would expect this request to fail
(i.e. an AAC to be returned), as we did not provide a valid response from
the bank.

5.3.1 Difference with MasterCard’s Specifications

The Maestro and MasterCard-branded applications should all conform to Mas-
terCard’s Paypass-M/Chip specification2. This specification does specify a state

2This specification is for dual interface (contact and contactless) cards, rather than contact-
only cards, but states that the state diagram for contact-only cards is the same, except that it
has one transition less [88, p. 98].
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diagram, which has only 5 states, whereas the models we obtained for Maestro
cards have 6 or 7 states.

In the state diagram specified by MasterCard the operation INTERNAL
AUTHENTICATE has no effect on the state, meaning that this operation – i.e.
performing DDA – is optional and can be done any number of times. In contrast,
the model learned for the Dutch Maestro card says that this operation can be done
at most once before cryptograms can be generated, and the model for the Volks-
bank Maestro card says that it must be done exactly once before cryptograms can
be generated.

Another difference between the state diagram of the Volksbank card and the
one specified by MasterCard is the presence of the ‘Finished (no DDA)’ state,
which seems to be a spurious dead-end in the behavior of the Volksbank card, as
it does not lead to a normal protocol run which ends where one or two cryptograms
are generated.

As these cards carry the Maestro or MasterCard logo, they must have under-
gone some certification. Assuming that their certification has not missed potential
compatibility problems caused by these deviations from MasterCard’s specifica-
tion, this does suggest that this process does not include checking for implemen-
tation of the exact state machine.

5.3.2 Different Choices in the Visa Branded Card

In the models of the MasterCard applications there exists an ‘Initialization’ state
from which the applications can be selected on the smartcard. Since with the Visa
branded card the test harness automatically selects the Visa Debit application, this
initialization state is not included in the learned models and the initial state is
‘Selected’.

The Visa branded card is quite different from the others. For example, with
the Visa card the commands GET DATA, READ RECORD and VERIFY are allowed
in all states, even before the transaction is initialized with GET PROCESSING
OPTIONS and after the actual transaction is started with a GENERATE AC com-
mand or even finished. These commands are thus apparently completely inde-
pendent from the state of the card. Also, DDA can be performed, by an INTERNAL
AUTHENTICATE, completely independent of any other actions, again even during
and after a transaction.

In the model it can be seen from the additional information added by the
mapper that only two transitions increase the ATC. This indicates that the ATC
is increased when performing a successful GET PROCESSING OPTIONS command
(i.e. 9000 is returned as the status word).

5.4 Related Work

Protocol fuzzing is an increasingly popular technique to test for security vulnera-
bilities. Simpler forms of protocol fuzzing consider only the format of messages,
and then fuzz the different fields, often simply to try and crash an implementa-
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tion. More advanced fuzzers, such as Snooze [22] and Peach3, take a state-based
approach and also use a state machine describing the protocol as basis for fuz-
zing. Models such as we obtain could be the basis for more thorough state-based
fuzzing by such tools. Model-based testing has already been applied to security,
including for smartcards, for instance using UMLSec models [94]. For EMV smart-
cards, there have been successful experiments with protocol fuzzing based on state
models at a commercial test lab [99]; here models were constructed by hand.

There is a growing interest in model inference, or more generally automa-
ted protocol reverse engineering, for security testing and analysis; see [102] for a
survey and a proposed classification of approaches, and [78] for a discussion of
future directions in combining model inference and model-based testing for secu-
rity. In automated techniques for protocol reverse engineering one can distinguish
approaches that try to infer either message formats (e.g. [51]) or protocol state
machines (as we do, and [84]), or both (e.g. [49]). Another classification is that
some approaches use ‘passive learning’, where the learner just observes traffic bet-
ween other parties (e.g. [51, 84, 49]), and ‘active learning’, i.e. where the learner
actively takes part in the traffic in order to learn (as we do). A fundamental limi-
tation of passive learning is that the quality of the model depends on the traffic
that is observed. It will typically not provide good insight into the possibility
of unwanted behavior. It is therefore natural to follow such passive learning by
protocol fuzzing to actively look for any such behavior. Indeed, fuzzing based on
the inferred model is considered as final stage in [84, 49].

In the previous chapter we have shown that active learning was successfully
used to infer models for the electronic passport, confirming that the right ‘files’ are
accessible at different stages of the protocol. The models inferred in this chapter
are more complex than the one of the passport, and the models reveal interesting
differences between various cards. Additionally, we could learn which command
increased the ATC using a mapper component.

5.5 Conclusions and Future Work

We have demonstrated that after defining a simple test harness/mapper com-
ponent, we can easily obtain useful state machine models for banking smartcards
using learning and simple abstraction techniques as presented in Chapter 3 and
in [131]. After some trimming, the models obtained are easy to understand for
anyone familiar with the EMV standard, and clearly highlight some of the central
decisions taken in an implementation.

Differences in the models obtained for different cards may be inconsequen-
tial differences that exploit the implementation freedom allowed by the under-
specification in the EMV specs, but can really affect the security conditions im-
posed (for example, the difference between Figures 5.2 and 5.3 in requiring PIN
code verification). To determine which is which, we have relied on ad-hoc manual
work and human intelligence - the models obtained are easy to inspect visually.
This step could even be automated if security conditions are expressed as temporal
logic formulae.

3http://peachfuzzer.com
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Differences in the state diagrams do not necessarily mean that implementations
are not secure or that they cannot be regarded as compliant to the standard. The
diagrams are a helpful aid in deciding whether this is the case. However, this
decision then inevitably relies on an informal understanding of the standard and
the essential security requirements. One would like to see more objective criteria
for this, especially as security protocols are notoriously brittle and deciding what
constitutes a secure refinement of the specification is not always easy.

The complexity of the standards involved make such models very valuable. In
fact, finite state machine models such as we obtain would be a useful addition to
the official specifications. Despite the length of the EMV specs [61] (of over 700
pages), state diagrams describing the smartcard are conspicuously absent. A state
diagram is specified in MasterCard’s specification [88], but most of the cards we
analyzed actually did not conform to it in the sense that they were not bisimilar.
The differences between e.g. Figures 5.2 and 5.4 show the considerable leeway
there is between different implementations of the same spec. One would expect
(and hope?) that engineers developing, testing, or certifying EMV smartcards do
have such state diagrams, either in the official documentation or just scribbled on
a whiteboard.

The models learnt did not reveal any security issues. Indeed, one would not
expect to find any in smartcards such as we considered, which should have under-
gone rigorous security evaluations and tests. Still, we do notice some peculiarities
(notably that the Volksbank card is still willing to return a TC even after failed
issuer authentication). We believe that our approach would be useful as part of
security evaluations, because it increases the rigor and confidence provided and it
can save a lot of expensive and boring manual labor.

Here it helps that LearnLib learns the behavior blindly, in a completely ha-
phazard way, without any of the preconceptions or expectations about what the
‘normal’ behavior is that a human tester or code reviewer might have. The tool
learns about all the possible behavior. This is an advantage for security, as se-
curity bugs often occur under unusual conditions, when someone does something
unexpected.

Still, the hand-coded test harness we developed does make some assumptions
about the functionality that the card provides. The test harness implements the
basic operations for EMV, and LearnLib then only learns all the possible behaviors
given these operations. A deliberately introduced backdoor would thus not be
detected, but we conjecture that any mistake in the implementation of the internal
state and the associated control flow in the smartcard code would.

For future work, we want to try out our technique on more standard networking
protocols such as SSH or TLS/SSL. This might be more fruitful in the sense that we
can expect implementation bugs to be more common here, as these protocols are
more complex and the code is less rigorously developed and tested than smartcard
code. In the field of EMV, we plan to see if learning techniques can be used to
assess EMV test suites provided by commercial testing companies; models learned
from such test suites, using passive rather than active learning, could provide
coverage criteria to assess their quality.
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Mealy Machines
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Chapter 6
Automata Learning through

Counterexample-Guided Abstraction
Refinement

In this chapter, we present an algorithm that is able to compute appropriate
abstractions for a restricted class of system models. We also report on a prototype
implementation of our algorithm named Tomte, after the creature that shrank Nils
Holgersson into a gnome and (after numerous adventures) changed him back to
his normal size again. Using Tomte, we have succeeded to learn fully automatically
models of several realistic software components, including the biometric passport
and the SIP protocol.

Nondeterminism arises naturally when we apply abstraction: it may occur that
the behavior of a teacher or SUT is fully deterministic but that due to the mapper
(which, for instance, abstracts from the value of certain input parameters), the
SUT appears to behave nondeterministically from the perspective of the learner.
We use LearnLib as our basic learning tool and therefore the abstraction of the SUT
may not exhibit any nondeterminism: if it does then LearnLib crashes and we have
to refine the abstraction. This is exactly what has been done repeatedly during
the manual construction of the abstraction mappings in the previous chapters. We
formalize this procedure and describe the construction of the mapper in terms of
a counterexample-guided abstraction refinement (CEGAR) procedure, similar to
the approach developed by Clarke et al. [45] in the context of model checking.

Our algorithm applies to a class of extended finite state machines, which we
call scalarset Mealy machines, in which one can test for equality of data parame-
ters, but no operations on data are allowed. The notion of a scalarset data type
originates from model checking, where it has been used for symmetry reduction
[89]. In this chapter, we focus on learning SUTs that may only remember the
first and last occurrence of a parameter. How to dispose of this restriction will be
handled in the next chapter. We expect that our CEGAR based approach can be
further extended to systems that may apply simple or known operations on data,
using technology for automatic detection of likely invariants, such as Daikon [62].

The fact that we are able to learn models of systems with data fully auto-
matically is a major step towards a practically useful technology for automatic
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6 Automata Learning through Counterexample-Guided Abstraction Refinement

learning of models of real-world systems. The Tomte tool and all models that
we used in our experiments are available via http://www.tomte.cs.ru.nl/.
A full version of this article [3] including proofs is available via http://www.
italia.cs.ru.nl/publications/.

6.1 The World of Tomte

Our general approach for using abstraction in automata learning is phrased most
naturally at the semantic level. However, if we want to devise effective algorithms
and implement them, we must restrict attention to a class of automata and map-
pers that can be finitely represented. In this section, we describe the class of SUTs
that our Tomte tool can learn, as well as the classes of mappers that it uses.

6.1.1 Scalarset Mealy Machines

Below we define scalarset Mealy machines. The scalarset data type was introduced
by Ip and Dill [89] as part of their work on symmetry reduction in verification.
Operations on scalarsets are restricted so that states are guaranteed to have the
same future behaviors, up to permutation of the elements of the scalarsets. On
scalarsets no operations are allowed except for constants, and the only predicate
symbol that may be used is equality.

We assume a universe V of variables. Each variable v ∈ V has a domain
type(v) ⊆ N ∪ {⊥}, where N is the set of natural numbers and ⊥ denotes the
undefined value. A valuation for a set V ⊆ V of variables is a function ξ that
maps each variable in V to an element of its domain. We write Val(V ) for the set
of all valuations for V . We also assume a finite set C of constants and a function
γ : C → N that assigns a value to each constant. If c ∈ C is a constant then we
define type(c) = {γ(c)}. We require that, for all c, c� ∈ C, γ(c) = γ(c�) implies
c = c�. A term over V is either a variable or a constant, that is, an element of
C ∪ V . We write T for the set of terms over V. If t is a term over V and ξ is a
valuation for V then we write �t�ξ for the value to which t evaluates:

�t�ξ =

�
ξ(t) if t ∈ V

γ(t) if t ∈ C

A formula ϕ over V is a Boolean combination of expressions of the form t = t�,
where t and t� are terms over V . We write G for the set of all formulas over V. If ξ
is a valuation for V and ϕ is a formula over V , then we write ξ |= ϕ to denote that
ξ satisfies ϕ. We assume a set E of event primitives and for each event primitive ε
an arity arity(ε) ∈ N. An event term for ε ∈ E is an expression ε(t1, . . . , tn) where
t1, . . . , tn are terms and n = arity(ε). We write ET for the set of event terms.

Event signature An event signature Σ is a pair �TI , TO�, where TI and TO are
finite sets of event terms such that TI ∩TO = ∅ and each term in TI ∪TO is of the
form ε(p1, . . . , pn) with p1, . . . , pn pairwise different variables with type(pi) ⊆ N,
for each i. We require that the event primitives as well as the variables of different
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6.1 The World of Tomte

event terms in TI ∪TO are distinct. We refer to the variables occurring in an event
signature as parameters.

Definition 6.1 (Scalarset Mealy machine) A scalarset Mealy machine (SMM)
is a tuple S = �Σ, V, L, l0,Γ�, where

• Σ = �TI , TO� is an event signature,

• V ⊆ V is a finite set of state variables, with ⊥∈ type(v), for each v ∈ V ; we
require that variables from V do not occur as parameters in Σ,

• L is a finite set of locations,

• l0 ∈ L is the initial location,

• Γ ⊆ L× TI × G × (V → T )× ET × L is a finite set of transitions. For each
transition �l, εI(p1, . . . , pk), g, �, εO(u1, . . . , ul), l

�� ∈ Γ, we refer to l as the
source, g as the guard, � as the update, and l� as the target. We require that
g is a formula over V ∪ {p1, . . . , pk}, for each v, �(v) ∈ V ∪ C ∪ {p1, . . . , pk}
and type(�(v)) ⊆ type(v), and there exists an event term εO(q1, . . . , ql) ∈ TO

such that, for each i, ui is a term over V with type(ui) ⊆ type(qi) ∪ {⊥},

We say S is deterministic if, for all distinct transitions τ1 = �l1, eI1, g1, �1, e01, l�1�
and τ2 = �l2, eI2, g2, �2, e02, l�2� in Γ, l1 = l2 and eI1 = eI2 implies g1 ∧ g2 ≡ false.

Example 6.1 In the introduction of this thesis we have already seen an example
of a scalarset Mealy machine, namely the login system in Figure 1.3. This exten-
ded finite state machine in Mealy machine format can be represented as a sca-
larset Mealy machine S = ��TI , TO�, V, L, l0,Γ�, where TI = {Register(id0, pw0),
Login(id1, pw1), Logout}, TO = {OK,NOK}, V = {ID,PW}, L = {INIT,OUT, IN},
l0 = INIT, and the set of transitions Γ can easily be associated to the transitions
in the diagram.

A scalarset Mealy machine S = �Σ, V, L, l0,Γ� can be viewed as a specific type
of symbolic Mealy machine. Let loc be a fresh variable with type L. Then the
symbolic Mealy machine associated to S is the tuple SMS = �Σ, V ∪ {loc},Θ,Δ�,
where

Θ ≡ loc = l0 ∧
�

v∈V

v =⊥

and for each transition

�l, εI(p1, . . . , pk), g, �, εO(u1, . . . , ul), l
�� ∈ Γ

with corresponding event term εO(q1, . . . , ql) ∈ TO, Δ contains a transition

event εI(p1, . . . , pk) when ϕ event εO(q1, . . . , ql),

where

ϕ ≡ loc = l ∧ g ∧
�

v∈V

v� = �(v) ∧
l�

i=1

qi = u�
i ∧ loc� = l�,
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6 Automata Learning through Counterexample-Guided Abstraction Refinement

where, for 1 ≤ i ≤ l, u�
i is the term obtained from ui by replacing each variable

v ∈ V by v�.
With abuse of notation, we write �S� for �SMS�.

Our tool can infer models of SUTs that can be defined using deterministic
SMMs that only record the first and the last occurrence of an input parameter.

Definition 6.2 (Restricted scalarset MMs) Let S = �Σ, V, L, l0,Γ� be a SMM.
Variable v records the last occurrence of input parameter p if for each transition
�l, εI(p1, . . . , pk), g, �, e, l�� ∈ Γ, if p ∈ {p1, . . . , pk} then �(v) = p else �(v) = v.
Moreover, �(w) = v implies w = v. Variable v records the first occurrence of input
parameter p if for each transition �l, εI(p1, . . . , pk), g, �, e, l�� ∈ Γ, if p ∈ {p1, . . . , pk}
and g ⇒ v =⊥ holds then �(v) = p else �(v) = v. Moreover, �(w) = v implies
w = v. We say that S only records the first and last occurrence of parameters
if, whenever �(v) = p in some transition, v either records the first or the last
occurrence of p.

Example 6.2 The login system in Figure 1.3 is a restricted scalarset Mealy
machine, because the system only records the first ID and password entered in
a Register input. Accordingly, it is not possible to change the login credentials
later.

6.1.2 Abstractions for Restricted SMMs

For each event signature, we introduce a family of symbolic abstractions, parame-
trized by what we call an abstraction table. For each parameter p, an abstraction
table contains a list of variables and constants. If v occurs in the list for p then,
intuitively, this means that for the future behavior of the SUT it may be relevant
whether p equals v or not.

Definition 6.3 (Abstraction table) Let Σ = �TI , TO� be an event signature and
let P and U be the sets of parameters that occur in TI and TO, respectively. For
each p ∈ P , let vfp and vlp be fresh variables with type(vfp ) = type(vlp) = type(p)∪{⊥
}, and let V f = {vfp | p ∈ P} and V l = {vlp | p ∈ P}. An abstraction table for Σ is
a function F : P ∪U → (V f ∪V l∪C)∗, such that, for each p ∈ P ∪U , all elements
of sequence F (p) are distinct, and, for each p ∈ U , F (p) lists all the elements of
V f ∪ V l ∪ C.

Full(Σ) is the abstraction table, where, in addition, for each p ∈ P , F (p) lists
all the elements of V f ∪V l ∪C. Each abstraction table F induces a mapper. This
mapper records, for each parameter p, the first and last value of this parameter in
a run, using variables vfp and vlp, respectively. In order to compute the abstract
value for a given concrete value d for a parameter p, the mapper checks for the
first variable or constant in sequence F (p) with value d. If there is such a variable
or constant, the mapper returns the index in F (p), otherwise it returns ⊥.

Definition 6.4 (Mapper induced by abstr. table) Let Σ = �TI , TO� be a si-
gnature and let F be an abstraction table for Σ. Let P be the set of parameters
in TI and let U be the set of parameters in TO. Let, for p ∈ P ∪ U , p� be a
fresh variable with type(p�) = {0, . . . , |F (p)|− 1}∪ {⊥}. Let TX = {ε(p�1, . . . , p�k) |
ε(p1, . . . , pk) ∈ TI} and TY = {ε(p�1, . . . , p�l) | ε(p1, . . . , pl) ∈ TO}. Then the map-
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6.1 The World of Tomte

per AF
Σ = �I,O,X, Y,R, r0, δ, abstr� is defined as follows:

• I = �TI�, O = �TO�, X = �TX�, and Y = �TY �.
• R = Val(V f ∪ V l) and r0(v) =⊥, for all v ∈ V f ∪ V l.

• → and abstr are defined as follows, for all r ∈ R,

1. Let o = εO(d1, . . . , dk) and let εO(q1, . . . , qk) ∈ TO. Then r
o−→ r and

abstr(r, o) = εO(first(�F (q1)�r, d1), . . . ,first(�F (qk)�r, dk)), where for a
sequence of values σ and a value d, first(σ, d) equals ⊥ if d does not occur
in σ, and equals the smallest index m with σm = d otherwise, and for
a sequence of terms ρ = t1 · · · tn and valuation ξ, �ρ�ξ = �t1�ξ · · · �tn�ξ.

2. Let i = εI(d1, . . . , dk), εI(p1, . . . , pk) ∈ TI , r0 = r and, for 1 ≤ j ≤ k,

rj =

�
rj−1[v

f
pj

:= dj ][v
l
pj

:= dj ] if rj−1(v
f
pj
) =⊥

rj−1[v
l
pj

:= dj ] otherwise
(1)

Then r
i−→ rk and abstr(r, i) = εI(d

�
1, . . . , d

�
k), where, for 1 ≤ j ≤ k,

d�j = first(�F (pj)�rj−1, dj).

Strictly speaking, the mappers AF
Σ introduced above are not output-predicting:

in each state r of the mapper there are infinitely many concrete outputs that
are mapped to the abstract output ⊥. However, in SUTs whose behavior can
be described by scalarset Mealy machines, the only possible values for output
parameters are constants and values of previously received inputs. As a result, the
mapper will never send an abstract output with a parameter ⊥ to the learner. This
in turn implies that in the deterministic hypothesis H generated by the learner,
⊥ will not occur as an output parameter. (Hypotheses in LearnLib only contain
outputs actions that have been observed in some experiment.) Since AF

Σ is output-
predicting for all the other outputs, it follows by Lemma 3.4 that the concretization
γAF

Σ
(H) is deterministic.
The two theorems below solve (at least in theory) the problem of learning a

deterministic symbolic Mealy machine S that only records the first and last occur-
rence of parameters. By Theorems 6.1 and 6.2, we know that M = αAFull(Σ)

Σ

(�S�)
is finitary and behavior deterministic. Thus we may apply the approach described
in Section 3.1.5 with mapper AFull(Σ)

Σ in combination with any tool that is able to
learn finite deterministic Mealy machines. The only problem is that in practice the
state-space of M is too large, and beyond what state-of-the-art learning tools can
handle. The proofs of Theorems 6.1 and 6.2 can be found in [57, 3]. They exploit
the symmetry that is present in SMMs: using constant preserving automorphisms
[89] we exhibit a finite bisimulation quotient and behavior determinacy.

Theorem 6.1 Let S = �Σ, V, L, l0,Γ� be a SMM that only records the first
and last occurrence of parameters. Let F be an abstraction table for Σ. Then
αAF

Σ
(�S�) is finitary.

Theorem 6.2 Let S = �Σ, V, L, l0,Γ� be a deterministic SMM that only re-
cords the first and last occurrence of parameters. Then αAFull(Σ)

Σ

(�S�) is behavior
deterministic.
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6 Automata Learning through Counterexample-Guided Abstraction Refinement

Example 6.3 Consider again our example of a login procedure in Figure 1.3.
The mapper induced by the full abstraction table has 8 state variables, which
record the first and last values of 4 parameters. This means that for each parameter
there are 9 abstract values. Hence, for each of the event primitives Login and
Register, we need 81 abstract input actions. Including the Logout input we need
163 abstract inputs. The performance of LearnLib degrades severely if the number
of inputs exceeds 20, and learning models with 163 inputs typically is not possible.

However, we can define a mapper A = �I,O,R, r0, δ, X, Y, abstr� for the login
system with less abstract inputs. The sets I and O of the mapper are equivalent
to TI and TO of S. The mapper records the login name and password selected by
the user: R = (N ∪ {⊥})× (N ∪ {⊥}). Initially, no login name and password have
been selected: r0 = (⊥,⊥). The state of the mapper only changes when a Register
input occurs in the initial state:

δ((i, p), a) =

�
(i�, p�) if (i, p) = (⊥,⊥) ∧ a = Register(i�, p�)
(i, p) if (i, p) �= (⊥,⊥) ∨ a �∈ {Register(i�, p�) | i�, p� ∈ N}.

The abstraction forgets the parameters of the input actions, and only records
whether a login is correct or wrong: X = {Register,CLogin,WLogin, Logout} and
Y = O. The abstraction function abstr is defined in the obvious way, the only
interesting case is the Login input:

abstr((i, p), Login(i�, p�)) =

�
CLogin if (i, p) = (i�, p�)
WLogin otherwise

Mapper A is output predicting since abstr acts as the identity function on outputs.
This mapper contains an optimal abstraction with just 4 inputs. In the next

section, we present a CEGAR approach that allows us to infer an abstraction with
7 inputs.

