
Formal Specification of Web Services Composition Using LOTOS

N. Adadi 1, M. Berrada2, D. Chenouni 3

IPI (Laboratoire d'Informatique et de Physique Interdisciplinaire) Laboratory, ENS, Sidi

Mohamed ben Abdellah University, Fez, Morocco.

nouhaadadi@gmail.com1, mohammed.berrada@gmail.com2, d_chenouni@yahoo.fr3

Abstract

The composition of Web services, that is the combination

of several services to obtain new features, becomes more

and more popular and present a necessary stage for the

realization of the collaboration inter-companies (B2B).

To implement this collaboration a developer has to

elaborate a specification which allows the modeling of the

global behavior of the system, to verify formally this model

to assure the quality of the system then pass to the

implementation of the composed service. In this paper we

present a summary of our proposed approach of web

services composition which is separated into three

tasks: specification using BPMN notation,

implementation using BPEL language and formal

verification, then we focus on the task of verification and

we propose an approach of translating the BPMN

specification of services composition to a formal

specification LOTOS which allows, using verification tool

like CADP, to apply the behavioral properties and

validate the system of Web services composition.

1. Introduction

 Nowadays many enterprises publish their

applications functionalities on the Internet. This new

generation of applications allows greater efficiency

and availability for business. In fact, more and more

applications make functionalities available using a

web service format. However there are many

services around the web, each one, taken alone, has

a limited functionality. In many cases, a single

service is not sufficient to respond to the user's

request and often services should be combined

through services composition to achieve a specific

goal. In other words, from a user perspective, this

composition will continue to be considered as a

simple service, even though it is composed of

several web services. Many researches focus on

Web services composition [1, 2]. The process of

service composition can be separated into three

tasks: specification, implementation and

verification. Many various languages such as

BPMN (Business Process Modeling Notation) [3]

and BPEL (Business Process Execution Language)

[4] have been proposed to specify and implement

Web services composition. However, their lack of

well-defined formal semantics does not support

formal verification. As a consequence, the

validation of Web service composition remains a

complicated task.

 Formal verification establishes an essential asset

to prove that the design of a system is correct and

avoid such problems. During the elaboration of the

specification of a composed web service, the

developer creates a set of blocks performing the

behaviors required to model the global functioning.

However, there are subtleties in the specification

that make the composed service will not necessarily

have the expected behavior once implemented. The

developer must therefore be able to ensure that the

specification is correct before proceeding to the

implementation. The tools of formal verification can

answer this need but these tools check only

specifications described in formal language which

requires the translation of system’s modeling to

formal specification.

 In this paper we present a summary of our

proposed approach of web services composition,

this approach is conceived for the specification, the

formal verification and the implementation of

composed web service, then we focus on the task of

formal verification and we propose a new approach

of translating the specification of services

composition with BPMN notation to a formal

N Adadi et al, International Journal of Computer Technology & Applications,Vol 7(5),636-642

IJCTA | Sept-Oct 2016
Available online@www.ijcta.com

636

ISSN:2229-6093

specification LOTOS [5] which allows, using

verification tool, to apply the behavioral properties

and validate the system of Web services

composition.

 The layout of this paper is as follows. The second

section discusses various approaches used for

verifying formally the composition of web services.

The third section is devoted to the LOTOS language,

its basics and operations. The fourth section present

a summary of our proposed approach of web

services composition. Finally, the fifth section

presents an example of web service composition, in

this section we use this example to transform the

BPMN model of the system to formal specification

LOTOS. The conclusion and future work are

presented in section six.

2. Formal verification

 Formal verification is the systematic process of

verifying, through exhaustive algorithmic

techniques, that an implementation is in accordance

with its specification. Using formal verification, all

possible execution paths are analyzed

mathematically without requiring the preparation of

test cases. The developer describes simply the

properties according to the system functionalities

whish he wants to prove and he leaves the formal

verification tools explore exhaustively all possible

execution paths on the mathematical representation.

2.1. Formal verification tools

 Verification tools support in the inputs model to

verify described in formal language and a set of

behavioural properties defined by the developer

based on the capabilities of the system he wants to

test. In the output these tools return the result (true

or false) is that the property is checked or not in the

model and a set of proposed correction. To do this,

the current tools utilize mathematical logic.

