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Abstract—UML 2 has introduced new diagrams for expressing
hierarchical structures and their assembly, and has brought
some new features to the behaviour-oriented diagrams (activities
and state machines), that help modelling component systems.
However, UML leaves many semantic decisions opened, and
various emerging component frameworks also have features that
cannot be directly expressed using UML 2 concepts. In this paper
we present an approach for modelling two different component
frameworks using UML 2 diagrams. First we define a mapping
between the Fractal component model and UML 2 diagrams,
and we describe CTTool, that allows to edit and model-check
diagrams for Fractal components. Then we propose an extension
of this work for the Grid Component Model, that is an extension
of Fractal providing asynchronous, collective, and autonomic
features for distributed component systems.

Index Terms—software requirements engineering, software
components, software reliability, grid computing
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I. INTRODUCTION

In software engineering, a strong emphasis on system spec-
ification methods and tools has been made. Among several
techniques, Component-Based Software Development (CBSD)
has emerged as a response for decoupling designs into partially
independent and reusable modules. It has been adopted by
UML 2 [1] through Component Diagrams, and it provides
a semi-formal way of specifying components. CBSD’s main
idea is to explicitly specify all possible interactions with the
environment through well defined entry points while hiding
all internal details.

Informal specifications allow an easy and fast development
and are useful for non-expert users, but the lack of formality
leads to ambiguity. On the other side, formal specifications
require user expertise and usually lead to a longer specifica-
tion time, but provide a precise syntax and semantics which
suits computer-aided verification such as theorem provers and
model-checkers.

Further, specifications may also be textual or graphical.
Textual specifications allow enough granularity for specifying
details in the requirements, whereas graphical ones bend
better to coarse system specifications. Moreover, graphical
specifications are more intuitive and require shorter learning
and shorter development time than textual ones.

We state that CBSD fits well with both graphical languages
and formal languages. Then, we propose a new language
based on UML 2 and endowed with a formal semantics. This
language is precise enough to allow verification and model-
checking of systems. The goal is not to go all through complex
formal languages, but to take into account software engineers
expertise of both syntax and semantics.

Amongst state-of-the-art component models, we are par-
ticularly interested in Fractal [2] and in the Grid Compo-
nent Model (GCM) [3]. Fractal is a hierarchical component
model including features for non-functional management and
(re)configuration, and provisions for the specification of be-
haviour protocol between components. The Grid Component
Model is an extension of Fractal dedicated to distributed
applications, with specificities like deployment description,
multicast/gathercast communications, and autonomic compo-
nents. There exists a graphical editor for Fractal architecture
descriptions, but no modelling tool that would include both
architecture and behaviour specifications, and that would allow
for a more or less automated analysis of the behaviour of
component systems. Our work is a step toward this goal, using
a mapping of Fractal/GCM component frameworks into UML
diagrams.

Related work have been published, mainly in the do-
main of embedded or real-time systems, or in some more
general distributed system context. Contributions related to
distributed systems generally focuses on the modelling of pro-
tocols involved in underlying architectures [4]. Thus, protocol
modelling has been addressed in UML since its very first
versions, at first, with academic case studies [5], and then,
with industrial-based large-scale applications in e-commerce
for example [6].

More precisely, one of the contributions for modelling
distributed applications is called AUML [7]. It relies on the
normalized version of UML. The notion of Protocol diagrams
is described: UML sequence diagrams are extended with
the notion of logical operators to explicitly model causality,
synchronisations and broadcast. Another contribution relies on
UML Interaction diagrams to model interconnection between
components. Those two contributions address the modelling
of components in UML 1.4 and therefore ignore composite
structure diagrams introduced in UML 2.
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A more recent contribution extends UML with a notion of
components, with in and out ports, and behaviour diagrams
to describe critical applications [8]. However, their behaviour
diagram notation is quite specific (using basic logical operators
such as xor, not, etc.) and do not support complex protocols
and buffer management as found in distributed systems.

In the area of embedded and real-time system, Omega [9]
has been one of the first models of components, based on a
subset from UML 1.4. It is endowed with a formal semantics
based on statecharts.

The Architecture Analysis and Design Language
(AADL) [10] is an architecture description language for
component-based specification of real-time, embedded,
software-intensive systems and for automated component-
based system integration. It has a full UML 2 profile (and
a MARTE profile), source of several tool environment,
including an integration in the Topcased platform.