6.2 Counterexample-Guided Abstraction Refine-
ment

In order to avoid the practical problems that arise with the abstraction table
Full(Σ), we take an approach based on counterexample-guided abstraction. We
start with the simplest mapper, which is induced by the abstraction table F with
F (p) = �, for all p ∈ P , and only refine the abstraction (i.e., add an element to the
table) when we have to. For any table F , αAF

Σ
(�S�) is finitary by Theorem 6.1.

If, moreover, αAF
Σ
(�S�) is behavior deterministic then LearnLib can find a correct

hypothesis and we are done. Otherwise, we refine the abstraction by adding an
entry to our table. Since there are only finitely many possible abstractions and
the abstraction that corresponds to the full table is behavior deterministic, by
Theorem 6.2, our CEGAR approach will always terminate.

During the construction of a hypothesis we will not observe nondeterministic
behavior, even when table F is not full: in Tomte the mapper always chooses a
fresh concrete value whenever it receives an abstract action with parameter value
⊥, i.e. the mapper induced by F will behave exactly as the mapper induced by
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6.2 Counterexample-Guided Abstraction Refinement

Full(Σ), except that the set of abstract actions is smaller. In contrast, during
the testing phase Tomte selects random values from a small domain. In this way,
we ensure that the full concretization γA(H) is explored. If the teacher responds
with a counterexample (u, s), with u = i1, . . . , in and s = o1, . . . , on, we may
face a problem: the counterexample may be due to the fact that H is incorrect,
but it may also be due to the fact that αAF

Σ
(�S�) is not behavior-deterministic.

In order to figure out the nature of the counterexample, we first construct the
unique execution of AF

Σ with trace i1o1i2o2 · · · inon. Then we assign a color to
each occurrence of a parameter value in this execution:

Definition 6.5 Let r
i−→ r� be a transition of AF

Σ with i = εI(d1, . . . , dk) and
let εI(p1, . . . , pk) ∈ TI . Let abstr(r, i) = εI(d

�
1, . . . , d

�
k). Then we say that the

occurrence of value dj is green if d�j �=⊥. Occurrence of value dj is black if d�j =⊥
and dj equals the value of some constant or occurs in the codomain of state rj−1

(where rj−1 is defined as in equation (1) above). Occurrence of value dj is red if
it is neither green nor black.

Intuitively, an occurrence of a value of an input parameter p is green if it
equals a value of a previous parameter or constant that is listed in the abstraction
table, an occurrence is black if it equals a previous value that is not listed in the
abstraction table, and an occurrence is red if it is fresh. The mapper now does a
new experiment on the SUT in which all the black occurrences of input parameters
in the trace are converted into fresh “red” occurrences. If, after abstraction, the
trace of the original counterexample and the outcome of the new experiment are the
same, then hypothesis H is incorrect and we forward the abstract counterexample
to the learner. But if they are different then we may conclude that αAF

Σ
(S) is not

behavior-deterministic and the current abstraction is too coarse. In this case, the
original counterexample contains at least one black occurrence, which determines
a new entry that we need to add to the abstraction table.

The procedure for finding this new abstraction is outlined in Algorithm 6.1.
Here, for an occurrence b, param(b) gives the corresponding formal parameter,
source(b) gives the previous occurrence b� which, according to the execution of
AF

Σ , is the source of the value of b, and variable(b) gives the variable in which the
value of b is stored in the execution of AF

Σ . To keep the presentation simple, we
assume here that the set of constants is empty. If changing some black value b
into a fresh value changes the observable output of the SUT, and also a change of
source(b) into a fresh value leads to a change of the observable output, then this
strongly suggests that it is relevant for the behavior of the SUT whether or not b
and source(b) are equal, and we obtain a new entry for the abstraction table. If
changing the value of either b or source(b) does not change the output, we obtain
a counterexample with fewer black values. If b is the only black value then, due to
the inherent symmetry of SMMs, changing b or source(b) to a fresh value in both
cases leads to a change of observable output. When the new abstraction entry has
been added to the abstraction table, the learner is restarted with the new abstract
alphabet.
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6 Automata Learning through Counterexample-Guided Abstraction Refinement

Algorithm 6.1 Abstraction refinement

Input: Counterexample c = i1 · · · in
Output: Pair (p, v) with v new entry for F (p) in abstraction table
Function refineAbstraction(c)
1: while abstraction not found do
2: Pick first occurrence of a black value b from c
3: c� := c, where param(b) is set to a fresh value f
4: if output s�[f/b] from running c� on SUT �= output of c then
5: c�� := c, where param(source(b)) is set to a fresh value f
6: if output s��[f/b] from running c�� on SUT �= output of c then
7: return (param(b), variable(source(b)))
8: else c := c��

9: end if
10: else c := c�

11: end if
12: end while

Note: [f/b] denotes the substitution of b by f

6.3 Example Applications
We have implemented our approach in the Tomte tool to infer models of realistic
systems that can be represented as a scalarset Mealy machine. In this section, we
illustrate the different systems and discuss for several of them how abstractions of
the input and output have been learned automatically.

6.3.1 Login Procedure
The scalarset Mealy machine of the login procedure is depicted in Figure 1.3. The
input alphabet of the learner is initialized with the following abstract symbols:
Register(⊥,⊥) and Login(⊥,⊥) and Logout(), where ⊥ is the ‘default’ abstract
value. There is no abstract value different from ⊥ and thus, in the beginning of
our algorithm all values of a parameter are in one large equivalence class. The
mapper is equipped with eight state variables (firstRegisterId, lastRegisterId,
firstRegisterPw, etc.) storing the first and last occurrence of the parameters
in the Register and Login messages. The learner starts by asking output queries
using the three abstract symbols. For output queries the mapper always selects
the smallest fresh value for every ⊥, e.g. the abstract output query Register(⊥,⊥)
Login(⊥,⊥) is translated to Register(1, 2) Login(3, 4) if the start value is set to 1.
In this way the learner constructs the abstract hypothesis shown in Figure 6.1.
Since the mapper only uses fresh values in the output queries, the hypothesis does
not contain the branch, where the login is successful.

To test whether the hypothesis is correct, the learner asks an inclusion query.
Now the mapper behaves in a different way to concretize inputs. Instead of choo-
sing fresh values for every ⊥, the mapper selects random values from a small range.
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INITstart OUT
Register(⊥,⊥)/OK

Login(⊥,⊥)/NOK

Logout()/NOK

Login(⊥,⊥)/NOK

Register(⊥,⊥)/NOK

Logout()/NOK

Figure 6.1: First hypothesis of login procedure

For example, consider the abstract test trace Register followed by two Login in-
puts, which is translated to a concrete trace with many duplicate values, see line
2 below.

1: abstract inputs: Register(⊥,⊥) Login(⊥,⊥) Login(⊥,⊥)

2: concrete inputs: Register(3, 17) Login(17, 5) Login(3, 17)

3: outputs SUT: OK NOK OK

4: outputs hypothesis: OK NOK NOK

The output of this trace is OK (line 3), because the 3 and 17 of the last Login are
equivalent to the ID and password of the first Register message. This is different
from the output produced by the hypothesis, which generates a NOK (line 4).
Thus, we have found a counterexample. Now there are two possibilities. Either
the learner has not found all states and we need to forward the abstract coun-
terexample to the learner to solve the problem, or our current abstraction is too
coarse and we need to refine it. To determine which case it is, we convert the input
sequence of the counterexample into a fresh trace by replacing all ⊥ values with
a fresh value, see line 5 below, and rerun it on the SUT. For this trace we know
that all duplicate values (if present) are already covered by existing abstractions
and, therefore, no additional abstractions can resolve the nondeterminism. Thus,
if it is still a counterexample (line 6), only the learner can solve it. If we take a
look at the SUT in Figure 1.3, the new experiment results in a NOK output (line
7). So we have to refine our abstraction.

5: fresh trace: Register(1, 2) Login(3, 4) Login(5, 6)

6: counterexample for learner: OK NOK OK

7: abstraction refinement: OK NOK NOK

For this purpose, we identify the green and black values in the trace, see line 9
below, where values 3 and 17 are black, and no values are green. Then we try to
remove black values, because they refer to possible abstractions. We start with the
first black value, i.e. the 17 in the first Login and replace it with a fresh value, e.g.
with value 4, see line 10. We rerun the trace on the SUT and observe the same
output as before (line 11). Accordingly, value 17 in the first Login input was not
relevant for the behavior of the SUT and so we can leave fresh value 4 in the trace.
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Now we try the same with the second black value: value 3 in the second Login
input. Again, we replace the black value with a fresh value, e.g. 1 (line 12) and
rerun the trace on the SUT. This time we observe a different output, see line 13.
Because abstractions always exist between two values, we need to verify that the
source of the black value is also relevant. We reset the black value and introduce
a fresh value for the first 3 in the Register message (line 14). Running the new
trace on the SUT gives again a different output than produced by the original
counterexample, see line 15. Thus, we have found a new abstraction. This new
abstraction refers to the equality between the Login ID parameter (id1 in Figure
1.3) and the firstRegisterId state variable that records the ID of the first Register
message.

8: abstract inputs: Register(⊥,⊥) Login(⊥,⊥) Login(⊥,⊥)

9: black and red values: Register(3, 17) Login(17, 5) Login(3,17)
10: black value → fresh value: Register(3, 17) Login(4, 5) Login(3,17)
11: outputs SUT: OK NOK OK

12: black value → fresh value: Register(3, 17) Login(4, 5) Login(1,17)
13: outputs SUT: OK NOK NOK

14: source value → fresh value: Register(2, 17) Login(4, 5) Login(3,17)
15: outputs SUT: OK NOK NOK

All abstractions are stored in an abstraction table, which initially is empty. For
our new abstraction, we add the firstRegisterId state variable to the abstractions
of the Login ID parameter, see Table 6.1. Moreover, we need to update the abs-

Parameter Abstraction(s)
Register ID (id0)
Register PW (pw0)
Login ID (id1) firstRegisterId

Login PW (pw1)

Table 6.1: Abstraction table for login procedure

tract alphabet of the learner by adding the new symbol Login(firstRegisterId,⊥).
With this alphabet the entire learning process is restarted from scratch. Du-
ring hypothesis construction the mapper copies for the abstract parameter value
firstRegisterId in a Login(firstRegisterId,⊥) input the value from the
firstRegisterId state variable instead of selecting a fresh value. Apart from that,
we proceed in the usual way. The next abstraction our CEGAR algorithm will
find is the equality between the Login PW parameter and the firstRegisterPw
state variable.

6.3.2 Session Initiation Protocol
We also illustrate the operation of Tomte by means of the session initiation pro-
tocol (SIP) as presented in Section 3.4.1. Initially, no abstraction for the input is
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6.3 Example Applications

defined in the learner, which means all parameter values are ⊥. As a result every
parameter in every input action is treated in the same way and the mapper selects
a fresh concrete value, e.g. the abstract input trace INVITE (⊥, ⊥, ⊥) ACK (⊥,
⊥, ⊥) PRACK (⊥, ⊥, ⊥) PRACK (⊥, ⊥, ⊥) is translated to the concrete trace
INVITE(1, 2, 3) ACK(4, 5, 6) PRACK(7, 8, 9) PRACK(10, 11, 12). In the lear-
ning phase queries with distinct parameter values are sent to the SUT, so that the
learner constructs the abstract Mealy machine shown in Figure 6.2. In the testing

l0

start

l1 l2

l3

INVITE/100

nil/183
PRACK/481
ACK/timeout

INVITE/100

INVITE/
100

PRACK/481

ACK/timeout

nil/486
PRACK/481
ACK/timeout

INVITE/100

Figure 6.2: First hypothesis of the SIP protocol. Due to space limitations, we have
suppressed the (abstract) parameter values. Moreover, for readability, we have merged
transitions with same source and next location and have removed nil/ timeout transitions.

phase parameter values may be duplicated, which may lead to nondeterministic
behavior. The test trace INVITE ACK PRACK below leads to a 200 output that
is not foreseen by the hypothesis, which produces a 481.

Abstract inputs: INVITE(⊥,⊥,⊥) ACK(⊥,⊥,⊥) PRACK(⊥,⊥,⊥)

Concrete inputs: INVITE(16, 17, 9) ACK(9, 3, 22) PRACK(16, 15, 21)
Outputs SUT: 100 timeout 200
Outputs hypothesis: 100 timeout 481

Rerunning the trace with distinct values as before leads to a 481 output. Thus, to
resolve this problem, we need to refine the input abstraction. Therefore, we iden-
tify the green and black values in the trace and try to remove black values. The
algorithm first replaces the 9 in the ACK input with a fresh value and observes
the same output as before. However, replacing the 16 in the PRACK input with a
fresh value changes the final outcome of the SUT to a 481 output. Also replacing
the first 16 with a fresh value gives a 481 output. As a result, we refine the input
abstraction by adding an equality check between the first parameter of the first
INVITE message and the first parameter of a PRACK message to every PRACK
input. Apart from refining the input alphabet, every concrete output parameter
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6 Automata Learning through Counterexample-Guided Abstraction Refinement

value is abstracted to either a constant or a state variable storing the first or last
occurrence of a parameter value. After every input abstraction refinement, the
learning process is restarted. We proceed until the learner finishes the inference
process without getting interrupted by a nondeterministic output.

6.3.3 Other SUTs

We also used the Tomte tool to automatically infer guard statements and models
of other SUTs. In addition to the login system and session initiation protocol dis-
cussed in the previous sections, we applied our approach to the biometric passport
as presented in Chapter 4. For the other systems we used the Uppaal [24] GUI as
an editor to create an extended finite state machine that models the behavior of
the SUT. In our EFSM input symbols start with I and output symbols start with
O. In addition to symbols, the transitions may contain value checks (or guards,
==) and assignments (=). By means of several Python scripts we automatically
generated from the Uppaal .xml file a Java executable that represents the EFSM
as a Java state machine and acts as SUT. In the following paragraphs we give an
overall overview of the different systems.

Alternating bit protocol The alternating bit protocol (ABP) is a simple com-
munication protocol for reliable transmission of messages (frames) [23]. Reliability
is guaranteed by retransmitting lost or corrupted messages and ensuring the order

Sender Receiver 

M 

A 

Figure 6.3: Alternating bit protocol

of messages. The protocol consists of a sen-
der and a receiver, which communicate via
two channels: channel M for messages from
sender to receiver and channel A for ack-
nowledgements from receiver to sender, see
Figure 6.3. Each message the sender trans-
mits contains a data part and an additio-
nal bit, i.e., a value that is 0 or 1. After
transmission, the sender waits for an ack-
nowledgement from the receiver (with the
same bit) via A. If no correct acknowled-
gement arrives, the sender retransmits the
message with the same bit. Otherwise, the
sender flips the bit and starts transmitting the next message. The Uppaal state
machines we created of the sender, channel M and the receiver are depicted in
Appendix 6.A.

River crossing puzzle A farmer has to cross a river with a wolf, a goat, and
a cabbage without creating a situation where either goat and wolf or goat and
cabbage are at one bank of the river while the farmer is at the other one. The
boat is small and the farmer can only transport either the wolf, goat or cabbage
when crossing the river, or cross the river alone. There exist different versions of
this transport puzzle, e.g. the objects to carry from one side of the river to the
other might vary or the river might be replaced by a bridge. Our version of the
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6.4 Experimental Results

river crossing puzzle is shown in Figure 6.7. The input IIN contains a parameter
input that can take on the values farmer, wolf, goat, or cabbage, representing
attempts to cross the river by respectively farmer alone, or farmer with wolf, goat,
or cabbage. When an unsafe situation is created in which one item can eat another
one, the output OEATEN() is generated, which returns to the initial state. When
an invalid choice is made (an item is chosen that is at the wrong bank of the river),
the output ONOK() is returned. When all items successfully crossed the river, the
output ODONE() is generated.

Palindrome/repnumber checker The palindrome/repnumber checker depic-
ted in Figure 6.8 can perform two kinds of tests. One can test whether two, three,
or four numbers entered are a palindrome or a repnumber. In our case, a palin-
drome is a sequence of numbers that remains the same when its numbers are rever-
sed. For example, for the inputs IPalindrome3(12, 4, 12) and IPalindrome4(1, 3, 3, 1)
output OYes will be returned. A repnumber is composed of repeated instances of
the same number. The word repnumber is a portmanteau, formed from repeated
number. For example, the inputs IRepnumber2(20, 20), IRepnumber3(7, 7, 7), or
IRepnumber4(5, 5, 5, 5) lead to an OYes output.

6.4 Experimental Results
Table 6.2 gives an overview of the systems we learned with the numbers of constant
and action parameters used in the models, the number of input refinement steps,
total numbers of learning and testing queries (sequences of inputs), number of
states of the learned abstract model, and the time needed for learning and testing
(in seconds). These numbers and times do not include the last equivalence query,
in which no counterexample has been found. In all our experiments, correctness
of hypotheses was tested using random walk testing. The outcomes depend on the
return value of function variable(b) in case b is the first occurrence of a parameter
p: vfp or vlp. Table 6.2 is based on the optimal choice, which equals vfp for SIP and
the login procedure, and vlp for all the other benchmarks. The biometric passport
case study of Chapter 4 has also been learned fully automatically by [83]. All other
benchmarks require history dependent abstractions, and Tomte is the first tool that
has been able to learn these models fully automatically. We have checked that all
models inferred are observation equivalent to the corresponding SUT. For this
purpose we combined the learned model with the abstraction and used the CADP
tool set, http://www.inrialpes.fr/vasy/cadp/, for equivalence checking.
Our tool and all models can be found at http://www.tomte.cs.ru.nl/.
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6.A Alternating Bit Protocol

6.A Alternating Bit Protocol

ONOK()

IAck(b)

IIn(d)
vd=d;

IIn(d)
vd=d;

ONOK()

ISendFrame()

ONOK()
OFrame(vd,1)

OOK()

b==zero
IAck(b)

ONOK()

OOK()

ONOK()

ISendFrame()

IIn(d)
vd=d;

b!=zero
IAck(b)

b==zero
IAck(b)

ISendFrame()

OFrame(vd,0)

IIn(d)
vd=d;

ISendFrame()

ONOK()

IIn(d)
vd=d;

b==zero
IAck(b)

OOK()
ONOK()

ONOK()

b!=zero
IAck(b)

b==zero
IAck(b)

ISendFrame()

OOK()

ONOK()

OOK()

OOK()

b==zero
IAck(b)

b!=zero
IAck(b)

b!=zero
IAck(b)

b!=zero
IAck(b)

OOK()

b!=zero
IAck(b)

OFrame(vd,1)

ISendFrame()

OOK() IIn(d)
vd=d;

OOK()

b==zero
IAck(b)

OFrame(vd,0)

ISendFrame()

OOK()
IIn(d)
vd=d;

Figure 6.4: Extended finite state machine model of the alternating bit protocol sender

ONOK()

OFrame(val,bit)
full=0;

OOK()

OOK()

full==0
IREAD()

full==1
IREAD()

ILOSE()
full=0;

IFrame(v,b)
val=v;
bit=b;
full=1;

Figure 6.5: Extended finite state machine model of the alternating bit protocol channel
for transmission of messages (frames)
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ONOK()

IFrame(d,b)

ONOK() IPleaseAck()

expectedBit==0
OAck(0)
expectedBit=1;

expectedBit==1
OAck(1)

expectedBit=0;

IPleaseAck()

(vb==1&&&&expectedBit==0)&||
(vb==0&&&&expectedBit==1)&||
vb&>&1

ONOK()

(vb==0&&&&expectedBit==0)&||
(vb==1&&&&expectedBit==1)

OOut(vd)

IFrame(d,b)
vd=d;
vb=b;

Figure 6.6: Extended finite state machine model of the alternating bit protocol receiver

102



6.B River Crossing Puzzle

6.B River Crossing Puzzle
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g_cfw

cfw_g
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cfgw_

v_in==goat
ODONE()

v_in==farmer
OOK()

v_in==wolfT||Tv_in==cabbage
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IIN(input)
v_in=input;

v_in==cabbage
OOK()

v_in==wolf
OOK()

v_in==goat
ONOK()

v_in==farmer
OOK()

IIN(input)
v_in=input;
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OOK()
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OOK()
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ONOK()

v_in==cabbage
OOK()
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OOK()
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Figure 6.7: Extended finite state machine model of the river crossing puzzle
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Chapter 7
Active Learning using a Lookahead

Oracle

In the previous chapter, we have presented an approach based on counterexample-
guided abstraction refinement (CEGAR) to learn models of SUTs that can be
defined using deterministic scalarset Mealy machines (SMM). These SMM can
test for equality between data parameters or between a parameter and a constant,
but no operations on data are allowed. Moreover, these SMM can only record
the first and last occurrence of a parameter. In this chapter, we relax the last
restriction and, accordingly, extend the class of systems we can learn.
The idea in Chapter 6 was that the mapper records, for each parameter p, the first
and last value of this parameter in a run, using variables vfp and vlp, respectively.
This approach works fine for certain communication protocols which remember
the first value being selected to configure the settings, e.g. the identifier of the
connection to establish. Communication protocols often also remember the values
received in the most recent input message to produce the corresponding reply, but
thereafter forget them. However, there are many systems for which the approach
of Chapter 6 does not work.

Example 7.1 Consider an SMM that models a stack of capacity three, see Figure
7.1. If the stack is not full, one can store an additional value in the data structure

l0start l1 l2 l3

Push(p)/OK
v1:=p

Pop()/NOK Push(p)/OK
v2:=p

Pop()/Out(v1)

Push(p)/OK
v3:=p

Pop()/Out(v2) Pop()/Out(v3)

Push(p)/NOK

Figure 7.1: Stack with a capacity of 3 modeled as a scalarset Mealy machine

using a Push(p) input. If the stack is not empty, one can retrieve the last inserted
value by means of a Pop() input. A problem with the current approach arises when
we push three elements on the stack and then perform two Pop() inputs. The first
value is stored in the vfp variable, the last (third) value in the vlp variable, and all
intermediate values (second value) are not remembered.
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7 Active Learning using a Lookahead Oracle

In this chapter, instead of using a predefined set of state variables, we generalize
our approach such that it will automatically detect the state variables needed. For
this purpose, we introduce the concept of memorable values, similar to [80, 79].

7.1 Memorable Values
A value is memorable if it has to be remembered, because it will be used later.

Example 7.2 In the stack of Example 7.1 there are at most three memorable
values, i.e. the three values that are stored in the data structure after three Push(p)
inputs have been performed. To figure out that there are at least three memorable
values, we have to send three Pop() inputs after the input sequence Push(value1)
Push(value2) Push(value3) with value1, value2, and value3 distinct, which will
result in the output sequence Out(value3) Out(value2) Out(value1).

By looking ahead, we can find out that certain values will be used in the future
and therefore need to be memorized.

Example 7.3 Consider again the login procedure of Chapter 6 shown in Fi-
gure 1.3. Values can also be memorable if they are referred to in a guard state-
ment at a later date. In the login system we need to remember the login name
and password selected during the registration. These values will never occur as
a parameter of an output action, but they are used to decide whether a login is
successful or not.

Intuitively, a data value after u is memorable if it has an impact on the future
behavior, i.e.

1. some continuation of u uses d as a parameter value in an output, or

2. some continuation of u uses d in a guard, which causes that a different output
is generated.

More formally, a memorable value can be defined as follows:

Definition 7.1 (Memorable value) Let S = �Σ, V, L, l0,Γ� be a scalarset Mealy

machine, suppose l0
u/s⇒ l, and let d be a parameter value that occurs in u and that

is not denoted by any constant (∀c ∈ C : γ(c) �= d). Then d is memorable after u

if there is a witness transition l
v/t⇒ l�, where (1) d occurs in output t and not in

input v, or (2) d occurs in input v and if we replace all occurrences of d in v with

a fresh value f then l
v[f/d]/t�⇒ l�� with t� �= t[f/d].