Figure 1. Classic formal verification

structure

2.2. Formal verification of web services

composition approaches

 Many works realized on the specification and

formal verification of the composition of web

services using various languages and tools.

2.2.1. Using state transition systems. The state

transition system STS is a well-known model in the

field of formal specification, it is represented

graphically in the form of directed graph, consisting

of a set of states or nodes, a set of actions and a set

of transitions between states labeled. The authors in

[6] focuses on modeling of a service composed by

an STS. Then translate this system to a Promela

specification which is a formal language similar to

C language. Once this specification is obtained, the

tool of verification SPIN [7] allows to verify

properties expressed in LTL (LinearTemporal

Logic).

2.2.2. Using Petri Nets. As part of the Semantic

Web, it is common to use the services described with

DAML-S language [8]. The authors of [9] use this

language in order to compose web services. Then

they transform a DAML-S description of a Web

service into a Petri net, which is a system formally

defined [10] and presented by a directed, connected

and bipartite graph. Finally, the use of a model as the

Petri net, allows the use of a validation tool

KarmaSIM for applying a simulation and validation

services.

2.2.3. Using the process algebra. The process

algebra is formal description language for

specifying competitive systems we can cite CCS

[11], LOTOS [5] and π-calculus [12]. In [13] the

authors use the notation CRESS (Chisel Employing

Systematic Representation Specification) for

specification of web services composition. This

notation is then converted into LOTOS

specification, this allows then an analysis with a tool

like LOLA. In [14] the authors use the UML activity

diagram to model the composition of web services,

this model is then transformed into LOTOS

specification, it allows then the verification of

behavioral properties using the CADP tool [15].

 The Process algebra constitutes an approach

among the newest and most useful ones for checking

competitive systems, as the composed web service

is a competitive system, we will use in our proposed

approach the LOTOS language for specifying the

processes generated from the composed web

services, thus verifying this process by using an

adequate verification tool like CADP.

3. An overview of LOTOS language

 LOTOS (Language Of Temporal Ordering

Specification) [5] is a formal description developed

within ISO (International Standards Organization)

for the specification of open distributed systems.

LOTOS is based on temporal ordering of events and

N Adadi et al, International Journal of Computer Technology & Applications,Vol 7(5),636-642

IJCTA | Sept-Oct 2016
Available online@www.ijcta.com

637

ISSN:2229-6093

process algebraic methods. It consists of two parts:

a part for the description of data and operations,

based on abstract data types, and a part for the

description of concurrent processes, based

on process calculus.
 The two parts of LOTOS use various behaviour

operators, These operators are summarized in Table

1 where G refer to a gate (channel of communication

between processes), X to a variable, P to a process,

S to a sort, V to a value and B a behaviour.

Table 1. LOTOS behaviour operators

Behaviour Operator

inaction stop

Action Prefix G !V ?X:S ; B

Choice B1 [] B2

Conditional [E] -> B

Parallel composition B1 |[G1,…,G n]| B2

Interleaving B1 ||| B2

Successful termination exit

Sequential composition B1 >> B2

Process call
P [G1,…,Gn]

(V1,…,Vm)

 A more detailed introduction to LOTOS can be

founding in [5]. In this paper, LOTOS was chosen

for the specification of service composition

workflows because of its ISO standardization, its

high expressiveness its formalism and the existence

of validation tools that support it such as CADP.

4. Proposed approach of web services

composition

 The proposed approach is conceived for the

specification, the formal verification and the

implementation of composed web service. The

figure 2 shows the steps involved in the proposed

development processes to better understand how to

proceed.

 Once the requested services are selected by the

directory we pass to the specification stage. At this

level we propose a modeling based on MARDS

model (Multi-Agent Reactive Decisional System)

[16], and using the BPMN notation. The MARDS

model, constitutes an approach among the newest

and most useful ones for the composing and

modeling of complex system such as the automated

systems of production, the mobile systems and

organizational system [17] [18]. We have used this

system in our proposed approach because it allows

to model the composition of services in a simple and

powerful way, and in well-structured architecture.

The BPMN notation, is a modeling language, it is

more adapted to the domain of the Web services,

legible and sufficiently precise and expressive to

allow the generation of executable code from it. We

have used this notation for modeling the processes

generated from the composed web services on

orchestration mode.