Let memV (u) be the set of memorable values after u. To derive memorable
values, we introduce a new intermediate component called lookahead oracle. It
functions as a cache and computes memorable values. As in Chapter 6, we place
a mapper in between the learner and the teacher that translates abstract symbols
to concrete symbols and vice versa. In addition, we place the lookahead oracle in
between the mapper module and the SUT. The overall set-up of the new learning
framework is depicted in Figure 7.2.

Let A be a mapper in the sense of Definition 3.1 with concrete actions I ∪ O
and abstract actions X ∪ Y . Then the messages exchanged between the different
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7.2 Lookahead Oracle

Learner Mapper Lookahead
Oracle

Teacher
(SUT)

1 2 3

6 5 4

Figure 7.2: Learning framework

components during the construction of a hypothesis are as follows (see numbering
in Figure 7.2):

1. The learner sends an abstract output query x ∈ X to the mapper.

2. When the mapper receives an abstract query x, it nondeterministically se-
lects a concrete input symbol i ∈ I and forwards it as an output query to
the lookahead oracle. If no such i exists, it returns ⊥ to the learner.

3. The lookahead oracle checks whether it has cached i. If this is not the case,
then the lookahead oracle forwards i to the teacher. Otherwise, go to Step 5.

4. The teacher sends a concrete answer o ∈ O to the lookahead oracle, which
caches the input-output pair i/o.

5. The lookahead oracle returns o together with the memorable values after u,
where u is the sequence of output queries sent after the last reset query up
to and including i, to the mapper. How the lookahead oracle computes the
memorable values will be discussed in Section 7.2.

6. When the mapper receives a concrete answer o and the set of memorable
values from the lookahead oracle, it identifies the abstract answer y ∈ Y and
forwards it to the learner. This abstract output specifies, amongst others,
the update of state variables, determined by means of the memorable values.

From the learner’s point of view, we can sum up these six learning steps in a
function runFresh(x1 . . . xn), which takes as argument an abstract input sequence
and returns an abstract output sequence y1 . . . yn. The function determines step-
wise for every xj , where 1 ≤ j ≤ n, the concrete input ij , the concrete output oj
and the memorable values after i1 . . . ij such that it can compute yj .

During the verification of a hypothesis all concrete test sequences are forwarded
from the mapper straight to the SUT, without traversing the lookahead oracle.
Answers from the SUT are also returned straight to the mapper. The reason for
this is that test traces are usually very long and the inputs in the beginning of a
test trace often do not overlap so that most likely for every test trace a separate
branch has to be created in the tree. The huge observation tree gets even more
unmanageable if, in addition, all lookahead traces are performed for every node in
the tree, which also leads to excessive communication with the SUT.

7.2 Lookahead Oracle
A lookahead oracle is a component that stores traces of an SUT in a so-called
observation tree. The most obvious advantage of storing the traces is that the
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7 Active Learning using a Lookahead Oracle

tree functions as a cache for repeated output queries on the SUT. However, a
more interesting application is that by means of an observation tree we can detect
memorable values by looking ahead in the tree. The details of how this works will
be presented in this section.

7.2.1 Observation Tree

An observation tree stores concrete traces and tells us, which parameter values
need to be recorded at a certain time.

Definition 7.2 (Observation tree) Let S = �Σ, V, L, l0,Γ� be a scalarset Mealy
machine. Let Σ = �TI , TO�, I = �TI�, and O = �TO�. Then an observation tree
for S is a tuple OTS = �N , N0, E�, where N is a finite set of nodes, N0 ∈ N is the
root node, and E ⊆ N×I×O×N is a set of edges. OTS has a tree-like structure,
i.e. every node N ∈ N , except for N0, has exactly one incoming edge. We require
that for all N ∈ N and i ∈ I there is at most one edge (N , i, o, N �) ∈ E .

An edge E ∈ E in OTS is labeled with a concrete input i ∈ I and output
symbol o ∈ O and connects two nodes N,N � ∈ N . We write N

i/o−−→ N � if (N , i,
o, N �) ∈ E . At any point in time, an observation tree is in some node N ∈ N ,
which we call the current node. It is possible to use the tree as a cache by giving
concrete inputs to the tree, i.e., by supplying an input symbol i ∈ I. The tree
then selects the edge N

i/o−−→ N �, produces output symbol o ∈ O, and updates the
current node to the new node N �.

The edges are extended to finite sequences by defining
u/s⇒ to be the least

relation that satisfies, for N,N �, N �� ∈ N , u ∈ I∗, s ∈ O∗, i ∈ I, and o ∈ O, if

N
i/o−−→ N � and N � u/s⇒ N �� then N

i u/o s⇒ N ��.
Every node N in the observation tree contains a set of memorable values

MemV . We write N.MemV for the set of memorable values recorded for N .
A value in N is memorable after u if it will be needed in some continuation of u,
i.e. in some edge leading to a successor node of N .

Example 7.4 Assume we want to construct an observation tree for the login
procedure in Figure 1.3. We run concrete traces of length 2 on the SUT and
store them in the tree as depicted in Figure 7.3. Note that node N2 has a set
with two memorable values {0,1}. The witness sequence Login(0,1) executed after
Register(0,1) proves by means of an OK output that both 0 and 1 are memorable
since Login(0,2) and Login(2,1) result in a NOK.

In order to fill the observation tree with concrete traces or to add memorable
values to a node in the tree, some basic operations have been defined on observation
trees:

1. Inserting a node: The function insertNode(Np, i) adds a new child node Nc

to the node Np, connected by an edge labeled i/o, where the corresponding
concrete output symbol o is unknown. To determine o, the lookahead oracle
has to communicate with the SUT. For this purpose, we first reset the SUT
to its initial state. Then, we send the input sequence defined by the concrete

108



7.2 Lookahead Oracle

N0

{}

N1

{}

...

Login(0,1)/NOK

N2

{0,1}

N4

{}

Register(2,3)/
NOK

N5

{}

Login(0,1)/
OK

N6

{}

Login(2,3)/
NOK

N7

{}

Login(0,2)/
NOK

N8

{}

Login(2,1)/
NOK

N9

{}

Logout()/
NOK

...

Register(0,1)/OK

N3

{}

...

Logout()/NOK

Figure 7.3: Observation tree of login procedure

input symbols on the edges from the root node to Np to the SUT before we
send the concrete input i. Using the last input symbol o that is returned by
the SUT, we construct the edge i/o that is connected to the new child node
Nc. Nc is initialized with an empty set of memorable values.

2. Running a trace: The function run(u = i1 . . . ik, v = ik+1 . . . im) starts
at the root node and traverses the tree by successively selecting the edge
that conforms to the concrete input symbol i in u and v, i.e. N0

i1/o1−−−→
N1 · · ·

ik/ok−−−→ Nk
ik+1/ok+1−−−−−−→ Nk+1 · · ·

im/om−−−−→ Nm. While processing input
sequence v, the function collects all outputs ok+1 . . . om and, finally, returns
them. If some node Nj with 1 ≤ j ≤ m does not have an edge with in-
put i, the according edge and child node are added by calling the function
insertNode(Nj , i), see Item 1.

3. Adding a memorable value: The function addMemV(N , D) adds a set
of values D to the memorable values of node N .

7.2.2 Lookahead Traces

To compute the memorable values for a node N in the observation tree, the loo-
kahead oracle contains a list of so-called lookahead traces. These lookahead traces
are run starting at N to explore the near future of that node.

Definition 7.3 (Lookahead trace) A lookahead trace lt is a sequence of para-
meterized input actions of form ε(p1, . . . , pn), where pi is a pair (type,index) with
type ∈ {’f’, ’c’, ’l’} and index ∈ N.

Intuitively, a lookahead trace is an abstract form of a trace, where each para-
meter refers to either a previous parameter (’l’), or a specified constant (’c’), or it
is fresh (’f’). A lookahead trace can be converted into a concrete lookahead trace
by replacing each (type,index) pair with a matching concrete parameter value. So-
metimes, several matches are possible for a parameter of type ’l’, leading to more

109



7 Active Learning using a Lookahead Oracle

than one concrete lookahead trace. If a specific pair occurs multiple times in a
lookahead trace, it will be replaced multiple times with the same concrete value in
the concrete lookahead trace. These concrete lookahead traces can then be run on
the SUT. We maintain two lists of lookahead traces in the lookahead oracle: the
list OLTS of lookahead traces to compute the memorable values that occur in an
output, see Example 7.2, and the list GLTS of lookahead traces to determine the
memorable values that are used in a guard, see Example 7.3. In addition, a guard
lookahead trace in GLTS contains a marked parameter to identify the referring
parameter in the guard. Let getReferringValue(glt) be the function that returns
the value of the referring parameter in a guard lookahead trace glt. Moreover,
let getDistinctLookaheadTypes(lt) be the function that returns the set of distinct
parameters of type ’l’ in a lookahead trace lt.

The procedure for computing memorable values after a given input sequence u
is outlined in Algorithms 7.1, 7.2, and 7.3. First, we run all output lookahead traces
in OLTS after u, see Algorithm 7.1, lines 2–11, to determine the memorable values
that occur in future outputs. For the generation of concrete lookahead traces we
use Algorithm 7.2, which takes as input a lookahead trace lt and a set of lookahead
values L. Set L contains values from u that are possibly interesting in the sense
that their recurrence in a concrete lookahead trace might lead to a different future
behavior. All permutations of n different lookahead values are computed, where n
is the number of distinct parameters of type ’l’ in lt, see Algorithm 7.2, lines 2–3
and the Require condition. For each permutation a concrete lookahead trace is
created by replacing a parameter of type ’f’ in lt with a fresh value, a parameter of
type ’c’ with the value of the according constant, and a parameter of type ’l’ with
the corresponding value of the permutation, see Algorithm 7.2, lines 5–23. The
set of concrete lookahead traces is returned to Algorithm 7.1, where each concrete
lookahead trace colt is run after u on the SUT, see line 5. The run(u, colt) function
returns the concrete outputs produced for the colt subsequence. Only the values
inserted in inputs i1...in are possibly memorable after u, see line 6. However, since
we reinsert values from u in colt using L, it may be the case that value pm in an
output originates from the reinsertion and in fact there is no relation to the value
in u. To verify this, we use Algorithm 7.3, which tests whether replacing pm with
a fresh value (line 3) leads to the same behavior. If so, then pm is not memorable,
see line 5. Algorithm 7.3 only returns the values that are indeed memorable. In
line 8 in Algorithm 7.1, we extend this set with values from u that have not been
reinserted in colt, but occur in an output generated in response to colt. These
values can only come from u and, thus, are memorable. In line 9 we add the found
memorable values to the current node. Second, all combinations of concrete guard
lookahead traces are generated and run on the SUT, see Algorithm 7.1, lines 13–
15. For each concrete guard lookahead trace, we change the referring value into a
fresh value and also execute this trace on the SUT, see again Algorithm 7.3, lines
2–3. If the observable output of the SUT changes, then, according to Case (2) in
Definition 7.1, it is relevant for the behavior of the SUT whether the guard is true
or not. As a result, we keep r as a memorable value and return it to Algorithm
7.1, where it will be added to MemV of the current node. Once all output and
guard lookahead traces have been run, we assume that all memorable values after
u have been computed.
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7.2 Lookahead Oracle

Algorithm 7.1 Compute memorable values after u

Input: Two lists of lookahead traces OLTS and GLTS , the current node curN ,
and an input sequence u = i1...in

Output: A set of memorable values after u = i1...in
Function computeMemV(OLTS , GLTS , curN , i1...in)
1: if curN �= N0 then
2: L := computeMemV(OLTS , GLTS , curN.parent, i1...in−1) ∪ values(in) �

Initialize lookahead values
3: end if
4: for each output lookahead trace olt ∈ OLTS do
5: CLT := generateConcreteLookaheadTraces(olt, L) � cf. Algorithm 7.2
6: for each concrete output lookahead trace colt ∈ CLT do
7: ocolt := run(u, colt) � Get outputs produced for colt
8: possMemV := values(i1...in) ∩ values(ocolt) � that also occur in u
9: memV := verifyMemV(ocolt, possMemV ∩ L, u, colt) � Algorithm 7.3

10: memV := memV ∪ (possMemV � ∩ L) � Definitely memorable
11: addMemV(curN , memV ) � Add memorable value(s) to curN
12: end for
13: end for
14: for each guard lookahead trace glt ∈ GLTS do
15: CLT := generateConcreteLookaheadTraces(glt, L) � cf. Algorithm 7.2
16: for each concrete guard lookahead trace cglt ∈ CLT do
17: ocglt := run(u, cglt) � Get outputs produced for cglt
18: r := getReferringValue(cglt) � Get referring value of cglt
19: memV := verifyMemV(ocglt, {r}, u, cglt) � cf. Algorithm 7.3
20: addMemV(curN , memV ) � Add memV to curN , possibly empty
21: end for
22: end for
23: return curN.MemV � Return memorable values after u
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Algorithm 7.2 Generate concrete lookahead traces
Input: A lookahead trace lt and a set L of lookahead values
Output: A set of concrete lookahead traces
Require: | DL | ≤ | L |, where DL = getDistinctLookaheadTypes(lt)
Function generateConcreteLookaheadTraces(lt, L)
1: F := list of fresh values
2: n := | DL | � Number of distinct parameters of type ’l’ in lt
3: P := {(l1, l2, ..., ln) ∈ Ln | �1≤i<j≤n li �= lj} � Permutations of n distinct

lookahead values
4: CLT := {} � Initialize concrete lookahead traces
5: for each lookahead permutation perm ∈ P do
6: clt := new concrete lookahead trace
7: for each lookahead action la in lt do
8: cla := new concrete lookahead action with same event primitive as la
9: for each parameter lp in la do

10: clp := new concrete lookahead parameter
11: if lp.type = ’c’ then
12: clp := lp.index � Add value of constant
13: else if lp.type = ’f’ then
14: clp := F [lp.index] � Add fresh value
15: else
16: clp := perm[lp.index] � Add lookahead value of permutation
17: end if
18: cla.add(clp)
19: end for
20: clt.add(ca)
21: end for
22: CLT := CLT ∪ {clt} � Add a new concrete lookahead trace
23: end for
24: return CLT

Algorithm 7.3 Verify if a set of possible memorable values is indeed memorable
Input: A sequence of concrete outputs os, a set of possible memorable values

possMemV , a concrete input sequence u, a concrete lookahead trace lt
Output: A set of real memorable values
Function verifyMemV(os, possMemV , u, lt)
1: for each value pm in possMemV do
2: f := first element in N \ values(u · lt) � Get fresh value
3: osf := run(u, lt[f/pm]) � Replace occurrences of pm with fresh value
4: if os[f/pm] equals osf then
5: possMemV .remove(pm) � pm is NOT memorable
6: end if
7: end for
8: return possMemV � Return real memorable values
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Example 7.5 Consider again the login procedure of Example 1.1. Let

OLTS = [Register((’f’,0),(’f’,1)), Login((’f’,0),(’f’,1)), Logout()] and

GLTS = [Login((�l�, 0),(’l’,1)), Login((’l’,0),(�l�, 1))],

where the horizontal bar denotes the referring parameter. Then the set of concrete
output lookahead traces executed after � is {Register(0,1), Login(0,1), Logout()},
where (’f’,0) is replaced by fresh value 0 and (’f’,1) is replaced by fresh value
1. After � the guard lookahead traces are not executed, because the Require
condition of Algorithm 7.2 is not fulfilled since the set L of lookahead values is
empty. Executing these concrete lookahead traces on the SUT leads to node N0

depicted in Figure 7.3, which has no memorable values and the newly created
nodes N1, N2 and N3. After Register(0,1) the set of concrete output lookahead
traces {Register(2,3), Login(2,3), Logout()} is run on the SUT as well as the set
of concrete guard lookahead traces {Login(0,1), Login(1,0)}, where L = {0, 1} and
(0,1) and (1,0) are the permutations of two distinct lookahead values. Moreover,
the set of concrete guard lookahead traces is extended with the traces {Login(2,1),
Login(2,0)} and {Login(0,2), Login(1,2)}, where the referring value is replaced by a
fresh value, and also run on the SUT. Figure 7.3 shows how the observation tree is
extended. For presentation purposes we only added a subset of all concrete looka-
head traces. Note that after execution of the traces node N2 has two memorable
values {0,1}, see also Example 7.4.

7.2.3 Lookahead Completeness

Whenever a memorable value has been added to a node, we require an observation
tree to be lookahead complete: Every memorable value found has to have an origin,
i.e., it has to stem from either the memorable values of the parent node or the
values in the preceding input.

Definition 7.4 (Lookahead completeness) Let OTS = �N , N0, E� be an obser-
vation tree. If, for all transitions

N
εI(d1,...,dk)/εO(d�

1,...,d
�
l)−−−−−−−−−−−−−−−−→ N �

of E , we have that d ∈ N �.MemV implies that either d ∈ {d1, . . . , dk} or d ∈
N.MemV , then OTS is called lookahead complete.

If a memorable value has been detected, whose origin is unknown, the obser-
vation tree is lookahead incomplete. Lookahead completeness ensures that the
lookahead traces will find all memorable values memV (u) and that no lookahead
of a child node tries to update memV (u) afterwards. Whenever an observation
tree becomes lookahead incomplete, the existing lookahead traces are too short to
detect all memorable values. For this reason, we need to add a new and longer
lookahead trace that finds the missing memorable value(s). Then the entire lear-
ning process has to be restarted with the updated lookahead traces to retrieve an
observation tree that is lookahead complete.

113



7 Active Learning using a Lookahead Oracle

N0

{}

N1

{}

...

Nm

{}

Nm+1

{d}

...

Nn

{}

in/on

im+1/om+1

im/om

i1/o1

Figure 7.4: Lookahead
incompleteness

Example 7.6 Let N0
i1/o1→ N1 · · ·

im/om→
Nm

im+1/om+1→ Nm+1 · · ·
in/on→ Nn be part of an ob-

servation tree and let us try to determine the set of
memorable values memV (u) after u = i1 . . . im im+1

using OLTS , see Figure 7.4. While executing the loo-
kahead traces, let on be the output produced in res-
ponse to input in and let on contain parameter value
d, where d does not occur in inputs im+1 . . . in. Ac-
cording to Definition 7.1, we add d to the memorable
values of node Nm+1. Since d is not part of the me-
morable values of node Nm and it is not contained in
input im+1, we have found a memorable value d for
which the observation tree is not lookahead complete,
see Definition 7.4. That means the existing output
lookahead traces are too short to detect the memo-
rable value. Therefore, we need to add a new and lon-
ger lookahead trace to OLTS . We create a new looka-
head trace for the input string from node Nm to Nn by
calling the function createLookaheadTrace(im+1 . . . in,
S, null) listed in Algorithm 7.4, where S contains the
concrete parameter values occurring in i1 . . . im and
the referring parameter is not set. The function loops
over all concrete parameter values in im+1 . . . in. If a
value is equal to the value of a constant, the lookahead
parameter is set to ’c’, if it is equal to a value in S,
the lookahead parameter is set to ’l’, and otherwise it
is fresh, so that the lookahead parameter is set to ’f’.
Note that only when creating guard lookahead traces
the refParam argument is set. The new lookahead
trace is added at the end of the OLTS list with the
highest index and the entire learning process is res-
tarted with the updated output lookahead traces to
retrieve a lookahead-complete observation tree.

7.2.4 The Behavior of the Lookahead Oracle

Initially, the observation tree only consists of a root node with an empty set of
memorable values. Moreover, the list of guard lookahead traces GLTS is empty,
because in the beginning there is only the default abstraction, where all values of
a parameter are in one large equivalence class, and therefore there are no guards
to test. The list of output lookahead traces OLTS is initialized by creating a
lookahead trace for every abstract input alphabet symbol using a function simi-
lar to Algorithm 7.4. The only differences are that the function takes as single
argument an abstract input symbol x and that abstract parameter values are
compared instead of concrete values. The initialization ends by executing the
computeMemV(OLTS , GLTS , N0, �) function listed in Algorithm 7.1 to determine
the memorable values of the root node.
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Algorithm 7.4 Creating a new lookahead trace
Input: A concrete trace v = i1 . . . in, a set S of possible memorable values, and

the referring parameter (only needed to construct guard lookahead traces)
Output: A new lookahead trace
Function createLookaheadTrace(v, S, refParam)
1: lt := new lookahead trace
2: lookaheadParamCounter := 0
3: freshV alueCounter := 0
4: val2idx := new map � Maps concrete value to index of lookahead trace param
5: for each input symbol i in v do
6: la := new lookahead action with the same event primitive as i
7: for each parameter p in i do
8: lp := new lookahead parameter
9: if value(p)= γ(c), where c ∈ C then � Values of p and c are equal

10: lp := (’c’, value(p))
11: else if value(p) ∈ S then
12: if val2idx.hasKey(value(p)) then � If map has entry for value(p)
13: lp := (’l’, val2idx.get(value(p))) � Prev. lookahead parameter
14: else
15: lp := (’l’, lookaheadParamCounter++) � New lookahead param
16: val2idx.put(value(p), lp.index) � Add new entry to map
17: end if
18: else
19: if val2idx.hasKey(value(p)) then � If map has entry for value(p)
20: lp := (’f’, val2idx.get(value(p))) � Previous fresh value
21: else
22: lp := (’f’, freshV alueCounter++) � New fresh value
23: val2idx.put(value(p), lp.index) � Add new entry to map
24: end if
25: end if
26: if p=refParam then � If p and refParam are the same parameter in v
27: lp.setReferring() � Mark lp as referring parameter
28: end if
29: la.add(lp)
30: end for
31: lt.add(la)
32: end for
33: return lt
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The behavior of the lookahead oracle can informally be described as follows:

• Whenever the observation tree is in a current node N and the lookahead
oracle receives a concrete input i from the mapper, the oracle selects the edge
N

i/o−−→ N �, updates the current node to the new node N �, and produces out-
put symbol o. Moreover, the oracle determines the memorable values of the
new current node by calling the
computeMemV(OLTS , GLTS , N �, u) function listed in Algorithm 7.1, where
u is the sequence of inputs from the root node to N �. The oracle returns the
pair (o, ξ) to the mapper, where ξ is a valuation that assigns the memorable
values after u, i.e. memV (u) = {m1 . . .mn}, to state variables v ∈ V of the
mapper. The first memorable value m1 is assigned to state variable v1, the
second memorable value m2 to state variable v2, and so on. The remaining
state variables are set to ⊥. More precisely, for all v ∈ V ,

ξ = vi =

�
mi if i ≤ n

⊥ otherwise.

• Whenever the observation tree is in a node N and the oracle receives a
concrete output o from the implementation after sending input i, the obser-

vation tree is extended with a new edge N
i/o−−→ N � and a new child node N �

containing an empty set of memorable values.

When selecting the edge N
i/o−−→ N � in the observation tree, see first item above,

this edge already exists in the tree. In the previous step we have determined the
output and memorable values for N by running all concrete output and guard
lookahead traces. Since the output lookahead traces contain all input alphabet
symbols, N � has already been added to the observation tree.

7.3 Mapper

Consider an SUT whose behavior can be described by scalarset Mealy machine
MS with event signature Σ = �TI , TO�. We interact with the SUT via a lookahead
oracle that pairs each output o of the SUT with a valuation ξ that assigns to each
variable in a given set V either a value that is memorable in the state reached after
o, or the undefined value ⊥. The behavior of the lookahead oracle, as observed
by the learner, can be described as a lookahead extension of MS , which is a
deterministic Mealy machine ML = �I,O × Val(V ),Runs(M), q0,→l�, where

1. Runs(M) is the set of runs of �MS� = M = �I,O,Q, q0,→�. A run of a
Mealy machine M is a sequence ρ = q0 i1 o1 q1 i2 o2 q2 · · · in on qn, for some
n ≥ 0, of alternating states, inputs and outputs of M, beginning with the

initial state of M and such that, for all 1 ≤ j ≤ n, qj−1
ij/oj−−−→ qj .

2. ∀ρ, ρ� ∈ Runs(M), ρ
i/(o,ξ)−−−−→l ρ

� implies ∃q� : ρ� = ρ i o q� ∧ ∀v ∈ V : ξ(v) ∈
memV (q�) ∪ {⊥}.
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In this subsection, we describe the mappers that we use to learn a lookahead
extension of MS . These mappers have three parameters: (a) an event signature
Σ = �TI , TO�, (b) a finite set V of variables with type IN ∪ {⊥}, (c) a function
F : P → 2V ∪C∪P , where P is the set of parameters that occur in TI . We require,
for all p, p� ∈ P , that if p� ∈ F (p) then p� occurs before p in the same event
primitive. Mapper AΣ,V,F is defined to be the tuple �I ∪O�, X ∪Y,R, r0, δ, abstr�,
whose elements are described in the next paragraphs.

The concrete actions The set of concrete input symbols is I = �TI� and the
set of concrete outputs is O� = O × Val(V ), where O = �TO�.

States and initial state The mapper uses the variables from V to store me-
morable values. In addition, it has a variable inp with type I ∪ {⊥}, which is used
to store the last input action that has occurred. Thus R = Val(V ∪ {inp}). The
initial state r0 of the mapper is the valuation in which all variables have value ⊥.

The update function When an input i occurs, the only effect on the state of
the mapper is that inp is updated to i: for all r ∈ R and i ∈ I, δ(r, i) = r[inp := i].
When an output (o, ξ) ∈ O� occurs the variables in V get assigned new values in
accordance with ξ, and inp is reset to ⊥: δ(r, o) = ξ ∪ {(inp,⊥)}.

The abstract actions Function F : P → 2V ∪C∪P determines the set of abstract
inputs. The idea is that in abstract inputs we do not record the actual value of
an input parameter p, but only whether or not this value is equal to one of the
constants, variables or parameters in F (p).

For each parameter p ∈ P , we introduce an abstract version pa with type
F (p) ∪ {⊥}. The signature TX of abstract input event primitives is given by

TX = {�(pa1 , . . . , pak) | �(p1, . . . , pk) ∈ TI}.

The set X of abstract input symbols is defined as X = �TX�.
Let Q be the set of parameters that occur in TO. For each parameter q ∈ Q,

we introduce an abstract version qa with type V ∪C ∪P ∪ {⊥}. The signature TY

of abstract output event primitives is given by

TY = {�(qa1 , . . . , qak) | �(q1, . . . , qk) ∈ TO}.

The set Y of abstract output symbols is Y = �TY �×(V → (V ∪C∪P ∪{⊥})). The
intuition behind the first element of an abstract output is that we do not consider
the actual value of an output parameter q, but only whether or not this value is
equal to that of one of the variables, constants or parameters of V ∪ C ∪ P . The
second element of the abstract output is an update function u that specifies for
each variable v the variable or parameter u(v) whose value is assigned to v.

The abstraction function Here we only define the abstraction function for
states r that are injective in the sense that, for all v, v� ∈ V , r(v) = r(v�) �=⊥ im-
plies v = v�. We first define the abstraction function abstr for input actions.

117



7 Active Learning using a Lookahead Oracle

Suppose r is an (injective) state of the mapper and i ∈ I is an input. Let
i = �(d1, . . . , dk) and let the corresponding event term be �(p1, . . . , pk). Then
abstr(r, i) = �(da1 , . . . , d

a
k), where abstract parameter values da1 , . . . , d

a
k are defined

as follows. Let 1 ≤ i ≤ k. We consider the following four cases in the given order:

1. di = γ(c), for some constant c ∈ F (pi). Then dai = c.

2. di = r(v), for some variable v ∈ F (pi). Then dai = v.

3. di = dj , for some j < i with pj ∈ F (pi), and for all l < j either dl �= di or
pl �∈ F (pi). Then dai = pj .

4. Otherwise, dai =⊥.

The abstraction function for output actions is defined similarly. Suppose r is an
(injective) state of the mapper with r(inp) = ��(e1, . . . , em) and corresponding
event term ��(p1, . . . , pm). Let d ∈ IN. Then τ(d) ∈ V ∪C ∪ P ∪ {⊥} is defined by
considering the following four cases in the given order:

1. τ(d) = c if c ∈ C is a constant with γ(c) = d.

2. τ(d) = v if v ∈ V is a variable with r(v) = d.

3. τ(d) = pj if 1 ≤ j ≤ m and d = ej , and, for all l < j, el �= d.

4. τ(d) =⊥.

Suppose (o, ξ) ∈ O is an output with o = �(d1, . . . , dk). Then abstr(r, (o, ξ)) =
(�(τ(d1), . . . , τ(dk), u), where function u : V → (C ∪ V ∪ P ∪ {⊥}) is a symbolic
version of the update function defined by: if ξ(v) =⊥ then u(v) =⊥ else u(v) =
τ(ξ(v)).

7.3.1 Concretization
In the previous subsection, we have defined the abstraction function of the mapper
only for states that are injective. This restriction is unproblematic during the
learning phase: during this phase the mapper component always chooses fresh
values for input parameters (except when the abstract action enforces equality to
some earlier value), and as a result the mapper component will only reach states
that are injective. However, in order to test the validity of an abstract hypothesis
we need to extend the definition of the abstraction function, since during the
testing phase we may try all possible combinations of input parameter values. As
we will see, there are various ways in which we can extend the definition. Consider
the fragment of an abstract hypothesis H displayed in Figure 7.5.

IN(⊥)
IN(x)

IN(y)

Figure 7.5: Fragment of abstract hypothesis
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7.3 Mapper

There are two state variables x and y, and a single event primitive IN(p).
During learning we have discovered that it is relevant whether the parameter p
equals x or y, and thus we have abstract input actions IN(x), IN(y) and IN(⊥).
Since the mapper is partially defined, also the concretization of H is partially
defined. Figure 7.6 shows the concretization of the fragment of H as induced by
the partial mapper.

p �= x∧p �= y∧x �= y
IN(p)

p = x∧x �= y
IN(p)

p = y ∧ x �= y
IN(p)

Figure 7.6: Concretization of abstract hypothesis fragment based on partial mapper

This Mealy machine is not input enabled and can thus not be used for testing
whether hypothesis H is correct: we need to relax the guards to ensure that
transitions are also enabled in the case where x = y. The simple solution displayed
in Figure 7.7, in which we just remove the guard x �= y, does not work since this
Mealy machine is nondeterministic: although we can use it for test generation
analysis of counterexamples becomes problematic due to nondeterminism.

p �= x∧p �= y
IN(p)

p = x
IN(p)

p = y
IN(p)

Figure 7.7: Nondeterministic concretization

The challenge thus becomes to relax the guards of the various transitions in
such a way that all the guards are disjoint, but the resulting Mealy machine is
input enabled. In particular, we need to decide which transition to take in the
case where certain variables are equal. Figure 7.8 shows a solution in which we
take the IN(⊥) transition whenever x = y.

(p �= x∧p �= y)
∨ x = y

IN(p) p = x∧x �= y
IN(p)

p = y ∧ x �= y
IN(p)

Figure 7.8: A correct concretization

In our Tomte tool we have implemented a different solution in which the relaxa-
tion of the guards depends on the current state of the abstract hypothesis. The
basic idea is that although in general it may be relevant whether a parameter p is
equal to variable x or y, this is not necessarily the case for a specific location. In
locations in which the value of x is not relevant, the IN(x) and IN(⊥) transitions
will generate the same output and have the same target locations. In this case the
concretization displayed in Figure 7.9 makes sense.
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7 Active Learning using a Lookahead Oracle

p �= x∧p �= y
IN(p)

p = x∧x �= y
IN(p)

p = y
IN(p)

Figure 7.9: A alternative concretization in case value of x is not relevant

We can also simplify the concretization by merging the IN(x) and IN(⊥)
transitions, as displayed in Figure 7.10.

p �= y
IN(p)

p = y
IN(p)

Figure 7.10: Concretization with merged transitions

Suppose �(p1, . . . , pk) is an input event primitive, suppose 1 ≤ i ≤ k, and
suppose f ∈ F (pi) is an abstract parameter value for pi. Let l be a state of the
abstract hypothesis H. Then we say that f is irrelevant for pi in location l if, for
each outgoing �(d1, . . . , dk)-transition of l with di = f , both the output symbol
and target state are the same as those of the outgoing �(d�1, . . . , d

�
k)-transition of

l, where d�j = if i = j then ⊥ else dj .
We define Fl(pi) to be the set of abstract values that are relevant in location l:

Fl(pi) = {f ∈ F (pi) | f is not irrelevant for pi in l}

In the concretization that is constructed by Tomte, we assign guard FALSE to
all transitions that contain an irrelevant symbol, thus effectively removing these
transitions from the concretization. Semantically, we merge these transitions with
the transitions in which the irrelevant symbols are replaces by ⊥. Consider an
outgoing �(d1, . . . , dk)-transition of location l in which all the di are relevant values.
Then in the concretization that is constructed by Tomte we assign the guard

�
i gi

to this transition, where

gi =

�
pi = di ∧ PWD(Fl(pi)) if di �=⊥
NEQ(pi, Fl(pi)) ∨ ¬PWD(Fl(pi)) if di =⊥

Here NEQ(f, {f1, . . . , fn}) is the predicate stating that f is different from f1, . . . , fn:

NEQ(f, ∅) ≡ TRUE
NEQ(f, {f1, . . . , fn}) ≡ NEQ(f, {f1, . . . , fn−1}) ∧ f �= fn

and PWD({f1, . . . , fn}) is the predicate that asserts that all fi are pairwise dif-
ferent:

PWD(∅) = TRUE
PWD({f1, . . . , fn}) ≡ PWD({f1, . . . , fn−1}) ∧ NEQ(fn, {f1, . . . , fn−1})
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7.4 Counterexample-Guided Abstraction Refine-
ment or Lookahead Extension

If the mapper detects that test sequence u is a counterexample, i.e. an observation
(u, s) ∈ obsSUT − obsγA(H), we need to refine the hypothesis automaton H. The
counterexample is used either to

• refine the input abstraction, which leads to an extension of the abstract input
alphabet and, accordingly, to (a) new guarded transition(s), or

• extend the set of lookahead traces, which leads to one or more new memo-
rable values and, possibly, to (a) new state variable(s), or

• construct an abstract counterexample to let the learner enlarge the size of
the hypothesis automaton, which leads to one or more new states.

Before figuring out the source of the counterexample, we first shrink the counte-
rexample since analyzing short traces is usually easier and faster. Shrinking coun-
terexamples or finding minimal counterexamples is a known technique in model-
based testing and model checking [97, 18]. Koopman et al. [97], for instance,
apply different heuristics like binary search and eliminating single transitions, lar-
ger chunks of inputs and cycles. Their measurements show that a combination
of several heuristics performs best, but that cycle elimination alone is effective,
cheap to execute and scales very well. In a similar way, we remove cycles in the
counterexample using the hypothesis model H. Let ua be the abstract counte-
rexample input sequence obtained via mapper A and τA(u, s). If a run of ua on
H contains cycles, there is a fair chance that the SUT contains the same cycles.
Our counterexample reduction algorithm sorts the cycles from large to small and
tries to remove them in that order.
Once all cycles have been removed, we process the reduced counterexample using
Algorithms 7.5 and 7.6 to decide how to refine the hypothesis automaton H.

Algorithm 7.5 Process counterexample

Input: Concrete reduced counterexample (u, s)
Output: Abstract counterexample (ua, sa) for learner, a new entry v for F (p) in

abstraction table, or an extended list of guard lookahead traces GLTS
1: (ua, sa) := τA(u, s) � Abstract version of counterexample
2: saf := runFresh(ua) � Fresh trace on SUT via lookahead oracle (Section 7.1)
3: if (ua, saf ) �∈ obsH then
4: return (ua, saf ) � Return abstract counterexample to learner
5: else
6: return refineAbstractionOrExtendLookahead(u, s) � cf. Algorithm 7.6
7: end if

Similar to Section 6.2 we consider two different cases: 1) the case that the
learner has not found all states and we need to forward the abstract counte-
rexample to the learner to solve the problem and 2) the case that our current
abstraction is too coarse and we need to refine it by 2a) a new input abstraction
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7 Active Learning using a Lookahead Oracle

or 2b) an extended lookahead if no input abstraction can be defined. The proce-
dure to decide which of the two cases we are facing is still the same, see Algorithm
7.5: We convert the input sequence of the counterexample into a fresh trace by
replacing all duplicate values that are not covered by existing input abstractions
into fresh values. In this way we assure that we have constructed a trace for which
no further abstraction refinement is possible. Hence, if it turns out that the fresh
trace is still a counterexample, we know that only the learner can resolve it. We
execute the fresh trace on the SUT via the lookahead oracle to determine the abs-
tract output sequence saf using the memorable values computed in the tree, see
runFresh(ua) function in line 2. If the hypothesis does not contain the new obser-
vation (line 3), then hypothesis H is incorrect and the abstract counterexample
(ua, saf ) is forwarded to the learner, see line 4. Otherwise, the problem can be
solved with a new input abstraction or lookahead trace. In this case the abs-
tract outputs in saf differ from sa due to less equalities between data values in the
concretized input of the fresh trace, which lead to a different path through the
SUT and, thus, to a different outcome.

The procedure for counterexample-guided abstraction refinement or lookahead
extension (CEGAROLE) is shown in Algorithm 7.6. Similar to Algorithm 6.1, we
loop over all black values, which refer to possible abstractions, until we have found
either a new input abstraction or a new lookahead trace.

1. Adding new guarded transition(s): We change every black value b into
a fresh value f and check if the observable output of the SUT changes, see
line 4. If this is the case and, moreover, b is equal to the value of constant
c, then we obtain a new entry for the abstraction table, see (param(b), c)
in line 6. Also if changing the previous occurrence of b, i.e. source(b), into
a fresh value leads to a change of the observable output (line 9), we have
found a relation between two data values, whose equality is relevant for the
behavior of the SUT. In order to add a new entry to the abstraction table,
we need to define the relation between param(b) and param(source(b)) in the
guard. If b is equal to the value of some state variable vj (line 10), the
relation (param(b), vj) is the new entry for the abstraction table, see line 11.
If param(b) and param(source(b)) are parameters in the same action (line 12),
where param(source(b)) has a lower index than param(b), then the relation
(param(b), param(source(b))) is added as a new entry, see line 13.

2. Adding new state variable(s): However, if we cannot find a match (line
14-21), then param(b) is equal to a state variable, which has not been detec-
ted so far or that has been reset to ⊥, i.e. a memorable value has not been
remembered long enough. To identify that source(b) is memorable and has to
be stored in a state variable, we try to add at least one new lookahead trace
to GLTS . Let ik = action(param(source(b))) and im = action(param(b)) be
the inputs that contain the first and second occurrence, respectively, of the
value whose equality is relevant for the behavior of the SUT. Let the redu-
ced counterexample trace be q0

i1/o1→ q1 · · ·
ik/ok→ qk · · ·

im/om→ qm · · · in/on→ qn.
Then, the list of guard lookahead traces is extended as follows: If the looka-
head trace for ik+1 . . . in is not an element of GLTS (lines 15 – 17), we add
it, together with the suffix-closed set of lookahead traces from ik+2, . . . , in
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7.4 Counterexample-Guided Abstraction Refinement or Lookahead Extension

to im, . . . , in, at the end of the GLTS list, see line 18. Here, suffix-closedness
means that if ik+1, . . . , in is a new lookahead trace, then also ik+j , . . . , in is
a new lookahead trace for arbitrary 1 ≤ j ≤ (m − k). If no new lookahead
trace can be found, no new information can be deduced from black value b
to solve the counterexample. Therefore, we pick the next occurrence of a
black value b from u and analyze it, starting at Item 1.

Algorithm 7.6 Abstraction refinement or lookahead extension

Input: Concrete reduced counterexample (u = i1 . . . in, s)
Output: New input abstraction (p, v) with v new entry for F (p) in abstraction

table, or an extended list of guard lookahead traces GLTS
Function refineAbstractionOrExtendLookahead(u, s)
1: while abstraction not found or GLTS not extended do
2: pick first occurrence of a black value b from u
3: u� := u, where param(b) is set to a fresh value f
4: if output s�[f/b] of u� on SUT �= s then
5: if b = γ(c), where c ∈ C then � If b is equal to value of constant c
6: return (param(b), c) � New abstraction to constant
7: else
8: u�� := u, where param(source(b)) is set to a fresh value f
9: if output s��[f/b] of u�� on SUT �= s then

10: if b = r(vj), where vj ∈ V then � If b is equal to value of vj
11: return (param(b), vj) � New abstraction to state variable
12: else if action(param(b)) = action(param(source(b))) then
13: return (param(b), param(source(b))) � New abstr. to param
14: else
15: ik := action(param(source(b))
16: lt := createLookaheadTrace(ik+1 . . . in, values(i1 . . . ij),

param(b)) � cf. Algorithm 7.4
17: if lt �∈ GLTS then � If new guard lookahead trace found
18: GLTS := GLTS ∪ {lt} ∪ suffixClosedSubtraces(lt)
19: return GLTS � Return extended GLTS list
20: end if
21: end if
22: else
23: u := u�� � Counterexample with fewer black values
24: end if
25: end if
26: else
27: u := u� � Counterexample with fewer black values
28: end if
29: end while

Finally, Algorithm 7.6 will succeed either in finding a new input abstraction,
which is added as an entry in the abstraction table, or in extending the list of
guard lookahead traces. The learner is restarted with the updated information. If
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a new input abstraction has been added, an output lookahead trace for the new
abstract input alphabet symbol is created using Algorithm 7.4. Thus, the next
hypothesis will be constructed using an enlarged observation tree.

7.5 The Resulting Algorithm

The overall learning algorithm is presented in Figure 7.11. Rounded rectangles
represent actions, diamonds represent decisions, rectangles on the left represent
inputs to the learning algorithm and rectangles on the right represent the outputs.
Wherever appropriate, the algorithm corresponding to an action or decision is
given.

initializeblearningbalgorithm
Algorithmb7.4

constructbhypothesis
Algorithmsb7.1,b7.2,b7.3

verifybhypothesis

counterexamplebfound?

hypothesis

returnbhypothesis

learnedbmodel

abstractbinputbalphabet

lookaheadbtraces

returnbcounterexample
toblearner

Algorithmb7.5

refinebinputbabstraction
Algorithmsb7.4,b7.6

yesno

counterexampleyes

addboutput
lookaheadbtrace
Algorithmb7.4

isbcounterexamplebforblearner?bAlgorithmb7.5

lookaheadbincompletenessbfound

no

abstractionbrefinement
orblookaheadbextension

Algorithmb7.6

relationbofbinputbabstractionbknown?

addbguard
lookaheadbtrace(s)
Algorithmsb7.4,b7.6

yes no

Figure 7.11: Overall learning algorithm
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The learning process is performed in two alternating phases: the construction
of a hypothesis and the verification of the hypothesized model, which is again
refined if a counterexample has been found. The cycle is only interrupted when

• no counterexample has been found, which means the hypothesis is correct
according to the MBT tool, and the learning has succeeded or

• the inputs to the learning algorithm, i.e. abstract input alphabet or looka-
head traces, need to be refined such that the entire learning process has to
be restarted.

7.6 Example Application
We have implemented the algorithms presented in this chapter in the Tomte tool.
In this section, we illustrate how our algorithms work together by means of a
simple system, which we successfully learned with the Tomte tool. In contrast to
the examples in Section 6.3, input abstractions are expressed in a more general
way and the flow of the overall algorithm has changed due to keeping track of
lookahead traces.

As example application we use a FIFO-set with a capacity of two, similar to the
one presented in [80]. A FIFO-set corresponds to a queue in which only different
values can be stored, see Figure 7.12. As in the stack of 7.1, there are a Push(p)
input that tries to insert a value in the set and a Pop() input that tries to retrieve
a value from the set. The output in response to a Push(p) input is OK if p could
be added successfully or NOK if p is already an element of the set or if the set is
full. The output in response to a Pop() input is Out(x), where x is the first value
that has been added to the set and not has been returned, or NOK if the set is
empty.

l0start l1 l2

Push(p)/OK
v1:=p

Pop()/NOK
p �= v1

Push(p)/OK
v2:=p

p = v1

Push(p)/NOK

Pop()/Out(v1) Pop()/Out(v1)
v1:=v2

Push(p)/NOK

Figure 7.12: FIFO-set with a capacity of 2 modeled as a scalarset Mealy machine

The learning is performed as follows. The learner is initialized with the abstract
input symbols Push(⊥) and Pop(). The lookahead oracle is equipped with the list
of output lookahead traces OLTS = [Push((�f�,0)),Pop()], an empty list of guard
lookahead traces GLTS = [], and an observation tree with a root node for which
the memorable values {} have been determined by executing the concrete output
lookahead traces {Push(0), Pop()}. The learner starts by asking output queries
using the two abstract input symbols. The mapper concretizes these symbols as
usual by selecting the smallest fresh value for every abstract parameter value ⊥.
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All concrete output queries are forwarded from the mapper to the SUT and, in
addition, are stored in the observation tree. Moreover, the memorable values are
computed after every output query by running the concrete lookahead traces on
the SUT and storing them in the tree. While learning the first hypothesis of the
FIFO-set the observation tree depicted in Figure 7.13 is constructed.

N0

{}

N1

{0}

N3

{0}

N5

{}

Push(2)/NOK

N6

{1}

N9

{}

Push(2)/OK

N10

{}

Pop()/Out(1)

Pop()/
Out(0)

Push(1)/OK

N4

{}

N7

{}

Push(1)/
OK

N8

{}

...

Pop()/NOK

Pop()/Out(0)

Push(0)/OK

N2

{}

...

Pop()/NOK

Figure 7.13: Observation tree of FIFO-set

This observation tree is no longer lookahead complete since memorable value
1 of node N6 is not part of the memorable values of node N3 and has not been
inserted via the previous Pop() input. Therefore, we extend OLTS with the out-
put lookahead trace Pop() Pop() and restart the entire learning process with the
updated lookahead traces to retrieve a lookahead-complete observation tree. Now,
the learner succeeds to construct the abstract hypothesis shown in Figure 7.14.

l0start l1 l2

Push(⊥)/OK
x1:=p

Pop()/NOK Push(⊥)/OK
x2:=p

Pop()/Out(x1) Pop()/Out(x1)
x1:=x2

Push(⊥)/NOK

Figure 7.14: First hypothesis of the FIFO-set

This hypothesis does not check if the same value is inserted twice since the
mapper only uses fresh values in the output queries. During hypothesis verification
the mapper selects random values from a small range for every abstract parameter
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value ⊥. In this way it will find a concrete counterexample input trace, e.g. Pop()
Push(9) Pop() Push(3) Push(3), see line 2 below, for which the SUT produces a
NOK output and the hypothesis generates an OK, see lines 3 and 4.

1: abstract inputs: Pop() Push(⊥) Pop() Push(⊥) Push(⊥)

2: concrete inputs: Pop() Push(9) Pop() Push(3) Push(3)
3: outputs SUT: NOK OK Out(9) OK NOK

4: outputs hypothesis: NOK OK Out(9) OK OK

First, we shrink the counterexample as discussed in Section 7.4. The longest cycle
of running the abstract inputs in line 1 on the abstract hypothesis in Figure 7.14
is from l0 to l0 with Pop() Push(⊥) Pop() and has length three. Removing this
cycle from the concrete counterexample inputs results in Push(3) Push(3), see line
6 below, for which the SUT and hypothesis still produce different outputs, see lines
7 and 8. To determine if it is a counterexample for the learner, see Algorithm 7.5,
we convert the reduced concrete counterexample inputs into a fresh trace (line 9)
and run it on the SUT via the lookahead oracle. The concrete outputs returned by
the SUT are OK OK, see line 10. Since, after abstraction, the outputs of the fresh
trace are also produced by the abstract hypothesis (it also generates two successive
OK outputs), we need to refine the input abstraction according to Algorithm 7.6.