 As it is better to detect errors as early as possible

in the cycle of development, from the specification

stage, the next step is the formal verification of our

proposed model. The model of the system and

behavioral properties described by the developer

must be represented by a formal language so that

they can be interpreted by formal verification tools

which gives the result of verification. Our

specification is described by the BPMN notation,

but this language is often criticized for its lack of

formality. One proposed solution is to transform the

BPMN model into formal specification. Any formal

specification language is susceptible to agree but we

propose the use of the process algebra LOTOS

which has the advantage of being supported by free

formal verification tools such as CADP toolbox.

Due to CADP, it is possible to validate automatically

the behavioral properties. In case where errors are

detected, the developer is responsible for correct and

refine its model to arrive at a model proven correct.

When the composition model is validated, the next

step is the implementation of the system by

generating BPEL executable code from the BPMN

specification. Finally, once the composed service is

implemented, the last step is usually to publish it in

the directory to facilitate its future use.

Figure 2. Proposed approach of web
service composition

N Adadi et al, International Journal of Computer Technology & Applications,Vol 7(5),636-642

IJCTA | Sept-Oct 2016
Available online@www.ijcta.com

638

ISSN:2229-6093

 The phases of modeling of web services

composition using BPMN and generation of code

executable BPEL are already covered in previous

works [19][20]. The step that remains to be

processed is the formal verification, in this paper we

propose to focus on this step and precisely the part

of translating the BPMN model into formal

specification LOTOS.

5. Example: Modeling and LOTOS

specification of "travel organisation"

composite web service

5.1. Example of Web Services Composition

 As an illustrative example, we will consider in

this work an online Travel Organization problem.

This scenario is a typical web services composition

problem. As far as creating the "Travel

Organization" service, we can use five services

("Airefare", "Car", "Hotel", "Payment_Detail" and

"Bank") that will internally execute the online

Travel Organization, each one executes a task.

5.2. Modeling of "Travel Organisation"

composite web service

5.2.1. Modeling of Web Services Composition

process. The modeling part was the target of other

works already published [19] [20]. I present only the

summary and the result of these works without

getting into details. Our web services composition

modeling approach is based on multi-agent reactive

decisional system MARDS [16] which is a special

type of multi-agent systems characterized by a set of

operations, functions, and a well-structured

hierarchical architecture that allows the composition

of web services in a simple and powerful way. The

application of the concepts of MARDS model on our

example allows to have the following structure of

the composition system by creating communication

interfaces and new intermediate and main services.

Figure 3. Structure of composition of the

Web services

5.2.2. Business model of the services composition:

 This structure of composition can be modeled

using BPMN notation [3]. The Figure 4 displays the

business model of the composition services

structure. The action “A_Online Travel” received by

“Travel” component generates two decisions

{D1_Reserve; D2_Pay}. Each decision corresponds

to a several sub-actions received by “Reservation”

component {D1_ Reserve; A_ Reserve} and by

“Payment” component {D2_Pay, A_ Pay}. Every

sub-action received by any composite component

will be realized and modeled as a sub-process.

 The sub-action “A_ Reserve” received by the

“Reservation” component generates in parallel

three sub-decision {D1_ReserveAirfare; D2_

ReserveHotel; D3_ ReserveCar}. The first sub-

decision “D1_ ReserveAirfare” generates the {A_

ReserveAirfare} action for “Airfare” basic

component. The second sub-decision “D2_

ReserveHotel” generates the “A_ ReserveHotel”

action for “Hotel” basic component. The third sub-

decision “D3_ ReserveCar” generates the “A_

ReserveCar” action for “Car” basic component.

The competition of the three sub-decisions

corresponds to the sub-process of the “A_ Reserve”

sub-action.

 The sub-action “A_ Pay” received by the

“Payment” component generates in sequence two

decisions {D1_Call for payment detail; D2_

Invoice}. The first sub-decision “D1_ Call for

payment detail” generates the {A_ Call for payment

detail} action for “Payment_Detail” basic

component. The second sub-decision “D2_ Invoice”

generates the “A_ Invoice” action for “Bank” basic

component. The sequencing of the two sub-

decisions corresponds to the sub-process of the “A_

Pay” sub-action.