5: abstract inputs: Push(⊥) Push(⊥)

6: concrete inputs: Push(3) Push(3)
7: outputs SUT: OK NOK

8: outputs hypothesis: OK OK

9: fresh trace: Push(1) Push(2)
10: outputs fresh trace: OK OK

There is only one black value in the counterexample, see line 12 below, which we
replace with a fresh value, e.g. with value 7, see line 13. Running the new trace
on the SUT gives a different output than before (line 14 vs. line 7). Since there
are no constants defined in the FIFO-set, we try the same with the source of the
black value. We reset the black value and replace the first 3 with a fresh value, e.g.
2, see line 15. Running the new trace on the SUT gives again a different output
than produced by the original counterexample (line 16).

11: abstract inputs: Push(⊥) Push(⊥)

12: black and red values: Push(3) Push(3)
13: black value → fresh value: Push(3) Push(7)
14: outputs SUT: OK OK

15: source value → fresh value: Push(2) Push(3)
16: outputs SUT: OK OK

Thus, we have found a relation between two data values, whose equality is relevant
for the behavior of the SUT. In order to add a new entry to the abstraction table,
we need to know, where the 3 comes from. As mentioned before, there are no
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constants defined. Moreover, there are no other parameters in the Push(p) input
with a lower index. Therefore, the only possible origin is a state variable. When
handling the second Push input of the original counterexample, which contains the
black value, there is only one state variable set, i.e. x1 = 3, see Figure 7.14. Thus,
we have found the origin of the new abstraction and add it to the abstraction
table, see Table 7.1.

Parameter Abstraction(s)
Push p x1

Table 7.1: Abstraction table for FIFO-set

The alphabet of the learner is extended with a new input symbol Push(x1) and
a corresponding output lookahead trace is added to OLTS , which now contains
four elements: OLTS = [Push((�f�,0)),Pop(),Pop() Pop(),Push((�l�,0))]. Again, the
entire learning process is restarted from scratch. The next hypothesis learned is
similar to the model in Figure 7.12 and the learning algorithm stops.

7.7 Experimental Results

As mentioned before, we have implemented the algorithms presented in this chap-
ter in the Tomte tool. We have connected our Tomte tool to the LearnLib library
[147, 114] for regular inference and have performed several experiments to de-
monstrate the applicability of our approach. As MBT tool we have implemented a
random test suite that by default is configured with 1000 test traces of length 100.
Using CADP, we verified that the learned models indeed are correct, i.e., equiva-
lent to the SUT that has been generated from the extended finite state machine
modeled in Uppaal [24]. We have run each experiment ten times with different
seeds. For every experiment we have measured the following data and determined
the average over the successful runs together with the standard deviation:

• succ: number of runs succeeded of total number of runs

• states: total number of states of the learned abstract model

• abs res: total number of output query resets received from LearnLib

• abs inp: total number of output queries received from LearnLib (abstract
input symbols)

• learn res: total number of resets sent to SUT during learning

• learn inp: total number of concrete input symbols sent to SUT during
learning

• test res: total number of resets sent to SUT during testing

• test inp: total number of concrete input symbols sent to SUT during testing
(without last test, where no counterexample has been found)
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• ana res: total number of resets sent to SUT during counterexample analysis

• ana inp: total number of concrete input symbols sent to SUT during coun-
terexample analysis

• abs CE: total number of abstract counterexamples sent to LearnLib

• abs ref : total number of input abstractions refined

• GLT: total number of guard lookahead traces added (without suffix-closed
subtraces)

• OLT: total number of lookahead incompleteness detected

We also measured the time of our experiments, but we do not mention these
numbers in our learning statistics as in our opinion the other measures are more
relevant. However, for every series of experiments, we give an overall impression
of the time needed for learning, testing, and counterexample analysis.

First, we have employed our tool to repeat the experiments of the previous
chapter. The learning results are presented in Table 7.2. Comparing the new
results to the results of the previous chapter shows that for most systems the
number of states in the learned model is still the same and that the number of
sequences of output queries received from LearnLib (Learning queries in Table
6.2 versus abs res in Table 7.2) just has changed slightly. Only the values for the
session initiation protocol and login procedure have changed considerably. For the
session initiation protocol, the increase in output queries is due to two more guards
that have been inferred, compare Input refinements in Table 6.2 to abs ref in
Table 7.2. Each of these guards is tested in every state of the hypothesized model
to make it input-enabled. For the login procedure, the number of output queries
has increased due to more learning rounds that are required in the new setting.
In the previous version of the Tomte tool learning is only restarted from scratch
whenever the abstraction is refined. In our new algorithm, it is also restarted
whenever we add (a) new guard lookahead trace(s), see Figure 7.11. Instead of 3
learning rounds, now we need 7 rounds, including 4 restarts because of new guard
lookahead traces. As a result, the same abstract output queries are asked and
counted several times. However, from a performance perspective, this is not a
problem since we use the observation tree as cache.

In comparison to the previous experiments, we now derive memorable values
automatically, which goes along with additional costs. For the identification of
memorable values not only the output queries received from the learner are concre-
tized and forwarded to the SUT, but also a number of concrete lookahead traces.
When looking at the ratio of output queries received from LearnLib (abs inp) to
the number of concrete inputs really sent to the SUT (learn inp), there is quite
some difference in the costs for the various systems. In Table 7.2, the ratio of abs-
tract output queries to concrete inputs ranges from 1:3 (alternating bit protocol
receiver) to 1:9 (login procedure). For the other experiments performed in this
section, the ratio lies between 1:2 and 1:5. Although more concrete inputs have
been sent to the SUT, times for learning, testing, and counterexample analysis for
the SUTs in Table 7.2 are rather low, not exceeding 2 seconds.
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7.7 Experimental Results

In a second series of experiments, we have applied our Tomte tool to learn
models of the bounded retransmission protocol (BRP) [75, 55]. A detailed des-
cription of the protocol and six faulty mutant implementations we made can be
found in Section 8.3 and Appendix 8.A of the next chapter. The learning sta-
tistics are shown in Table 7.3. Note that mutant 4 and 5 generate the same
results as the reference implementation, because they only differ in abstract para-
meter values produced: While mutant 4 returns an OFRAME(c1, c0, c0, v1) output
from state SF to WA, where n == 2, the reference implementation generates
OFRAME(c0, c1, c0, v1). In a similar way, mutant 5 produces a OCONF(c0) output
from state SC to INIT, where n == 2, while the reference implementation returns
OCONF(c2). Inferring mutant 6 requires the most output queries (abs inp) and
concrete inputs sent to the SUT (learn inp). This is due to a guard that has to be
inferred, see the additional OFRAME transition from state SF to WA in Figure 8.9
in Appendix 8.A. Therefore it is not surprising that learning mutant 6 takes the
longest with 2 seconds for learning and 1 second for testing and counterexample
analysis.

In a third series of experiments, we have applied our tool to learn models of
different data structures. Table 7.4 presents the learning results for a queue and
a stack as illustrated in Figures 7.15 and 7.1. We have incrementally scaled up
the capacity of the queue and stack from 2 to 40 elements to test the limits of
our tool. Remarkably, both data structures produce exactly the same learning
statistics for the same capacity so that we have merged them in one table. Since
the standard deviation was 0 for all measures, we have removed the corresponding
rows from the table. Increasing the number of elements in the queue or stack leads
to a (approximately) cubic growth of total output queries, see abs inp in both
tables. Also the total number of concrete inputs sent to the SUT to construct the
observation tree and to derive memorable values grows (approximately) cubically,
see learn inp. However, it is particularly striking that the total number of test
inputs (test inp) is always 0 and independent of the size of the data structure. The
reason for this is that during construction of the first hypothesis of a queue or stack
with capacity n the observation tree detects n−1 times lookahead incompleteness,
see OLT in Table 7.4. Every time the Pop() output lookahead trace is extended
with another Pop() symbol. Using the longer lookahead trace, a new memorable
value and a new state are found without any additional effort. While exploring
the near future of the new state again lookahead incompleteness is detected and
again the output lookahead trace is extended with another Pop() symbol, and so
on. When LearnLib finally succeeds to construct the first hypothesis, the model
contains all n + 1 states and all n state variables so that our MBT tool cannot
find a counterexample. Thus, the time needed for testing and counterexample
analysis is 0 seconds, because we did not measure the last test and there was no
counterexample to analyze. The time needed for learning did not exceed 7 seconds,
even for a stack or queue with a capacity of 40.

In another series of experiments, we have applied our Tomte tool to learn a
2-dimensional stack of overall capacity 4, see Appendix 7.A.2. We did not scale
up the capacity of the 2-dimensional stack. The learning results are presented in
Table 7.5. The models could be inferred rather quickly with our tool, not exceeding
1 second for learning, testing, or counterexample analysis.
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7 Active Learning using a Lookahead Oracle

su
cc

st
at

es
ab

s
ab

s
le

ar
n

le
ar

n
te

st
te

st
an

a
an

a
ab

s
ab

s
G

LT
O

LT
re

s
in

p
re

s
in

p
re

s
in

p
re

s
in

p
C

E
re

f
B

R
P

re
fe

re
nc

e
im

pl
em

en
ta

ti
on

,
m

ut
an

t
4,

an
d

m
ut

an
t

5
av

g
10

/1
0

38
69

9
60

13
24

82
26

13
1

11
97

1
25

9
29

60
2

0
0

1
st

dd
ev

0
0

0
0

29
6

60
1

35
64

3
0

0
0

0
B

R
P

m
ut

an
t

1
av

g
10

/1
0

38
58

4
44

15
21

77
20

81
0

12
11

44
66

46
7

1
0

0
1

st
dd

ev
0

0
0

2
30

9
86

9
16

17
3

0
0

0
0

B
R

P
m

ut
an

t
2

av
g

10
/1

0
32

59
1

46
74

18
36

17
74

9
6

39
0

22
1

23
71

2
0

0
1

st
dd

ev
0

0
0

0
19

3
25

5
35

47
3

0
0

0
0

B
R

P
m

ut
an

t
3

av
g

10
/1

0
38

76
8

60
04

24
71

23
72

6
16

13
80

20
8

18
42

3
0

0
1

st
dd

ev
0

56
52

2
7

63
11

10
53

54
59

4
0

0
0

0
B

R
P

m
ut

an
t

6
av

g
10

/1
0

60
24

54
21

42
6

90
94

95
46

2
29

24
03

41
2

41
60

3
1

0
1

st
dd

ev
0

29
3

27
58

93
10

18
13

13
58

16
8

20
44

1
0

0
0

T
ab

le
7.

3:
Le

ar
ni

ng
st

at
is

ti
cs

fo
r

th
e

B
R

P
im

pl
em

en
ta

ti
on

an
d

m
ut

an
ts

1-
6

132



7.7 Experimental Results

su
cc

st
at

es
ab

s
ab

s
le

ar
n

le
ar

n
te

st
te

st
an

a
an

a
ab

s
ab

s
G

LT
O

LT
re

s
in

p
re

s
in

p
re

s
in

p
re

s
in

p
C

E
re

f
Q

ue
ue

(2
)

an
d

St
ac

k(
2)

av
g

10
/1

0
3

33
70

39
14

8
0

0
0

0
0

0
0

1
Q

ue
ue

(5
)

an
d

St
ac

k(
5)

av
g

10
/1

0
6

12
3

37
0

11
1

74
2

0
0

0
0

0
0

0
4

Q
ue

ue
(1

0)
an

d
St

ac
k(

10
)

av
g

10
/1

0
11

39
3

18
10

31
1

36
12

0
0

0
0

0
0

0
9

Q
ue

ue
(1

5)
an

d
St

ac
k(

15
)

av
g

10
/1

0
16

81
3

50
75

61
1

10
13

2
0

0
0

0
0

0
0

14
Q

ue
ue

(2
0)

an
d

St
ac

k(
20

)
av

g
10

/1
0

21
13

83
10

91
5

10
11

21
80

2
0

0
0

0
0

0
0

19
Q

ue
ue

(2
5)

an
d

St
ac

k(
25

)
av

g
10

/1
0

26
21

03
20

08
0

15
11

40
12

2
0

0
0

0
0

0
0

24
Q

ue
ue

(3
0)

an
d

St
ac

k(
30

)
av

g
10

/1
0

31
29

73
33

32
0

21
11

66
59

2
0

0
0

0
0

0
0

29
Q

ue
ue

(3
5)

an
d

St
ac

k(
35

)
av

g
10

/1
0

36
39

93
51

38
5

28
11

10
27

12
0

0
0

0
0

0
0

34
Q

ue
ue

(4
0)

an
d

St
ac

k(
40

)
av

g
10

/1
0

41
51

63
75

02
5

36
11

14
99

82
0

0
0

0
0

0
0

39

T
ab

le
7.

4:
Le

ar
ni

ng
st

at
is

ti
cs

fo
r

a
qu

eu
e

an
d

a
st

ac
k

w
it
h

ca
pa

ci
ty

2
to

40

su
cc

st
at

es
ab

s
ab

s
le

ar
n

le
ar

n
te

st
te

st
an

a
an

a
ab

s
ab

s
G

LT
O

LT
re

s
in

p
re

s
in

p
re

s
in

p
re

s
in

p
C

E
re

f
2-

di
m

en
si

on
al

st
ac

k
av

g
10

/1
0

13
46

3
18

44
13

33
89

56
0

0
0

0
0

0
0

3

T
ab

le
7.

5:
Le

ar
ni

ng
st

at
is

ti
cs

fo
r

a
2-

di
m

en
si

on
al

st
ac

k
of

ov
er

al
l
ca

pa
ci

ty
4

133



7 Active Learning using a Lookahead Oracle

In a last series of experiments, we have increased the complexity of our queue
by adding a guard to every Push(p) transition that checks whether p already is
an element of the data structure. The resulting scalarset Mealy machine is the
FIFO-set depicted in Figure 7.12, which has been discussed in the previous section.
Again we have gradually scaled up the capacity of the FIFO-set to test the limits
of our tool. Using the test setup of the previous experiments (1000 test traces of
length 100), we quickly reach the boundaries of our tool. Already for a FIFO-set
with 14 elements it is not possible to infer all 10 runs successfully. On account
of this, we investigated the effects of increasing the length of the test traces. The
results for 1000 test traces of length 1000 are shown in Table 7.6. Here, it is possible
to successfully learn the FIFO-set with up to 25 elements. The reason for this is
quite obvious. For the FIFO-set guards have to be inferred. In contrast to the
derivation of memorable values, which we retrieve for free for these data structures,
inferring guards is expensive. Guards can only be deduced from counterexamples,
which may be hard to find. The larger the capacity of the FIFO-set, the more
difficult it is to find a counterexample with random testing for the guards deep
in the data structure. Thus, the bottleneck does not lie in our tool, but in the
MBT tool. If we would increase the length of the test traces even more or would
improve the testing algorithm, most likely we would be able to infer FIFO-sets
with larger capacities. Due to the higher complexity of the data structure, also
the times have increased: For a FIFO-set with 35 elements the total learning time
was 12:09 minutes, the total testing time 13:38 minutes, and the total time for
counterexample analysis was 7 seconds.

Our Tomte tool and all models can be downloaded at http://www.tomte.
cs.ru.nl/.

7.8 Comparison of Different Approaches

As already mentioned in the related work section of the introduction, the Learn-
Lib tool [114] and our Tomte tool implement quite similar algorithms for fully
automatically inferring large or infinite-state systems. Therefore, it is worthwhile
to examine the differences between both tools in more detail. LearnLib imple-
ments the approach to inferring register automata and register Mealy machines
as presented in [81, 80]. Register Mealy machines are almost identical to scalar-
set Mealy machines, which can be learned with the Tomte tool. Our algorithms
are motivated by previous cases studies, where a mapper component has been
constructed manually. Automatically generating a mapper for any type of SUT is
a mammoth task since the SUT may contain any type of operation, which is hard
to infer in a black-box setting. Therefore, we decided to focus on a restricted class
of systems, which also comprises the SIP and biometric passport case study. Both
classes of systems have been developed independently of each other, but by mutual
agreement a standardized XML format has been introduced, which is supported
by both tools. This did not affect the framework or inner workings of the tools.
They still reveal a number of differences, which will be addressed in the remainder
of this section.
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7 Active Learning using a Lookahead Oracle

7.8.1 Modularity

Both tools differ in the general architecture of their learning framework as discussed
below.

Independent components In Tomte, the structure is more modular by split-
ting different functions into separate components, e.g. the mapper takes care
of abstraction and concretization and the lookahead oracle is responsible for the
derivation of memorable values. The learner component has not been changed,
meaning that it still functions on the abstract level. Hence, the basic learning algo-
rithm is independent of the data and, as a result, can be exchanged with any other
learning algorithm. Moreover, Tomte does not need to take care of learner related
tasks like identifying states. In contrast, LearnLib functions on the concrete level
by extending the learner component with data. The underlying data structure of
the learning algorithm is adapted to store all (relevant) data values. Similar to
the lookahead oracle in Tomte, it stores in every cell of the observation table a
concrete tree that comprises the future behavior of the corresponding state. Since
in Tomte there is no notion of states in the lookahead oracle, the future behavior is
determined after every output query, which may lead to an increase in the number
of output queries. The foresight is conducted on the basis of a small subset of
already seen values, i.e. the memorable values of the previous node in the tree
and the values occurring in the last input, see Algorithm 7.1, line 2. As opposed
to this, LearnLib uses all previously seen values. The concrete tree in every cell
of the observation table is then used on the one hand to derive memorable values
and on the other hand to distinguish between states.

Extensibility As a result of a more modular structure, it is easy to extend
the Tomte tool with more functionality. For example, extending the abstraction
techniques with other comparisons or operations can be done by merely adapting
the mapper. In LearnLib, such a change is more far-reaching, because the entire
algorithm has to be changed.

Shared cache In Tomte, the observation tree in the lookahead oracle functions
as a cache for repeated output queries sent during hypothesis construction. During
hypothesis verification all concrete test sequences are forwarded straight to the
SUT without traversing the lookahead oracle and, thus, are not stored. Also in
LearnLib a cache component is used, which is placed in between the learner and
the SUT. However, here it is used in both phases, i.e. during learning and testing.
Normalizing all concrete test traces before forwarding them to the cache increases
the probability that cached traces can be reused.

7.8.2 Counterexample Analysis

Once a hypothesis is learned, the LearnLib tool as well as the Tomte tool verify
if it correctly describes the behavior of the SUT. However, if a counterexample is
found, it is handled in a different way by both tools.
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7.8 Comparison of Different Approaches

Counterexample reduction Whenever a counterexample is found in Tomte,
it is shrunk first by eliminating unnecessary cycles as explained in Section 7.4. In
LearnLib a counterexample is not optimized before handling. Thus, it is possibly
not the shortest one if, e.g., a random test suite is used. This may lead on the
one hand to a more expensive processing of the counterexample and on the other
hand to a longer suffix that is added to the observation table. The longer suffix
in combination with the larger set of values used to determine the future behavior
may lead to an increase in the number of output queries.

Counterexample processing As discussed in Section 7.4, processing counte-
rexamples in Tomte is straightforward. A simple test run and check suffice to
decide whether a counterexample has to be returned to the learner or has to be
processed further. In the latter case, the input abstraction has to be refined with
a new guard, which can be found by simply analyzing all duplicate values that
are not covered by an existing abstraction. Once a guard is found, Tomte does
not search for more guards, but updates the input alphabet and restarts learning.
Since the lookahead oracle is used as a cache during learning, a new hypothesis can
be constructed quickly by only sending sequences of output queries to the SUT
that contain the new alphabet symbol. In addition, the previous counterexample
is stored and tested again at the beginning of the next testing phase. In contrast,
handling counterexamples in LearnLib is more complex. LearnLib iterates step-
wise over the counterexample and checks for every step if either a new transition
(guard), register (state variable), or location (state) can be found to resolve the
counterexample. Moreover, LearnLib continues until it has found all equality
guards in the counterexample. Thus, while Tomte only performs computations on
some interesting parts of the counterexample to derive a guard, LearnLib analyzes
the entire counterexample in detail regarding three conditions. In Tomte, state
variables are typically found without any additional effort during the construction
of a hypothesis, see Section 7.7.

Minimality Input abstractions in Tomte are applied in every state of the au-
tomaton to learn an input-enabled model. However, these abstractions may not
be relevant for the behavior of the SUT in every state. Because memorable va-
lues can per state be assigned differently to state variables, an abstraction may
point to a value that is actually irrelevant. In very rare cases, this may lead to
an additional state, meaning that the abstract learned model is not minimal. In
contrast, LearnLib always learns the minimal automaton according to the Nerode
relation [121].

Using the standardized format and the variety of benchmarks presented in
this thesis makes it easy to compare the two algorithms in more detail, e.g. with
respect to their limits and the exact number of queries asked for learning and
counterexample analysis. An experimental evaluation of both tools on the set
of benchmarks can be found in [5]. In addition, this allows us to compare our
approach also to other related approaches. This will provide an insight into the
strengths and weaknesses of different techniques and enable us to learn from each
other. We believe there is still a lot of room for improvement in both tools.
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7 Active Learning using a Lookahead Oracle

7.9 Conclusions and Future Work
In the last two chapters, we have introduced an approach to automatically infer
models of real-world systems that can be represented as scalarset Mealy machines.
The algorithm presented in the previous chapter applies counterexample-guided
abstraction refinement to derive guards on inputs. In this chapter, we have aug-
mented our algorithm with a lookahead extension, which in combination with a
lookahead oracle can be used to deduce the memorable values of an SUT. We have
shown the applicability of our approach, amongst others, by inferring models of
two communication protocols, the biometric passport, a simple login procedure,
and different data structures. In future work, we intend to prove correctness and
termination of our approach. The experimental results show that our approach
works, but we assume that a few optimizations would improve the overall per-
formance of our Tomte tool. For example, we could improve the handling of
lookahead incompleteness. Now, we follow a conservative approach in the sense
that we extend the output lookahead trace with one additional symbol. Thus, if
an output lookahead trace has to be extended with, for instance, three symbols
to find all memorable values, the observation tree detects three times lookahead
incompleteness and the entire learning process is also restarted three times. In
contrast, we could try to figure out the required output lookahead trace at once.
Moreover, we could try to reduce the number of lookahead traces sent from the
lookahead oracle to the SUT. A possibility could be to link lookahead traces to
certain states of the hypothesis. Similarly, we could also link abstractions to states
to reduce the communication with the SUT. In addition, if guards are only added
to transitions where they are relevant, this will also simplify the concretization of
a hypothesis.
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7.A Data Structures

7.A.1 Queue

l0start l1 l2

Push(p)/OK
v1:=p

Pop()/NOK Push(p)/OK
v2:=p

Pop()/Out(v1) Pop()/Out(v1)
v1:=v2

Push(p)/NOK

Figure 7.15: A queue with a capacity of 2 modeled as a scalarset Mealy machine. It
is similar to the FIFO-set of Figure 7.12 except that the queue allows to store the same
object multiple times.
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Part IV

Using Active Learning for
Conformance Testing
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Chapter 8
Improving Active Mealy Machine

Learning for Protocol Conformance
Testing

In protocol engineering, protocols are typically specified by independent, autho-
ritative agencies, e.g., the ITU (international telecommunication union) or the
IETF (internet engineering task force). For such a protocol specification, a refe-
rence implementation is then often developed, which helps to discover errors and
ambiguities in the specification, demonstrates that the specification is actually im-
plementable, and serves as a definite interpretation of the specification. Based on
the specification and the reference implementation, independent suppliers will de-
velop products implementing the protocol. The reference implementation is then
the standard against which these products are measured and compared to assess
compliance with the specification.