N Adadi et al, International Journal of Computer Technology & Applications,Vol 7(5),636-642

IJCTA | Sept-Oct 2016
Available online@www.ijcta.com

639

ISSN:2229-6093

Figure 4. Business model of Services
Composition example

5.2. Translation of BPMN modeling to

LOTOS formal specification

 To translate the BPMN notation depicted in

Figure 4 into LOTOS we are going to follow these

steps:

- Define a process for each step of the activity

(including initial and final nodes). In our

example the processes are ("Init",

"Travel_Organization", "Reservation",

"Payment", " Reservation_Airefare", "

Reservation_Car", " Reservation_Hotel",

"Payment_Detail", "Bank" and "Final"). Each

process is defined by a set of behaviors.

- Assign an identifier (integer) to each of process.

The identifiers (ID) are already specified in

Figure 4 for a better understanding.

- Define the gates which are the channels of

communication between processes. The

peculiarity of our modeling with the SMARD

model is that communication between services

is done via the communication interfaces that

receive and send actions and decisions, so we

can consider these interfaces as processes

(BUS0, BUS1 ... BUSn). The actions and

decisions sent and received by the services and

communication interfaces are considered

LOTOS gates (SENDi, RECVi) when i between

0 and n. Indeed services processes can

communicate with each other through these

gates, thanks to BUS0, BUS1…BUSn

processes.

- Define the operations between processes, in our

example all service processes are executed

concurrently using the ||| operator, which means

that they are independent and they do not

communicate directly with each other, but they

use BUSi process. Note however that the

|[SENDi, RECVi]| operator is used to

synchronize the service processes with the

BUSi process through the gates SENDi and

RECVi, when i between 0 and n.

- Identify the control-flow patterns in the

workflow in order to provide a definition

(implementation) for each process.

The instantiation of the processes in LOTOS is

provided in figure 5.

Figure5. Processes instantiation in LOTOS

N Adadi et al, International Journal of Computer Technology & Applications,Vol 7(5),636-642

IJCTA | Sept-Oct 2016
Available online@www.ijcta.com

640

ISSN:2229-6093

 Then we pass to define the implementation of

processes.
 The Init process (Id:0) merely starts the

Travel_Organization process (Id:1). As a

consequence, it uses the sequence pattern before

exiting, as defined in figure 6.

Figure 6. LOTOS specification for Init

process

 The Travel_Organization process waits for a RUN

message from Init before starting. After that, it

realizes an sequence between Reservation (Id:2)and

Payment process (Id:3), as defined in figure 7.

Figure 7. LOTOS specification for

Travel_Organization process

 The Reservation process waits for a RUN

message from the Travel_Organization process

before starting concurrently the Reservation_Hairfare

(Id:4) and Reservation_Hotel (Id:5) and

Reservation_Car (Id:6) processes, thus realizing a

parallel split pattern. The corresponding

specification is provided in figure 8.

Figure 8. LOTOS specification for

Reservation process

 The Payment process waits for a RUN message

from the Travel_Organization process before

starting sequentially the Payment_Detail (Id:7),

Bank (Id:8) and Final (Id:9) processes. The

corresponding specification is provided in figure 9.

Figure 9. LOTOS specification for Payment

process

 The Final process waits for a RUN message from

the Bank process before exiting.

Figure 10. LOTOS specification for Final

process
 In Sequence process, an activity identified by

id_dst should be executed after the completion of the

activity identified by id in the workflow, We say that

both activities are then executed sequentially. The

LOTOS specification is provided in figure 11.

Figure 11. LOTOS translation for sequence

pattern

 Finally, the ParallelSplit process, The identifiers

of the activities (Ids_dst) to be executed in parallel

are passed in parameters to the process as a set of

integers (IntSet). The process needs to iterate over

this set and send a RUN message to each activity

identified in the set. However, recursion is the only

way to realize cyclical behavior in LOTOS. As a

consequence, the ParallelSplit process is calling

itself recursively and removing already processed

Ids from the set in order to iterate over it.