In this chapter, we investigate a novel application domain for active learning of
software models: establishing the correctness of protocol implementations relative
to a given reference implementation. To the best of our knowledge, this is a
novel application area of regular inference. Moreover, it is a promising one since
reference implementations are in existence for many real-world software systems,
but models are usually lacking or incomplete.

Our investigation is focused on a well-known benchmark case study from the
verification literature: the bounded retransmission protocol [75, 55]. The boun-
ded retransmission protocol is a variation of the classical alternating bit protocol
[23] that was developed by Philips Research to support infrared communication
between a remote control and a television. We constructed an implementation
of the protocol, to which we refer as the reference implementation, and 6 other
faulty variations of the reference implementation. Our aim is to combine active
learning methods with model-based testing in order to quickly discover the beha-
vioral differences between these variations and the reference. To this aim, we make
use of several state-of-the-art tools from regular inference, software testing, and
formal verification. We show how these tools can be used for learning models of
the bounded retransmission protocol and revealing implementation errors in the
mutants.
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8 Improving Active Mealy Machine Learning for Protocol Conformance Testing

In addition to experimental results on learning the bounded retransmission pro-
tocol, we provide two solutions that significantly reduce the difficulty of answering
inclusion queries in this setting:

1. Using abstractions over input and output values through our Tomte learning
tool as presented in Chapter 6 and through the model-based testing tool
TorXakis [118]. Tomte performs on-the-fly abstractions on concrete input
and output values, only introducing new abstract values when required for
learning.

2. Comparing a previously learned model of the reference implementation with
the current hypothesis using a model equivalence checker (such as the popular
CADP model checker [65]). The resulting agent, which we call a conformance
oracle, effectively transfers knowledge from the reference learning task to the
task of learning a mutant, i.e., a slight variation of the reference implemen-
tation. The speedup results from the fact that test selection is difficult while
equivalence testing is easy.

Our main contributions are demonstrating how active learning can be used in
an industrial setting by combining it with software verification and testing tools,
and showing how these tools can also be used to analyze and improve the results of
learning. The bounded retransmission protocol use case can serve as a benchmark
for future active learning and testing methods.

Our research takes place at the interface of model-based testing and model
inference, and builds upon a rich research tradition in this area. The idea of
combining testing and learning of software systems was first explored by Weyuker,
who observed in 1983 “Program testing and program inference can be thought
of as being inverse processes” [169]. Recently, there has been much interest in
relating model-based testing and model inference in the setting of state machines.
Berg et al. [26], for instance, point out that some of the key algorithms that
are used in the two areas are closely related. Walkinshaw et al. [167] show that
active learning itself is an important source of structural test cases. At the ISoLA
2012 conference a special session was dedicated to the combination of model-based
testing and model inference [112], a combination which is often denoted by the
term learning-based testing. As far as we know, no previous work in this area
addresses the problem of conformance with respect to a reference implementation.
In addition, the specific combination of tools that we use is new, as well as the
case study, and the concept of a conformance oracle.

Organization Section 8.1 gives background information on model-based testing
and corresponding MBT tools. Using active learning for establishing conformance
of a protocol implementation relative to a given reference implementation is discus-
sed in Section 8.2. Section 8.3 and Appendix 8.A give an overview of the bounded
retransmission protocol and the mutants we created. Experimental results on lear-
ning models of the bounded retransmission protocol and revealing errors in the
mutant implementations are reported in Section 8.4. Section 8.5 presents and
analyzes further ideas for improvement. Finally, Section 8.6 concludes our work.
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8.1 Model-Based Testing

In model-based testing (MBT), which is a new technique that aims to make tes-
ting more efficient and more effective [157], the system under test (SUT) is tested
against a model of its behavior. This model, which is usually developed manually,
must specify what the SUT shall do. Test cases can then be algorithmically gene-
rated from this model using an MBT tool. When these test cases are executed on
the SUT and the actual test outcomes are compared with the model, the result is
an indication about compliance of the SUT with the model. Usually, MBT algo-
rithms and tools are sound, i.e., a test failure assures non-compliance, but they are
not exhaustive, i.e., absence of failing tests does not assure compliance: “Program
testing can be used to show the presence of bugs, but never to show their absence!”
[59].

MBT approaches differ in the kind of models that they support, e.g., state-
based models, pre- and post-conditions, (timed) automata, or equational axioms,
and in the algorithms that they use for test generation. In this chapter, we concen-
trate on two state-based approaches: deterministic finite Mealy machines (also
called finite state machine (FSM)), and a class of nondeterministic automata, also
referred to as labeled transition systems (LTS).

In the Mealy machine approach to MBT, the goal is to test whether a black-box
SUT, which is an implementation of an unknown Mealy machine I, is observation
equivalent to a given Mealy machine specification S, i.e., to test whether I ≈ S
[100].

The LTS approach, which does not require determinism, finiteness of states
and inputs, input-enabledness, nor alternation of inputs and outputs (a label on a
transition is either an input or an output), is more expressive than Mealy machines.
Consequently, it requires a more sophisticated notion of compliance between an
SUT and a model. The implementation relation ioco often serves this purpose
[153]. The tools JTorX and TorXakis, among others, generate tests based on this
relation; see below. Since it is straightforward to transform a Mealy machine into
an LTS, by splitting every (input,output)-pair transition into two LTS transitions
with an intermediate state, LTS-based testing can be easily applied to Mealy
machine models.

JTorX JTorX [25] is an update of the model-based testing tool TorX [155]. TorX
is a model-based testing tool that uses labeled transition systems to derive and
execute tests (execution traces) based on ioco [153], a theory for defining when
an implementation of a given specification is correct. Using on-line testing, TorX
can easily generate and execute tests consisting of more than 1 000 000 test events.
JTorX is easier to deploy and uses a more advanced version of ioco. It contains
a graphical user interface for easy configuration, a simulator for guided evaluation
of a test trace, interfaces for communication with an SUT, and state-of-the-art
testing algorithms.

TorXakis TorXakis [118] is another extension of the TorX model-based testing
tool. In addition to the testing algorithms, TorXakis uses symbolic transition
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Learner
+ Oracle

Equivalence
checker

Model-based
test tool

pass/fail

pass/fail

conformance learning

conformance learning model−based testing

Learner
+ Oracle

Implementation
I

Reference
Implementation

R

Model M

Model M

I

R

Figure 8.1: Basic approaches of using automata learning to establish conformance of
implementations. The learners interact with the implementations in order to construct
models, which are then subsequently used for model-based testing or equivalence checking.

systems (STSs, LTSs with data variables) with symbolic test generation to deal
with structured data, i.e., symbols with data parameters [64], where TorX and
JTorX use flattening, i.e., by replacing a parameter by all its possible, necessarily
finitely many values. By working symbolically and by exploiting the structure of
input actions, TorXakis is able to find certain counterexamples much faster than
LearnLib and JTorX.

8.2 Conformance to a Reference Implementation

8.2.1 Conformance Learning and Conformance Model-Based
Testing

Figure 8.1 illustrates how we may use automata learning for establishing confor-
mance (i.e., behavior equivalence) of protocol implementations relative to a given
reference implementation. Using a state machine synthesis tool, we first acti-
vely (query) learn a state machine model MR of the reference implementation R
(using, e.g., LearnLib). Now, given another implementation I, there are basically
two things we can do. The first approach, which we call ’conformance model-
based testing’, is that we provide MR as input to a model-based testing tool (e.g.,
JTorX). This tool will then use MR to generate test sequences and apply them to
implementation I in order to establish the conformance of I to the learned model
MR, i.e., whether they implement the same behavior. The model-based testing
tool will either output “pass”, meaning that the tool has not been able to find
any deviating behaviors, or it will output “fail” together with an input sequence
that demonstrates the difference between I and MR. The second, more ambitious
approach, which we call ’conformance learning’, is to use the learning tool to learn
a model MI of the other implementation I, and then use an equivalence checker to
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check observation equivalence of MR and MI . The equivalence checker will either
output “pass”, meaning that the two models are equivalent, or “fail” together with
an input sequence that demonstrates the difference between the two models. In
the latter case, we check whether this trace also demonstrates a difference between
the corresponding implementations R and I. If not, we have obtained a counte-
rexample for one of the two models, which we may feed to the learner in order to
obtain a more refined model of R or I.

We use the CADP toolset to check observation equivalence of models.

CADP CADP [65] is a comprehensive toolbox for verifying models of concur-
rent systems, i.e., models consisting of multiple concurrent processes that together
describe the overall system behavior. Relying on action-based semantic models, it
offers functionalities covering the entire design cycle of concurrent systems: spe-
cification, simulation, rapid prototyping, verification, testing, and performance
evaluation. It includes a wide range of verification techniques such as reachability
analysis and compositional verification. CADP is used in this chapter to check
strong bisimulation equivalence of labeled transition systems.

8.2.2 Conformance Learning with a Conformance Oracle
The model-based testing (oracle) part of automata learning can be time consuming
in practice. We therefore experimented with an alternative approach in which the
model MR of the reference implementation R is used as an oracle when learning
a model for an implementation I. We will see that this use of what we call a
conformance oracle may significantly speed up the learning process.

Suppose a learner has constructed a hypothesized Mealy machine model MI for
implementation I. We want to use the availability of MR to speed up the validation
(or counterexample discovery) for MI , and reduce the use of the model-based test
oracle as much as possible. Our approach works as follows:

1. We first use an equivalence checker to test MR ≈ MI . If so, then we use a
model-based test tool to further increase our confidence that MI is a good
model of I. If model-based testing reveals no counterexamples we are done,
otherwise the learner may use a produced counterexample to construct a
new model of I, and we return to step (1).

2. If MR �≈ MI then the equivalence checker produces an input sequence u
such that outMR

(u) �= outMI
(u). We apply u to both implementations R

and I, and write outR(u) and outI(u), respectively, for the resulting output
sequences.

3. If outR(u) �= outMR
(u) then model MR is incorrect and we may use counte-

rexample u to construct a new model for R.

4. Otherwise, if outI(u) �= outMI
(u) then model MI is incorrect. In this case

the learner may use counterexample u to construct a new model for I, and
we return to step (1).

5. Otherwise, we have identified an observable difference between implementa-
tions R and I, i.e., I is not conforming to reference implementation R.
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Conformance 
Oracle

Model-based
test tool

Model M   incorrect + counterexample 

Learner

Implementation
I

Implementation
R

Model MR

Yes, I conforms to R

R No, I does not conform to R + counterexample

Figure 8.2: Conformance oracle. The oracle takes a previously learned model MR for
the reference R as input and uses it to quickly answer equivalence queries by testing the
equivalence of MR with the hypothesized model MI for the implementation I. When they
are found to be inequivalent, the discovered counterexample is provided as input to I and
R in order to test whether it proves the inequivalence of R and I, MI and I, or MR and
R.

Figure 8.2 illustrates the architectural embedding of a conformance oracle.

8.3 The BRP Implementation and its Mutants

The bounded retransmission protocol (BRP) [75, 55] is a variation of the well-
known alternating bit protocol [23] that was developed by Philips Research to
support infrared communication between a remote control and a television. In this
section, we briefly recall the operation of the protocol, and describe the reference
implementation of the sender and the 6 mutant implementations.

The bounded retransmission protocol is a data link protocol which uses a stop-
and-wait approach known as ‘positive acknowledgement with retransmission’: after
transmission of a frame the sender waits for an acknowledgement before sending a
new frame. For each received frame the protocol generates an acknowledgement.
If, after sending a frame, an acknowledgement fails to appear, the sender times
out and retransmits the frame. An alternating bit is used to detect duplicate
transmission of a frame.

Figure 8.3 illustrates the operation of our reference implementation of the sen-
der of the BRP. We use the graphical user interface of the model-checker Up-
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SF

SC WA
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IREQam1,m2,m3x

ONOKax

ITIMEOUTax
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IACKax

n<2
IACKax
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rno=0;
toggle=1-toggle;

no<o2
OCONFa0x

n==2
OCONFa2x

n==2
IACKax
no=o3;
rn=0;
toggle=1-toggle;

n==3
OCONFa1x rno<=o5

ITIMEOUTax

n==1
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rno=orn+1;
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n==0
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rno>omax_rn
ITIMEOUTax

IREQam1,m2,m3x

no=o0;
rno=o0;
msg1o=om1;
msg2o=om2;
msg3o=om3;

Figure 8.3: Reference implementation of the BRP sender. The input symbols start with
I, the output symbols start with O. In addition to symbols, the transitions contain value
checks (or guards, ==, <, >) and assignments (=).

paal [24] as an editor for extended finite state machines. The reference implemen-
tation that we used is a Java executable that was generated automatically from
this diagram. The sender protocol uses the following inputs and outputs:

• Via an input IREQ(m1,m2,m3), the upper layer requests the sender to trans-
mit a sequence m1 m2 m3 of messages. For simplicity, our reference imple-
mentation only allows sequences of three messages, and the only messages
allowed are 0 and 1. When the sender is in its initial state INIT, an in-
put IREQ(m1,m2,m3) triggers an output OFRAME(b1, b2, b3,m), otherwise
it triggers output ONOK.

• Via an output OFRAME(b1, b2, b3,m), the sender may transmit a message to
the receiver. Here m is the actual transmitted message, b1 is a bit that is 1
iff m is the first message in the sequence, b2 is a bit that is 1 iff m is the last
message in the sequence, and b3 is the alternating bit used to distinguish
new frames from retransmissions.

• Via input IACK the receiver acknowledges receipt of a frame and via input
ITIMEOUT the sender is informed that a timeout has occurred, due to the
loss of either a frame or an acknowledgement message. When the sender
is in state WA (“wait for acknowledgement”), an input IACK or ITIMEOUT
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triggers either an output OFRAME(b1, b2, b3,m) or an output OCONF(i). If
the sender is not in state WA, ONOK is triggered.

• Via an output OCONF(i), the sender informs the upper layer about the way
in which a request was handled:

– i = 0: the request has not been dispatched completely,
– i = 1: the request has been dispatched successfully,
– i = 2: the request may or may not have been handled completely; this

situation occurs when the last frame is sent but not acknowledged.

An output OCONF occurs when either all three messages have been trans-
mitted successfully, or when a timeout occurs after the maximal number of
retransmissions.

Note that, within the state machine of Figure 8.3, inputs and outputs strictly
alternate. Thus it behaves like a Mealy machine. The state machine maintains
variables msg1, msg2 and msg3 to record the three messages in the sequence, a
Boolean variable toggle to record the alternating bit, an integer variable n to record
the number of messages that have been acknowledged, and an integer variable rn
to record the number of times a message has been retransmitted. Each message is
retransmitted at most 5 times.

We consider the following six mutants of the reference implementation of the
sender (see Appendix 8.A):

1. Whereas the reference implementation only accepts a new request in the INIT
state, mutant 1 also accepts new requests in state WA. Whenever mutant
1 receives a new request, the previous request is discarded and the sender
starts handling the new one.

2. Whereas in the reference implementation each message is retransmitted at
most 5 times, mutant 2 retransmits at most 4 times.

3. Whereas in the reference implementation the alternating bit is only toggled
upon receipt of an acknowledgement, mutant 3 also toggles the alternating
bit when a timeout occurs.

4. In mutant 4 the first and last control bit for the last message are swapped.

5. Mutant 5 outputs an OCONF(0) in situations where the reference implemen-
tation outputs OCONF(2).

6. If the first and the second message are equal then mutant 6 does not transmit
the third message, but instead retransmits the first message.

Since input and output messages still alternate, all of the mutants still be-
have as Mealy machines. For all BRP implementations, we consider the inputs:
IREQ(m1,m2,m3), IACK, and ITIMEOUT, where m1,m2, and m3 can be either 0 or
1. Thus, the input alphabet consists of 10 input symbols: 8 different IREQ inputs,
one IACK input, and one ITIMEOUT input. We also have the following outputs:
ONOK, OFRAME(b1, b2, b3,m), and OCONF(i), where 0 ≤ i ≤ 2, i.e., 20 output
symbols. In the next section, we discuss how to connect these implementations to
an active Mealy machine learner and a model-based testing tool.
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8.4 Experiments

In this section, we report on the experiments that we did using LearnLib and
JTorX to establish conformance of the six mutant implementations to the reference
implementation.

Learning BRP models In order to learn models of the reference implementa-
tion and its mutants, we connect the implementations, which serve as SUT, to the
LearnLib tool.1 Since all BRP implementations behave as Mealy machines, this is
the type of state machine that we infer with our approach. In our experiments we
consider the inputs: IREQ(m1,m2,m3), IACK, and ITIMEOUT, where m1, m2 and
m3 can be either 0 or 1. Thus, the input alphabet consists of 10 input symbols: 8
different IREQ inputs, one IACK input, and one ITIMEOUT input. Moreover, we
have the following outputs: ONOK, OFRAME(b1, b2, b3,m), where b1, b2, b3 and
m can be either 0 or 1, and OCONF(i), where 0 ≤ i ≤ 2. In order to approximate
equivalence queries, we used the LearnLib test suite with randomly generated test
traces containing 100 inputs.

The results of the inference of the reference implementation and the six mu-
tants are shown in Table 8.1. For every implementation, we list the number of
states in the learned model, as well as the average total number of output queries
(OQ). Moreover, we list the average total number of test traces (TT) generated
for approximating equivalence queries. Note that these numbers do not include
the last equivalence query, in which no counterexample has been found. Using
CADP, we verified that all the learned models indeed are correct, i.e., equivalent
to the Uppaal models described in Section 8.3. Each experiment was repeated 10
times with different seeds for the equivalence queries. For each measured value its
average over the 10 experiments is listed in the table together with the standard
deviation. If an experiment did not succeed to learn the model within two hours
we aborted the experiment. In the last row we display how many of the 10 ex-
periments did succeed. Even if an experiment did fail, we still use its numbers in
calculating the average and the standard deviation, giving a lower bound for the
real average and standard deviation for this experiment.

If we take a closer look at Table 8.1, we observe some interesting peculiari-
ties. First, the number of test traces for mutant 1 is much higher than for the
other implementations. The reason for this is that mutant 1 also accepts new

1In previous work [9] we used TCP/IP socket communication. TCP/IP uses optimizations,
TCP delayed acknowledgment technique and Nagle’s algorithm, for reducing packet overhead.
These optimizations slow down the communication in a setting with very small messages. In
normal communication between SUT and learner the communication is an alternating pattern
of sending input followed by a returned output. However in between two queries to the SUT
an extra RESET input is sent, which breaks this alternating pattern. Exactly at that point the
optimizations in TCP/IP cause a delay in communication to happen. Effectively this means that
each query to the SUT gets an extra delay. By disabling the Nagle optimization in the TCP/IP
socket communication we can prevent these delays to happen. For even better performance we
used direct method calls to the SUT by linking the SUT code against our learner. Removing this
delay made the queries in the experiments much faster and therefore it was possible to learn the
BRP models for larger retransmission counter and variable ranges in the same amount of time
than in [9]. Moreover because output queries in general are much shorter than test traces, the
performance gain per query in the first are much bigger than in the latter.
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RefImpl Mut1 Mut2 Mut3 Mut4 Mut5 Mut6
vr0-1 states 156 156 128 156 156 156 136

avg. OQ 24998 22174 19618 22488 24684 24998 21662
std.dev. 1717 627 1006 769 1828 1717 736
avg. TT 14 5830 7 15 14 14 14
std.dev. 13 5142 6 13 13 13 13

Succeeded 10/10 10/10 10/10 10/10 10/10 10/10 10/10

Table 8.1: Learning statistics for the BRP reference implementation and mutants 1-
6. OQ refers to the average total number of output queries, TT to the average total
number of test traces (in both cases sequences of inputs have been counted). vrX-Y
means mi ∈ [X...Y ], where mi is a message in IREQ(m1,m2,m3), e.g. vr0-1 allows
values 0 and 1 in a message in IREQ.

requests in state WA. Whenever mutant 1 receives a new request, the previous
request is discarded and the sender starts handling the new request. This makes it
much harder to find a counterexample that produces an OCONF(0) or OCONF(2)
output, since this requires six successive ITIMEOUT inputs without intermediate
IREQ inputs. The probability that LearnLib selects (uniformly at random) six
successive ITIMEOUT inputs in a row is low, since each time ITIMEOUT only has
a 10% chance of being selected. This issue will be analyzed in more detail in Sec-
tion 8.5. Second, the numbers for mutant 2 are slightly smaller than for the other
implementations. The reason for this is that in mutant 2 the maximal number of
retransmissions is smaller: 4 instead of 5, see Figures 8.4 - 8.9. The size of the
model and the times required for constructing and testing hypotheses (explored
in the next section) all depend on the maximal number of retransmissions. This
will be explored further in the next section.

More learning experiments Besides the maximal value of the retransmission
counter, also changes in the domain of message parameters m1,m2, and m3 will in-
fluence the learning results for the different implementations, because more inputs
need to be considered. Therefore, we ran some additional experiments for different
parameter settings of the reference implementation and mutant 1 (the behavior of
mutants 2-6 is similar to that of the reference implementation, because no changes
to the general structure of handling requests have been made). We evaluated how
LearnLib performs for different maximal values for the retransmission counter rn.
Moreover, we investigated what happens when increase the value range vr for each
message parameter.

Table 8.2 and 8.3 show the results of learning models of the reference imple-
mentation and mutant 1 using different maximal numbers of retransmission and
different value ranges for the message parameters m1,m2, and m3. As expected,
increasing the number of retransmissions rn and the value ranges vr both results
in bigger models for which more output and test traces are needed and, accordin-
gly, more time for learning and testing. Increasing the value range leads to a fast
growth in output queries required to construct a hypothesis and the number of
test traces required to find counterexamples for incorrect hypotheses, because the
model to learn contains more states and the probability to select an ITIMEOUT
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——– increasing retransmission counter —–>
rn15 rn16 rn17 rn18 rn19 rn20

—
—

–
increasing

value
range

—
–
>

vr0-1 states 436 464 492 520 548 576
avg. OQ 83346 91949 99465 107206 108582 104113
std.dev. 4122 5807 4298 13624 6402 33896
avg. TT 20699 82854 103041 137750 295292 2665735
std.dev. 21865 129195 130379 180024 284401 3044574
Success 10/10 10/10 10/10 10/10 10/10 9/10

rn09 rn10 rn12 rn13 rn14 rn15
vr0-2 states 730 808 964 1042 1120 1198

avg. OQ 755837 853000 1037250 1124192 1211588 564335
std.dev. 13562 18753 31762 37755 29241 603545
avg. TT 7507 20944 348407 1349612 2395184 7903428
std.dev. 5219 14340 460829 1882704 2608484 2833324

Succeeded 10/10 10/10 10/10 10/10 10/10 4/10
rn06 rn07 rn08 rn09 rn10 rn11

vr0-3 states 1052 1220 1388 1556 1724 1892
avg. OQ 4971425 5789485 6641683 7445564 5975070 2433575
std.dev. 34020 84075 84468 105242 3413383 3341094
avg. TT 2587 14928 111122 502686 3795812 8129711
std.dev. 1682 9797 116094 545382 3528212 3376705

Succeeded 10/10 10/10 10/10 10/10 7/10 2/10
rn03 rn04 rn05 rn06 rn07 rn08

vr0-4 states 994 1304 1614 1924 2234 2544
avg. OQ 16537318 21810721 27159739 32278521 37677908 27794859
std.dev. 56460 106048 102494 171051 277996 18521581
avg. TT 230 1392 13057 148571 1375285 4732741
std.dev. 246 1089 13744 162899 1056963 3445873

Succeeded 10/10 10/10 10/10 10/10 10/10 6/10
rn02 rn03 rn04 rn05 rn06

vr0-5 states 1120 1636 2152 2668 3184
avg. OQ 53959581 79140421 104476825 129818719 130303196
std.dev. 0 106997 214990 232653 43041807
avg. TT 106 1353 16010 98888 2591811
std.dev. 77 1287 11680 116544 1743665

Succeeded 10/10 10/10 10/10 10/10 6/10
rn02 rn03 rn04

vr0-6 states 1712 2510 3308
avg. OQ 205602133 302303504 353391698
std.dev. 177195 259788 51494449
avg. TT 294 6044 105437
std.dev. 378 5491 65300

Succeeded 10/10 10/10 5/10

Table 8.2: Learning statistics for reference implementation. OQ refers to the average
total number of output queries, TT to the average total number of test traces (in both
cases sequences of inputs have been counted). vrX-Y means mi ∈ [X...Y ], where mi

is a message in IREQ(m1,m2,m3), e.g. vr0-3 allows values 0,1,2, and 3 in a message
in IREQ. Similar, rn refers to the value of the retransmission counter in the model.
Changing the number of retransmissions is done by increasing the value in the guard
statement (rn>5 and rn≤5) for the ITIMEOUT input from state WA to SF and from WA
to SC.
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——– increasing retransmission counter —–>
rn03 rn04 rn05 rn06 rn07 rn08

—
—

–
increasing

value
range

—
–
>

vr0-1 states 100 128 156 184 212 240
avg. OQ 13214 18199 22174 27999 32256 27365
std.dev. 402 515 627 738 850 16821
avg. TT 154 1250 5830 61495 667761 7903190
std.dev. 129 1615 5142 78465 516786 3371144

Succeeded 10/10 10/10 10/10 10/10 10/10 6/10
rn02 rn03 rn04 rn05

vr0-2 states 184 262 340 418
avg. OQ 171318 243928 326408 334443
std.dev. 1603 2281 2960 131246
avg. TT 347 9655 278077 4388168
std.dev. 331 8693 159918 2974071

Succeeded 10/10 10/10 10/10 8/10
rn02 rn03 rn04

vr0-3 states 380 548 716
avg. OQ 1730589 2495661 1272022
std.dev. 0 0 1017988
avg. TT 3312 224096 6522672
std.dev. 3031 246072 2488837

Succeeded 10/10 10/10 2/10

Table 8.3: Learning statistics for mutant 1. OQ refers to the average total number of
output queries, TT to the average total number of test traces (in both cases sequences
of inputs have been counted). vrX-Y means mi ∈ [X...Y ], where mi is a message in
IREQ(m1,m2,m3), e.g. vr0-3 allows values 0,1,2, and 3 in a message in IREQ. Similar,
rn refers to the value of the retransmission counter in the model. Changing the number of
retransmissions is done by increasing the value in the guard statement (rn>5 and rn≤5)
for the ITIMEOUT input from state WA to SF and from WA to SC.

or IACK input (which is needed in a counterexample) shrinks. For example, com-
pare the results for rn15 and vr0-1 versus rn15 and vr0-2 in Table 8.2. Increasing
the maximal number of retransmissions leads to a linear growth of output queries
required to construct a hypothesis, but to a fast growth of test traces required to
find counterexamples for incorrect hypotheses, because the higher the retransmis-
sion counter, the more ITIMEOUT inputs are needed in a counterexample. For
example, compare the results for rn15 to rn20 for vr0-1 in Table 8.2.

For mutant 1, the time needed for testing increases so fast that if the maximal
number of retransmissions is 8 and there are 2 values, not every seed results in a
correct model within 2 hours. In contrast, for 2 values the reference implemen-
tation only starts failing to learn the correct model within hours for all seeds for
the maximal number of retransmissions of 20. As mentioned before, the reason
for this is that mutant 1 also accepts new requests in state WA and discards pre-
vious requests. Also in the case where the maximal number of retransmissions is
5 and there are 3 values, LearnLib is not able to construct a correct model for
all seeds for mutant 1 within 2 hours. This is not surprising, because in both
cases the probability to select a counterexample is even lower than for mutant 1
in Table 8.1. Once LearnLib fails to learn a correct model, we assume that it will
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also fail for larger value ranges of the parameters. The same holds for the retrans-
mission counter. Once some of the experiments fail, the number of successful runs
with a higher retransmission counter will decrease.

Conformance checking We compare the two methods, described in Section
8.2.1, for establishing the conformance of the mutant implementations to the re-
ference implementation of BRP. We only consider the versions of the models with
at most 5 retransmissions and 2 different parameter values.

The first method, conformance learning, used the CADP (bisimulation) equiva-
lence checker to compare the model MI , that we learned for the mutant implemen-
tations I, with the model MR learned for the reference implementation R.2 For
each of the mutants, CADP quickly found a counterexample trace illustrating the
difference between the models of the mutant and the model of the reference imple-
mentation (for each mutant it takes around 3 seconds to find the counterexample).
The counterexamples found by CADP are depicted in Table 8.4.

counterexample output expected
Mut1 IR(0,0,0) IR(0,0,0) OF(1,0,0,0) ONOK()
Mut2 IR(0,0,0) IT() IT() IT() IT() IT() OCONF(0) OF(1,0,0,0)
Mut3 IR(0,0,0) IT() OF(1,0,1,0) OF(1,0,0,0)
Mut4 IR(0,0,0) IA() IA() OF(1,0,0,0) OF(0,1,0,0)
Mut5 IR(0,0,0) IA() IA() IT() IT() IT() IT() IT() IT() OCONF(0) OCONF(2)
Mut6 IR(0,0,1) IA() IA() OF(0,1,0,0) OF(0,1,0,1)

Table 8.4: Counterexamples found by equivalence checking of mutant models and refe-
rence implementation (IT = ITIMEOUT, IR = IREQ, IA = IACK, OF = OFRAME).

The second method, conformance model-based testing, used the model MR of
the reference implementation R as input for the JTorX model-based testing tool
and the mutant implementations I as SUTs. Test steps were executed until a
counterexample was found. Again, JTorX found a counterexample for each of the
mutant implementations. The average number of IO symbols, i.e. the average
number of inputs and outputs in the counterexample, is shown in Table 8.5 for the
different mutant implementations. Because JTorX generates a single long testing
sequence without intermediate resets, the resulting counterexamples are rather
long sequences and therefore are not shown in the table.

In a JTorX experiment the performance is measured in number of IO symbols
whereas in a LearnLib experiment the performance is measured in number of
output and testing queries. Comparing the measurements of both experiments
is not trivial. Although each testing query corresponds to 200 IO symbols, since
we use a random test suite generating test traces with 100 input symbols, each
output query varies in length determined by the learning algorithm. However, in a
crude approximation we could say that in the learning experiment #IOsymbols ≈
x ∗OQ+200 ∗ TT where x is a guessed factor of the average length of the output
queries.

2Essentially the same counterexamples were also found using the JTorX iocoChecker. The
JTorX iocoChecker, which is distributed as an extra feature of the JTorX model-based testing
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mut1 mut2 mut3 mut4 mut5 mut6
vr0-1 avg. IO symbols 5 894 19 37 6657 198
rn05 std.dev. 1 768 12 20 4983 268

Table 8.5: Conformance testing the mutants with JTorX for retransmission counter 5
and value range 0-1: using the reference model JTorX will generate a test sequence and
applies it to the mutant implementation in order to establish the conformance between
the reference model and the mutant. For all mutants it detected the non-conformance
and returned a counterexample. The table shows the average number of IO symbols, i.e.
the average number of inputs and outputs, needed to find the counterexample for each
mutant.

If we look at Table 8.5 we immediately see that the number of IO symbols
needed for mutant 5 is much bigger than for the other mutants. However, Table 8.1
shows that learning mutant 5 is not more difficult than learning the other mutants.
This can be explained by the fact that if we look at the counterexample for mutant
5 in Table 8.4 we immediately see that the counterexample for mutant 5 is the
longest. When looking at the model for mutant 5 we can see that the number
of ITIMEOUT inputs in the counterexample is directly related to the value of the
retransmission counter rn.

To investigate the effects, we increase the retransmission counter rn to 10.
The learning results for rn = 10 are shown in Table 8.6 for the different mutants
and for conformance testing the mutants with JTorX in Table 8.7. Note that in
learning the mutants for the retransmission counter of 10 we skipped mutant 1,
because it was already shown in Table 8.1 that it couldn’t be learned in 2 hours,
and we skipped mutant 2 because the only difference between mutant 2 and the
reference implementation is a different retransmission number.

RefImpl Mut3 Mut4 Mut5 Mut6
vr0-1 states 296 296 296 296 256
rn10 avg. OQ 55417 46509 55417 55417 47166

std.dev. 3767 1899 3767 3767 3083
avg. TT 280 357 280 280 280
std.dev. 171 266 171 171 171

Succeeded 10/10 10/10 10/10 10/10 10/10

Table 8.6: Conformance checking using the equivalence checker CADP for retransmis-
sion counter 10 and value range 0-1. OQ refers to the average total number of output
queries, TT to the average total number of test traces (in both cases sequences of inputs
have been counted). The table shows the learning statistics for reference implementa-
tion and mutants 3-6. After learning the reference and mutant models we could find in
around 3 seconds a counterexample trace illustrating the difference between the model of
the mutant and the model of the reference implementation.

After learning the new mutants CADP could again find in around 3 seconds a
counterexample trace illustrating the difference between the models of the mutants

tool [25], is a tool to check analytically whether two models are ioco-related.
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mut1 mut3 mut4 mut5 mut6
vr0-1 avg. IO symbols 5 19 37 109154 178
rn10 std.dev. 1 12 20 90617 228

Table 8.7: Conformance testing the mutants with JTorX for retransmission counter 10
and value range 0-1: using the reference model JTorX will generate a test sequence and
applies it to the mutant implementation in order to establish the conformance between
the reference model and the mutant. For all mutants it detected the non-conformance
and returned a counterexample. The table shows the average number of IO symbols, i.e.
the average number of inputs and outputs, needed to find the counterexample for each
mutant.

and the model of the reference implementation. The results in Table 8.6 show that
learning mutant 5 with a larger retransmission counter still is not more difficult
than learning the other mutants, whereas Table 8.7 shows that for mutant 5 model-
based testing still requires much longer traces than for the other mutants. However,
when comparing Table 8.6 and Table 8.7 it shows that for all mutants the number
of IO symbols is only increased for mutant 5.

Again, this can be explained by the fact that if we look at the counterexample
for mutant 5 in Table 8.4 we immediately see that the number of ITIMEOUT in-
puts in the counterexample is directly related to the value of the retransmission
counter rn. By increasing the retransmission counter rn, the counterexample for
mutant 5 becomes longer, and since finding longer counterexamples takes longer,
this increases the time required by JTorX to find a counterexample. In contrast,
for mutants 1,3,4 and 6 the counterexamples have no ITIMEOUT inputs and are
independent of the retransmission counter rn, which explains why in the experi-
ments for these mutants the number of IO symbols for finding counterexamples
doesn’t increase for a larger retransmission counter rn.

Thus by comparing Table 8.6 and Table 8.7 we see that the increase in the
number of IO symbols needed for conformance testing of mutant 5 is big. Ho-
wever, this number of IO symbols needed for conformance testing of mutant 5 is
comparable in size to the number of output and testing queries for learning mu-
tant 5: compare 109154 IO symbols from JTorX to 111417 = 1 · 55417 + 200 · 280
(#IOsymbols ≈ x ·OQ+ 200 · TT ) IO symbols from LearnLib, where we assume
a lower bound x = 1 on the average length of output queries.

Since LearnLib tests hypotheses in a way similar to JTorX and because the
counterexample of mutant 5 reaches the deepest part of the model, testing du-
ring learning the model with LearnLib of mutant 5 and conformance testing with
JTorX of mutant 5 become even difficult. Therefore their performance in both
experiments becomes comparable.

In general, however, learning models of proposed implementations takes more
time than model-based testing them but also provides more information in the form
of a learned model. Even in these cases, it may still be beneficial to use learning
tools since the learned models can for instance be used for model checking analysis.
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8.5 Further Analysis and Improvements

8.5.1 Why Random Testing Sometimes Fails

In our experiments, the most effective technique available in LearnLib for approxi-
mating equivalence queries turned out to be random testing. In order to analyze
the effectiveness of this method, we may compute the probabilities of reaching
states that provide a counterexample within a certain number of transitions, by
translating the Mealy machine of the teacher (the system under test) into a dis-
crete time Markov chain (DTMC). This DTMC has the same states as the Mealy
machine, and the probability of going from state q to state q� is equal to the num-
ber of transitions from q to q� in the Mealy machine divided by the total number of
inputs. Through analysis of this DTMC, the MRMC model checker can compute
the probability of finding certain counterexamples within a given time.

MRMC MRMC [95] is a probabilistic model checker, which can be used to check
the probability that a logical statement (such as a system breakdown) occurs in
a given continuous- or discrete-time Markov chain, with or without reward func-
tions (common in Markov decision processes [127]). Such a logical statement can
be expressed in a probabilistic branching-time logic PCTL [74] or CSL [17]. The
probabilistic models may also contain reward functions and bounds on these can
be checked in combination with the time and probability values.
We use MRMC to compute the probability of reaching certain states in an imple-
mentation within a certain number of steps in a setting where inputs are generated
randomly. We wrote a small script that converts LTSs in .aut format to DTMCs
in .tra/.lab format, which are accepted as input by MRMC.
Using MRMC we computed that for the reference implementation with up to 7
retransmissions the probability of reaching, within a single test run of 125 steps,
a state with an outgoing OCONF(0) transition is 0.0247121. This means the pro-
bability of reaching a state with an outgoing OCONF(0) transition within 75 test
runs is 0.847. This result explains why LearnLib requires very few test runs to
learn a correct model of this system, which it does within seconds. Using MRMC,
we also computed that for the version of mutant 1 with up to 7 retransmissions
the probability of reaching, within 125 steps, a state with an outgoing OCONF(0)
transition is only 0.0000010. Hence, finding a counterexample by random testing
will take much longer for mutant 1 than for the reference, explaining why Learn-
Lib needs 667761 (see Table 8.3) test runs on average to find this counterexample
(0.999999667761 ≈ 0.51 is the probability of not finding this trace in 667761 tries).

8.5.2 Using Abstraction to Speed Up Testing

A simple way to increase the probability of finding counterexamples for mutant
1 within a short time is to increase the probability of ITIMEOUT inputs, for ins-
tance by assigning an equal probability of 1/3 to the ITIMEOUT, IACK and IREQ
inputs. Symbolic testing tools and abstraction learners will use this distribution,
because they initially assume that the parameter values are not as important as
the input types. TorXakis and Tomte (see Section 8.1 and 6.1) are such tools and
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we therefore evaluated the effect of using these instead of the basic random testing
implemented in LearnLib.

TorXakis For the experiments above we employed LearnLib for both the lear-
ning and testing phase. However, it is also possible to perform the equivalence
check by an external tool. We experimented with the LTS-based model-based tes-
ting tool TorXakis to see whether we can improve on detecting incorrect hypothesis
models.

rn5 rn7
vr0-1 (avg. #test symbols, st. dev) (1785, 1921) (19101, 22558)
vr0-2 (avg. #test symbols, st. dev) (2991, 2667) (18895, 15158)
vr0-9 (avg. #test symbols, st. dev) (3028, 3199)

Table 8.8: Equivalence query statistics for mutant 1 with TorXakis. vrX-Y means
mi ∈ [X...Y ], where mi is a message in IREQ(m1,m2,m3), e.g. vr0-2 allows values 0,1,
and 2 in a message in IREQ. Similar, rn refers to the value of the retransmission counter
in the model. Changing the number of retransmissions is done by increasing the value in
the guard statement (rn>5 and rn≤5) for the ITIMEOUT input from state WA to SF and
from WA to SC.

Table 8.8 summarizes the results obtained with TorXakis when testing mutant
1 against the hypothesized LearnLib model for rn5, vr0 − 1, rn7, vr0 − 1 and
rn5, vr0−2. In addition, the results for the scenarios rn5, vr0−9 and rn7, vr0−2
are presented. LearnLib did not manage to find a counterexample in these cases.
The numbers in Table 8.8 are the average lengths of the test runs, measured in
test symbols (both input and output), until a discrepancy between the model and
mutant 1 was detected. The average is taken over 10 different random test runs.
We do not measure the timing, because it makes no sense for TorXakis: TorXakis
explicitly tests for non-occurrence of outputs by means of a time-out, and while
the time value chosen for this time-out is in some sense arbitrary, it has a very
strong influence on the total duration of a test.

TorXakis is able to detect counterexamples for the incorrect hypothesized mo-
dels for rn5, vr0− 1, rn7, vr0− 1, and for rn5, vr0− 2. Only after the IREQ input
has been selected, the message values are randomly selected. This implies that
increasing the domain of possible message values does not increase the length of
the test case required to detect the counterexample. Combined with the fact that
TorXakis generates one very long test case, it is able to find a counterexample for
the scenario rn7, vr0−2 within reasonable time. In conclusion, TorXakis is able to
detect counterexamples within reasonable time, which LearnLib could not detect.

Tomte Through the use of counterexample abstraction refinement, Tomte is able
to learn models for a restricted class of extended finite state machines in which
one can test for equality of data parameters, but no operations on data are allo-
wed. The version of Tomte used for the experiments in this chapter is based on
Chapter 6, where only the first and the last occurrence of parameters of actions
are remembered. As a result, we could only learn models such as mutant 1, where
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rn09 rn10 rn12 rn13 rn14 rn15
vr0-∞ states 62 68 80 86 92 98

avg. OQ 1518 1875 2449 2629 2196 1377
std.dev. 3 4 3 4 1372 1564
avg. TT 1175 3525 51589 89133 182508 258552
std.dev. 1998 2816 34687 33648 82534 78432

Succeeded 10/10 10/10 10/10 10/10 7/10 4/10

Table 8.9: Learning statistics for mutant 1 using Tomte. vrX-Y means mi ∈ [X...Y ],
where mi is a message in IREQ(m1,m2,m3), e.g. vr0-1 allows values 0 and 1 in a message
in IREQ. rn refers to the value of the retransmission counter in the model. Changing the
number of retransmissions is done by increasing the value in the guard statement (rn>5
and rn≤5) for the ITIMEOUT input from state WA to SF and from WA to SC.

each IREQ input overwrites previous occurrences of the message parameters. For
these instances, however, Tomte outperforms LearnLib with several orders of ma-
gnitude. Table 8.9 gives an overview of the statistics for learning mutant 1 with
Tomte. Since in Tomte the entire range of message values for mutant 1 is abstrac-
ted into a single equivalence class, Tomte needs far fewer queries than LearnLib
(cf. Table 8.3) and, moreover, Tomte can handle a larger value range than Learn-
Lib: compare the results vr0-∞ used by Tomte to vr0-3 used by LearnLib. With
the extension of Chapter 7, we can also learn the BRP reference implementation
and the other mutants as presented in Section 8.3, see Table 7.3 for the learning
statistics. However, we did not repeat the experiments with increased values of
the retransmission counter.

8.5.3 Conformance Learning with a Conformance Oracle

Above, we demonstrated how to make random testing a little smarter by making
use of abstractions. This results in a speed up in the time random testing requires
to find a counterexample, but even this method has its limits as shown in Table 8.9.
We now show that we can remove random testing altogether using the notion of a
conformance oracle using the method ‘Conformance learning with a conformance
oracle’ described in Section 8.2.2, in which we use CADP as an equivalence checker.

mut1 mut2 mut3 mut4 mut5 mut6
vr0-1 states 16 127 16 16 155 20
rn05 OQ 1771 17798 1771 1771 21718 2211

Table 8.10: Finding counterexamples using a conformance oracle, case rn= 5. In
fact we are learning the mutant using the reference model as a conformance oracle until
we found a counterexample which proves both the learned mutant model and the mutant
implementation different from the reference implementation.

The results of our experiments can be found in Table 8.10 in which for each
mutant we found non-conformance with the reference implementation. The num-
ber of states listed are the number of states of the last hypothesis found in step
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5 of the conformance learning with a conformance oracle algorithm described in
Section 8.2.2. Compared with Table 8.9, we only have the number of states and
the number of output queries listed, because when using a conformance oracle we
do no random testing after learning anymore. Thus, by using a conformance oracle
instead of random testing, the learning process becomes completely deterministic
and, therefore, we only had to do each experiment in Table 8.10 once.

Table 8.10 shows that finding a counterexample using the conformance oracle
is the most difficult for mutants 2 and 5, however, it is nearly trivial for the other
four mutants, because for these mutants the final hypothesis only has between
16-20 states. We further investigate mutant 5 by scaling up the rn parameter in
order to discover the limits of using the conformance oracle setup and to compare
its performance to that of a state-of-the-art model-based testing tool.

Table 8.4 shows that for mutant 5 the counterexample does depend on the
rn parameter: with a higher rn value, more ITIMEOUT inputs are required in
the counterexample for proving mutant 5 to be different from the reference im-
plementation with the same rn value. We investigate mutant 5 by doing both
conformance model-based testing and conformance learning using a conformance
oracle for increasing rn values as shown in Tables 8.11 and 8.12.

rn09 rn10 rn11 rn12 rn13 rn14
vr0-1 states 267 295 323 351 379 407

OQ 42751 50189 54949 63227 68267 77385

Table 8.11: Finding a counterexample for mutant 5 using a conformance oracle. In
fact we are learning the mutant using the reference model as a conformance oracle until
we found a counterexample which proves both the learned mutant model and the mutant
implementation different from the reference implementation.

rn09 rn10 rn11 rn12 rn13 rn14
vr0-1 avg. IO symbols 54701 109154 141285 475398 497128 1066146

std.dev. 39385 90617 95454 475627 541333 803093

Table 8.12: Conformance testing mutant 5 using JTorX. vrX-Y means mi ∈ [X...Y ],
where mi is a message in IREQ(m1,m2,m3), e.g. vr0-1 allows values 0 and 1 in a message
in IREQ. rn refers to the value of the retransmission counter in the model. Changing the
number of retransmissions is done by increasing the value in the guard statement (rn>5
and rn≤5) for the ITIMEOUT input from state WA to SF and from WA to SC.

Testing using a conformance oracle is really quick: the experiment typically
runs within a few seconds. Furthermore, the number of output queries required
to build the hypothesis seems to increase only linearly with increasing rn. In
contrast, as Table 8.12 shows, the number of IO symbols and its related testing time
required by JTorX increases much faster. The reason for this difference between
the two methods is that for conformance testing the time required depends on
the probability of reaching a state that provides a counterexample, while learning
using a conformance oracle is fully deterministic and thus is independent of this
probability.
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8.6 Conclusions and Future Work
We show how to apply active state machine learning methods to a real-world
use case from software engineering: conformance testing implementations of the
bounded retransmission protocol (BRP). To the best of our knowledge, this use
of active learning methods is entirely novel. We demonstrate how to make this
application work by combining active learning algorithms (LearnLib and Tomte)
with tools from verification (an equivalence checker, CADP) and testing (a model-
based test tool, JTorX).