N Adadi et al, International Journal of Computer Technology & Applications,Vol 7(5),636-642

IJCTA | Sept-Oct 2016
Available online@www.ijcta.com

641

ISSN:2229-6093

Figure 12. LOTOS translation for parallel

split pattern

6. Conclusion

 In this paper we presented a summary of our web

services composition approach including the

specification the formal verification and the

generation of executable code. We have already

realized in other works the stages of specification

and implementation [19] [20], and in this paper very

importing parts of verification that is the translation

of a BPMN model to a LOTOS program, this critical

part allows later use of the CADP verification tool

that takes charge of applying the properties of the

model and give the result of verification.

References

[1] S.Pan and Q.Mao, ”Case Study on Web Service

Composition Based on Multi-Agent System”,

Journal of Software, Vol. 8, n. 4, April 2013.

[2] M. Bakhouya and J. Gaber. Service composition

approaches for ubiquitous and pervasive

computing environments: A survey. Agent

Systems in Electronic Business, Ed. Eldon Li

and Soe-Tsyr Yuan, IGI Global, (978-1-59904-

588-7):323–350, 2007.

[3] BPMI.org. (2006). Business Process Modeling

Notation Specification. OMG Final Adopted

Specification

[4] OASIS Standard. Web services business process

execution language version 2.0, April 2007.

[5] T. Bolognesi and E. Brinksma. Introduction to

the iso specification language lotos. The Formal

Description Technique LOTOS, pages 23–73,

1989.

[6] X. Fu, T. Bultan, and J. Su. Analysis of

interacting BPEL web services. In Proc. Of

the13th International World Wide Web

Conference (WWW’04), USA, 2004.

[7] Gerard J. Holzmann. The SPIN MODEL

CHECKER - Primer and Reference Manual.

Addison-Wesley, Pearson Education,

september 2003.

[8] David Martin, Mark Burstein, Grit Denker, Jerry

Hobbs, Lalana Kagal, Ora Lassila, and Katia

Sycara. DAML-S (and OWL-S) 0.9 draft

release, 2003.

[9] Srini Narayanan and Sheila McIlraith. Analysis

and simulation of web services. Comput

Networks, 42(5):675–693, 2003.

[10] J. Peterson. Petri Net Theory and the Modeling

of Systems. Prentice Hall, Englewood Cliffs,

1981. p 26.

[11] R. Milner. Communication and concurrency.

International Series in Computer Science, 1989.

p 30– 48.

[12] R. Milner, J. Parrow, and D. Walker. A calculus

of mobile processes i & ii. Information and

Computation, 100(1):1–77, 1992. p 23-30.

[13] Kenneth J. Turner. Formalising web services.

In Proc. of Formal Techniques for Networked

and Distributed Systems, Taiwan, 2005, p 473–

488.

[14] C. Dumez, Approche dirigée par les modèles

pour la spécification, la vérification formelle et

la mise en œuvre de services Web composés,

2010.

[15] J. C. Fernandez, H. Garavel and A. Kerbrat,

Cadp-a protocol validation and verification

toolbox. In Proc. of International Conference on

Computer Aided Verification, 1996.

[16]M.Berrada, B.Bounabat, , “Modeling and

Simulation of Multi-Agent Reactif Decisionnal

Systems using Business Process Management

Concepts” , IRECOS Vol.2 N.2, pp. 159-169,

March 2007.

[17]A Aaroud, S. E. Labhalla, and B. Bounabat,

Modelling the handover function of global

system for mobile communication, The

International Journal of Modelling and

Simulation, ACTA Press, vol 25, n. 2, 2005.

[18]A. Aaroud, S. E. Labhalla, and B. Bounabat,

”Design of GSM handover using MARDS

model”, Proceedings of International

Conference for Information Technologies and

Application (ICITA), 2004, Harbin, China.

[19]N. Adadi, M. Berrada, D. Chenouni,

B.BOUNABAT ”Multi-Agent Architecture for

Business Modeling of Web Services

Composition based on WS2JADE Framework”,

IRECOS ,Vol 9,no 10, 2014.

 [20]N.ADADI, M.BERREDA, D.CHENOUNI,

B.BOUNABAT ” Modeling and Simulation of

Web Services Composition Based on MARDS

Model”. In Proc. of International Conference on

Intelligent Systems Theories and Applications

(SITA) Rabat, Morocco, 2015.

N Adadi et al, International Journal of Computer Technology & Applications,Vol 7(5),636-642

IJCTA | Sept-Oct 2016
Available online@www.ijcta.com

642

ISSN:2229-6093