A nice property of the BRP is that it contains two parameter values (the
number of retransmissions rn and the range of message values vr), which can be
increased to obtain increasingly complex protocols. This makes it an ideal use case
for state machine learning methods because it allows us to discover the limits of
their learning capabilities. We investigated these limits on testing the conformance
of six mutant implementations with respect to a given reference implementation.
All implementations were treated as black-box software systems. The goal of our
experiments was to discover how active learning tools can be used to establish the
conformance between the mutant and reference implementations. The results of
these experiments can be summarized as follows:

• The problem of test selection is a big bottleneck for state-of-the-art active
learning tools. Existing model-based testing tools can be used to make this
bottleneck less severe.

• Increasing the number of message values vr (the alphabet size) increases
the time required for test selection as well as the time needed for finding a
hypothesis (using output queries).

• Increasing the maximal number of retransmissions rn (the length of coun-
terexamples) increases the time required for test selection much more than
the time needed for finding a hypothesis.

• Establishing conformance using an equivalence checker and two learned mo-
dels is very fast. Using only a single learned model and a model-based testing
tool is also fast, but can run into problems because test selection takes much
longer than equivalence checking.

• Interestingly, there are cases where learning a mutant model (and checking
equivalence) is as fast as model-based conformance testing. In general, ho-
wever, learning a single model and subsequent testing is faster than learning
two models.

Furthermore, we noticed in our experiments that the state-of-the-art LearnLib
active learning tool quickly runs into trouble when learning one of these mutant
implementations. This case was analyzed separately using a probabilistic model
checker (MRMC), and based on this analysis we suggested two ways of improving
the performance of the active learning method: using a state-of-the-art model-
based test tool (TorXakis) for symbolic evaluation of equivalence queries, using a
new learning method based on abstraction refinement (Tomte), and introducing a
new way of learning based on the novel concept of a conformance oracle. Such a
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conformance oracle effectively learns two models at once and uses the (partially)
learned models in an equivalence checker to quickly answer equivalence queries
asked by either learner. When the models are similar, this can greatly reduce the
cost of learning.

The concept of a conformance oracle opens up several interesting directions for
future work. In particular, since it can also be used as a model-based tester, it
would be interesting to further investigate exactly when and why it can be used to
establish conformance more quickly than state-of-the-art model-based test tools.
Our study already found one such case in mutant 5, where tools based on random
testing are troubled by the low probability of reaching a state that leads to a
counterexample. A conformance oracle in combination with an active learning tool
finds the same counterexample deterministically and in fewer steps. The concept
is also closely linked to transfer learning: it can use a previously learned model
to speed up the process of learning a new (similar) model. A conformance oracle,
however, can transfer these models during the learning process itself, making it an
interesting approach for distributed learning settings.

The BRP use case, including the models as well as all the scripts used to
link the different tools together, have been made available online for testing and
learning by fellow researchers at http://www.tomte.cs.ru.nl/.
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8.A Mutants of the BRP Sender
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Figure 8.4: Mutant 1
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8.B Conversions between Input Formats
Figure 8.10 summarizes the various representations of state machines that we use in
this chapter, and the conversions between these formats that we have implemented.

EFSM LTS

.xml .aut

Executable

.jar

DTMC

.tra / .lab

Mealy 
machine

.dot

Figure 8.10: Formats for representing state machines and implemented conversions

The Mealy machine models learned by LearnLib are represented as .dot files.
A small script converts Mealy machines in .dot format to Labeled Transition
Systems in .aut format by splitting each transition q

i/o−−→ q� into a pair of two
consecutive transitions q

i−→ q�� and q��
o−→ q�.

Uppaal models, represented as .xml files, can be translated to the corres-
ponding implementations, encoded as Java .jar files, and to labeled transition
systems (LTSs), represented using the .aut format.

We use JTorX to establish conformance of mutant implementations to a model
of the reference implementation, represented as an .aut file.

CADP is used to check strong bisimulation equivalence of labeled transition
systems represented as .aut files.
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Epilogue

Conclusions

In this thesis we have presented an approach to infer models of real-world systems.
Standard active learning techniques like Angluin’s L∗ algorithm typically only
perform satisfactory if the state machine has a moderate number of states and
actions. Still, practical systems usually have much larger state spaces due to the
presence of state variables and data parameters in input messages. We have shown
how an intermediate mapper component can be used to bridge the gap between
active learning and real-world systems. A mapper maps the extended finite state
machine world of real systems into the (Mealy machine) world of active learning
algorithms by transforming the large set of inputs of the SUT into a small set
of abstract inputs known by the learner. We have formalized how the mapper
concretizes abstract inputs to concrete inputs and abstracts concrete outputs to
abstract outputs. This allows us to reduce the task of the learner to infer an
abstract Mealy machine with a small alphabet. We have shown that this abstract
model can be turned into a correct EFSM model for the Mealy machine of the
implementation by combining the abstract machine with information from the
mapper. We have demonstrated the applicability of our approach by manually
constructing mappers to infer models of real-world systems like entities in the SIP
and TCP protocols, the biometric passport, and the EMV protocol embedded in
bank cards.

Furthermore, we have shown that a mapper component can be generated fully
automatically. For this purpose we have created an algorithm that automatically
performs concretization of abstract inputs and abstraction of concrete outputs wi-
thout a priori knowledge of the SUT. The algorithm only refines these operations
if it turns out that the current abstraction is too coarse and induces nondetermi-
nistic behavior. To translate abstract symbols to concrete ones and vice versa,
the mapper usually has to be equipped with a number of state variables. We have
developed an algorithm that automatically detects new state variables required
for learning and extends the mapper component accordingly. We have imple-
mented our algorithms in the Tomte tool and have applied it to several realistic
case studies, including the bounded retransmission protocol (BRP) and various
components of the alternating bit protocol.
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We have investigated the limits of active learning methods during conformance
testing of six BRP implementations with respect to a given reference implementa-
tion. We have discovered that test selection is a big bottleneck in state-of-the-art
active learning tools. Therefore, we have proposed several ways to improve perfor-
mance of the active learning method. Using a model-based test tool with symbolic
test generation like TorXakis allows us to find counterexamples much faster than
with tools flattening the data. Similarly, Tomte also exploits the structure of input
messages by mapping abstractions to concrete data values, which also facilitates
hypothesis verification. As another suggestion, we introduced the new concept of
a conformance oracle. Such a conformance oracle enables us to skip the exhaustive
task of equivalence approximation by using the reference model as oracle to test
equivalence/conformance.

Altogether, we have made a significant step towards applying active learning
to real-world systems. We have shown the power of our approach for a wide range
of systems.

Future Work

To make automata learning applicable to any real-world system, there are still a
number of other limitations and problems that have to be solved.

Extending abstraction techniques The current version of our algorithm is
able to learn systems that test for equality of data parameters, but no operations
on data are allowed. Therefore, an obvious next step is to extend the abstrac-
tion techniques with operations and to allow other comparisons like “less than”
or “greater than” in guards. For example a system might react different if the
temperature is higher than 40 degrees Celsius. Counters are operations that exist
in many systems. If we could extend our abstraction techniques to infer such an
operation, we would be able to fully automatically generate models of the TCP
and EMV protocol, without suffering from manually constructing a mapper com-
ponent. Based on the outcomes of previous experiments, the learning algorithm
needs to be able to see, for instance, that the second parameter of the third output
action is greater than the first parameter of the second input action, or that the
last parameter of an output action is a counter that is incremented. One strategy
could be that the user specifies the type of operations or guards that should be
tested. Another approach could be to use results from the area of machine lear-
ning on dynamic detection of likely invariants, in particular the Daikon tool [62].
Daikon is able to spot such relationships between variables.

Learning of nondeterministic systems In Chapter 4 we mentioned that the
passport application sometimes exhibits nondeterministic behavior, although the
implementation should be deterministic according to the passport specification. In
practice, we often encounter systems whose normal behavior is deterministic, but
which may exhibit nondeterministic behavior due to exceptions (e.g. a timeout
because of long computations or network overload). Therefore, one of the next
steps would be to extend our approach to nondeterministic systems. Both in
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testing and in learning we might want to drive the SUT to certain states to explore
the behavior of the SUT from those states, e.g. in order to execute the same input
many times from the same state to check for possible nondeterminism. For this
purpose we may for instance reuse the game theory based algorithms of [119, 162]
that compute optimal strategies to drive a nondeterministic SUT to certain states
while at the same time minimizing the costs of traversal. We could also benefit
from existing work on learning nondeterministic systems by Yokomori and Denis
et al. [170, 58].

Extending testing techniques As discussed in Chapter 8 test selection and
coverage are still a big bottleneck in state-of-the-art active learning tools. In spite
of our suggestions for improvement, more work on enhancing testing techniques
for equivalence approximation is required. Especially when moving to a nonde-
terministic setting, current methods are not sufficient any longer. In general,
model-based testing is never exhaustive, but for large, nondeterministic systems
it is even harder, because we cannot be sure if we have seen all possible beha-
vior for the same input sequence. For example, a system might perform a task
successfully in 99% of the cases and return an OK output, but once in a while
produce a NOK output. The aim is to measure and quantify this (un)certainty in
order to assess the quality of the hypothesized model, as well as to optimize the
model-based testing process in order to minimize the probability of accepting an
incorrect hypothesized model.

Learning other types of models The theory and approach described in this
thesis has been formalized and applied in the setting of Mealy machines. The
restriction of Mealy machines that inputs and outputs have to alternate is often
inconvenient in practice. We have already shown that any tool for active learning
of Mealy machines can be used for learning I/O automata that are deterministic
and output determined [11]. We expect that our techniques can also be applied
to other more powerful types of models.

Combining inference techniques Combinations with other learning tech-
niques are important in order to choose the best mixture of techniques for ob-
taining a model for a specific system. For example, one could combine active and
passive learning [159, 163, 53] techniques by first constructing a model applying
passive learning and then refining it using active learning or by using the passively
learned model as an additional oracle during active learning. Other techniques
that could be integrated include inference of automata using homing sequences
[134] (useful in situations in which the SUT cannot be “reset”), black box checking
[125], and the incremental (sequential) learning approach of [111].

Of course the presented as well as new techniques should be applied to more chal-
lenging case studies. The experience gained can be used to generate new theory
and algorithms, which in turn can be used to further improve the Tomte tool.
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Appendix A
List of Symbols

Symbol Meaning

A mapper
E set of edges of an observation tree
ET set of all event terms
G set of all formulas over V
GLTS set of guard lookahead traces
H hypothesis (Mealy machine)
M Mealy machine
N set of nodes of an observation tree
O observation table
OLTS set of output lookahead traces
OTS observation tree
S scalarset Mealy machine
SA symbolic mapper
SM symbolic Mealy Machine
T set of terms over V
V universe of variables
B set of boolean values
N set of natural numbers
C set of constants
E set of event primitives
F abstraction table
H set of states of a hypothesis
I set of (concrete) input symbols
L set of locations of a scalarset Mealy machine
N node of an observation tree
N0 root node of an observation tree
O set of (concrete) output symbols
P set of parameters in TI
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A List of Symbols

Symbol Meaning

Q set of states of a Mealy machine
R set of mapper states
T set of event terms
U set of parameters in TO

V set of variables
Val(V ) set of all valuations for V

X set of (abstract) input symbols
Y set of (abstract) output symbols
a (input or output) symbol
c constant
d parameter value
e term
f fresh value
g guard
h state of a hypothesis
h0 initial state of a hypothesis
i (concrete) input symbol
j, k,m, n index
l state of a scalarset Mealy machine
l0 initial state of a scalarset Mealy machine
lt lookahead trace
o (concrete) output symbol
p parameter
q state of a Mealy machine
q0 initial state of a Mealy machine
r state of a mapper
r0 initial state of a mapper
s sequence of output symbols
t term
u sequence of input symbols
v variable
w sequence of input and output symbols
x abstract input symbol
y abstract output symbol
αA abstraction induced by A
γ function assigning a value to each constant
γA concretization induced by A
δ update function
� empty sequence
ε event primitive
ι function assigning value di to parameter pi
λ output function
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Symbol Meaning

ξ valuation
� update of state variables
τA observation abstraction function induced by A
ϕ formula
Γ set of transitions of a scalarset Mealy machine
Δ set of symbolic transitions
Θ initial condition
Σ event signature
Ψ set of event abstractions
⊥ undefined value
|= guard fulfillment
� � semantic evaluation
◦ function composition
→ transition relation
⇒ transition relation extended to sequences
≡ syntactic equality (of terms)
≈ observation equivalence (of Mealy machines)
≤ implementation preorder / behavior inclusion (of Mealy machines)
≈wb observation congruence (of CCS expressions)
abstr abstraction function
even function obtaining all even elements of a sequence
memV (u) set of memorable values after u

obs set of observations
odd function obtaining all odd elements of a sequence
zip function zipping input and output sequences together
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Appendix B
List of Terms

Abstraction . . . . . . . . . . . . . . . . . . . . . . . 33
Abstraction of observations . . . . . . . . 34
Abstraction table . . . . . . . . . . . . . . . . . . 90
Active learning . . . . . . . . . . . . . . . . . 5, 20
Automata learning . . . . . . . . . . . . . . . . . 4
Biometric passport . . . . . . . . . . . . . . . . 62
Bounded retransmission protocol . 148
CADP . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
CEGAR . . . . . . . . . . . . . . . . . . . . . . . . 9, 92
CEGAROLE . . . . . . . . . . . . . . . . . . . . . 122
Concretization . . . . . . . . . . . . . . . . . . . . 37
EMV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Event signature . . . . . . . . . . . . . . . . . . . 45
JTorX . . . . . . . . . . . . . . . . . . . . . . . . 67, 145
LearnLib . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Lookahead completeness. . . . . . . . . . 113
Lookahead oracle . . . . . . . . . . . . . . . . . 106
Lookahead trace. . . . . . . . . . . . . . . . . . 109

Mapper . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Mapper induced by abstr. table . . . 90
Mealy machine . . . . . . . . . . . . . . . . . . . . 17
Memorable value . . . . . . . . . . . . . . . . . 106
Model-based testing . . . . . . . . . . . . . . 145
MRMC . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Observation tree . . . . . . . . . . . . . . . . . 108
Passive learning . . . . . . . . . . . . . . . . . . . . 4
Restricted scalarset MMs . . . . . . . . . . 90
Scalarset Mealy machine . . . . . . . . . . 89
Semantics of symbolic mapper . . . . . 48
Semantics of symbolic MM . . . . . . . . 46
Session initiation protocol . . . . . . . . . 51
Symbolic mapper . . . . . . . . . . . . . . . . . . 47
Symbolic Mealy machine . . . . . . . . . . 45
Tomte . . . . . . . . . . . . . . . . . . . . . . . . . . 9, 88
TorXakis . . . . . . . . . . . . . . . . . . . . . . . . . 145
Transmission control protocol . . . . . 54
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Samenvatting

Mensen slagen er vaak in om het gedrag van een apparaat of computerprogramma
te leren puur door op knoppen te drukken en het resulterende gedrag te ob-
serveren. Vooral kinderen zijn hier goed in en weten precies hoe ze een game com-
puter, iPod of magnetron moeten bedienen zonder ooit een handleiding te hebben
geraadpleegd. In dit soort situaties vormen we mentaal een toestandsdiagram: we
reconstrueren in welke toestanden een apparaat of programma zich kan bevinden
en welke toestandsovergangen plaatsvinden als gevolg van welke invoer. Dit proef-
schrift gaat over de vraag hoe we computers zover kunnen krijgen dat ze zelf, door
systematisch knoppen in te drukken en de resulterende uitvoer te observeren, com-
plexe toestandsdiagrammen kunnen leren van apparaten of programma’s. Stan-
daard algoritmen slagen er in om toestandsdiagrammen te leren met maximaal
30.000 toestanden. Deze algoritmen zijn niet direct toepasbaar voor het leren
van het gedrag van realistische ICT toepassingen, aangezien deze toepassingen
beschikken over geheugen en er bij invoer- en uitvoeracties ook vaak sprake is
van dataparameters (telefoonnummers bij een mobieltje, de kooktijd in minuten
bij een magnetron, enz.). Zelfs wanneer we uitgaan van een simpel apparaat met
een geheugen van slechts 450 bytes, dan heeft het resulterende toestandsdiagram
potentieel meer dan 256450 ≈ 101000 toestanden. We hebben de standaard tech-
nieken verder ontwikkeld en software geprogrammeerd waarmee we – routinematig
en volledig automatisch – toestandsdiagrammen kunnen leren.

Indien ontwikkelaars van software beschikken over modellen van het gedrag
van software componenten, dan stelt dit ze veelal in staat om betere software
te schrijven in minder tijd. Modellen kunnen bijvoorbeeld worden gebruikt om
een systeem te simuleren voordat het wordt gebouwd, bij besprekingen tussen
belanghebbenden, voor het automatisch genereren van software, voor het automa-
tisch genereren van tests en bij hergebruik van software. Bij de ontwikkeling van
nieuwe systemen worden er daarom tegenwoordig vaak modellen geconstrueerd,
bijvoorbeeld in de taal UML. Het construeren van modellen voor bestaande soft-
warecomponenten, waarvan veelal geen of geen goede documentatie beschikbaar
is, vormt in de praktijk echter een enorm probleem.

In Deel II van dit proefschrift wordt beschreven hoe met behulp van een zo-
genaamde mapper component de basis leertechnieken kunnen worden uitgebreid.
De grondgedachte is dat een mapper tussen het standaard leeralgoritme en het
systeem dat we willen leren – ook system under test (SUT) genoemd – wordt
geplaatst. Het leeralgoritme bepaalt de volgorde waarin knoppen worden inge-
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drukt of abstracte acties (bijvoorbeeld een actie met twee parameters waarvoor
dezelfde waarde gekozen moet worden) worden uitgevoerd. De mapper vertaalt
deze naar invoer voor de SUT door concrete waarden voor dataparameters te
kiezen. De keuze is afhankelijk van de geschiedenis van eerder gestuurde berichten
die door de mapper wordt onthouden. De resulterende uitvoer van de SUT wordt
vervolgens ook terug vertaald, waarbij de mapper van concrete waarden van pa-
rameters in de uitvoer abstraheert. Op deze manier is het mogelijk een groot
aantal concrete overgangen in een echt systeem af te beelden op een beperkt aan-
tal abstracte overgangen in het geleerde toestandsdiagram. In dit tweede deel van
het proefschrift wordt de notie van een mapper met de bijbehorende abstractie- en
concretisatieoperatoren geformaliseerd. Verder wordt aangetoond dat deze aan-
pak werkt door handmatig een mapper te definiëren en aan te sluiten op een
echt systeem. Op deze wijze zijn wij er in geslaagd om toestandsdiagrammen te
leren van enkele veelgebruikte communicatieprotocollen (SIP, TCP en het nieuwe
biometrisch paspoort).

Deel III presenteert hoe de handmatig geconstrueerde mappers uit Deel II
volledig automatisch kunnen worden gegenereerd voor een bepaalde klasse van
systemen, waarin getest kan worden op gelijkheid van dataparameters, maar geen
bewerkingen op data zijn toegestaan. Met behulp van tegenvoorbeeld-gedreven ab-
stractieverfijning kunnen abstracties, in dit geval gelijkheden tussen dataparame-
ters, worden achterhaald. Indien tijdens het testen van een hypothetisch model
een invoer tot een andere uitvoer leidt dan eerder voorspeld, dan is er een tegen-
voorbeeld gevonden. Als dit tegenvoorbeeld een nieuwe abstractie bevat, wordt
deze automatisch toegevoegd om het probleem op te lossen. Ook de mapper is
aangepast om zelf te achterhalen welke waarden van eerder gestuurde berichten
onthouden moeten worden. Dit is mogelijk door “toekomstige” berichten uit te
voeren en te kijken of een waarde ook in de toekomst van belang is. We hebben
ons algoritme in het Tomte tool geïmplementeerd en zijn er in geslaagd van ver-
schillende realistische software-componenten, zoals het biometrisch paspoort en
het SIP protocol, geheel automatisch modellen te leren.

Deel IV laat zien hoe divers de toepassingsgebieden van actief leren kunnen
zijn. Er wordt aangetoond hoe actief leren gebruikt kan worden om te testen of
een implementatie overeenkomt met de referentie-implementatie, d.w.z. een im-
plementatie van de specificatie of standaard van het systeem. Met behulp van een
bekende industrïele case study, het bounded retransmission protocol, en een unieke
combinatie van software tools op het gebied van modelconstructie (Uppaal), actief
leren (LearnLib, Tomte), model-gebaseerd testen (JTorX, TorXakis) en verificatie
(CADP, MRMC) zijn wij er in geslaagd verschillende implementaties te leren en
fouten daarin op te sporen.
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Humans often manage to learn the behavior of a device or computer program by
just pressing buttons and observing the resulting behavior. Especially children are
very good in doing this and know exactly how to use a game computer, iPod or
microwave oven without ever consulting a manual. In such situations we construct
a mental model of a state diagram: we determine in which global states a device
can be and which state transitions and outputs occur in response to which input.
This doctoral thesis deals with the design of algorithms that allow computers to
learn complex state diagrams by providing inputs and observing outputs. The
state diagrams that can be learned by standard techniques have at most 30.000
states. In contrast, the state diagrams that govern the behavior of computing based
systems (defined using dozens of state variables) typically have more than 101000

states. We have further developed the standard techniques and have constructed a
tool set that allows us to learn – routinely and fully automatically – state diagrams.

Once they have high-level models of the behavior of software components,
software engineers can construct better software in less time: behavioral models
can be used to simulate a system and reason about it, they allow all stakeholders
to participate in the development process and to communicate with each other,
they can be used to generate and test implementations, and they facilitate reuse.
A key problem in practice, however, is the construction of models for existing
software components, for which no or only limited documentation is available.

In Part II of this thesis, we describe how by means of a so-called mapper
component the basic learning techniques can be enhanced. The main idea is to
place a mapper in between the standard learning algorithm and the system we
want to learn – also known as system under test (SUT). The learning algorithm
determines the sequence of buttons or abstract actions (e.g. an action with two
parameters to which the same value has to be assigned) to be executed. These are
translated by the mapper to inputs for the SUT by selecting concrete values for
the data parameters. The selection is dependent on the history of messages sent
earlier, which is maintained by the mapper. The resulting output of the SUT is
again translated back by the mapper by abstracting away from concrete output
parameter values. In this way it is possible to map a large set of concrete transitions
of a real-world system to a small set of abstract transitions of the learned state
diagram. In this part, the notion of a mapper and the corresponding operations
of abstraction and concretization are formalized. Moreover, it is shown that this
approach works by manually defining the mapper and connecting it to the real-
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world system. We succeeded in learning models of some realistic communication
protocols (TCP, SIP, and the new biometric passport).

Part III presents how the manually constructed mappers of Part II can be
generated fully automatically for a restricted class of systems, in which one can
test for equality of data parameters, but no operations on data are allowed. By
means of counterexample-guided abstraction refinement abstractions, i.e. equalities
between data parameters can be derived. If during testing of a hypothesized
model an input leads to a different output than predicted earlier, we have found
a counterexample. If this counterexample contains a new abstraction, it is added
automatically to solve the problem. Also the mapper has been adapted to detect
itself which values of previously sent messages have to be memorized. By running
“future” messages, we can find out whether a value is important in the future.
We have implemented our algorithm in the Tomte tool and succeeded in learning
models of several realistic software components, including the biometric passport
and the SIP protocol fully automatically.

Part IV demonstrates how diverse application areas of active learning can be.
It is shown how active learning can be used to test whether an implementation
conforms to a reference implementation, i.e. an implementation of the specification
or standard of the system. Using a well-known industrial case study, the bounded
retransmission protocol, and a unique combination of software tools for model
construction (Uppaal), active learning (LearnLib, Tomte), model-based testing
(JTorX, TorXakis) and verification (CADP, MRMC) we succeeded in learning
models of and revealing errors in several implementations.
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