AEmilia [11] is an Architecture Description Language based
on Stochastic Process Algebras. With AEmilia, the description
of a system can be built compositionally and hierarchically
through a graphical support. In addition to behavioural and
functional verification, it is strongly targeted at performance
modelling and analysis, and has been recently subject to UML
tool development.

TURTLE [12] is another related work, initially not targeted
at component systems. It is a UML profile dedicated to the
modelling and formal verification of real-time systems. One
of the strengths of this profile is its formal semantics. Indeed,
all TURTLE diagrams are first translated into an intermediate
form called TIF - TURTLE Intermediate Format - from which
formal specifications into LOTOS-based process algebra can
be generated. Moreover, the TURTLE profile is supported
by a (open source) toolkit named TTool, developed by the
LabSoC laboratory from GET/ENST, including editors for
various UML views of the systems, and code generators
for interfacing with LOTOS and LOTOS-RT model-checking
tools. It appeared that the toolkit was a very convenient basis
for developing our Fractal modelling prototype tool.

Our contribution in this paper is:

• A UML-based framework and tool for specifying and
model-checking software components,

• A novel UML profile proposal, refining the previous
framework, dedicated to distributed and asynchronous
software components, with a stress on grid applications.

This paper is organised as follows: Section II gives some
background on the Fractal and GCM component models, and
on the component-related concepts in UML 2.x. In Section III
we present a method for specifying Fractal components in
UML, giving a specific interpretation to component and state
machine diagrams, and show how CTTool implements this
method. Then in Section IV we propose an extension of those
models to deal with asynchronous distributed components.
Finally Section V concludes.

II. BACKGROUND

A. UML 2

UML [1] is the most widely used modelling language. In its
latest version, component architectures may be specified using
Component diagrams. As for all UML concepts, component
diagrams are defined in a high-level and underspecified se-
mantics (with semantics variation points), in order to deal with
several existing component models (e.g. EJB, CCM, COM+
and .NET). Also, UML 2 doesn’t provide any methodology for
using UML components, and adapting them to more concrete
models.

UML component diagrams feature both black box and white
box views of hierarchical component systems. UML com-
ponents communicate and synchronise through well-defined
(provided and required) interfaces and connectors. The white-
box view is used to specify the implementation of a com-
ponent, in term of subcomponents and bindings, or in term
of other realisation artifacts. In the black-box view, UML
specifies that a protocol state machine can be attached to each
component. This state machine defines the acceptable external
behaviours of the component, and can be used to check the
behavioural correctness of component assemblies.

Other usual UML diagrams are used to define the signature
of component interfaces (with their operations and events) or
the classes for data structures.

B. Fractal

Fractal is a hierarchical component model with a few but
well defined concepts such as component, controller, content,
interface, and binding. A Fractal component is formed out
of two parts: a controller and a content. The content of a
component is composed of (a finite number of) other compo-
nents, called subcomponents, which are under the control of
the controller. If a component does not have subcomponents
it is called a primitive component, otherwise it is a composite
component. This allows for hierarchical composition, in the
sense that components may be nested at any arbitrary level.

The controller of a component can have external and inter-
nal interfaces. A component can interact with its environment
through operations at its external interfaces, while internal
interfaces are accessible only from its sub-components.

Interfaces can be of two sorts: client and server. A server in-
terface can receive method invocations while a client interface
emits methods call. A functional interface provides or requires
functionalities of a component, while a control interface is a
server interface that corresponds to a “non functional aspect”,
such as introspection, lifecycle, configuration or reconfigura-
tion.

C. GCM and ProActive

The Grid Component Model (GCM) is a novel component
model being defined by the european Network of Excellence
CoreGrid, as an extension of Fractal.

Grids consider thousands of computers all over the world,
and address heterogeneous architectures (from multi-core pro-
cessors, to P2P local area networks, and to clusters and
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massively parallel machines). For dealing with latency in such
networks, and enhancing the overall efficiency, the GCM uses
asynchronous method calls. Grid applications also have numer-
ous similar components, so GCM defines collective interfaces,
providing dedicated synchronisation and distribution policies,
and easing design and implementation of such systems.

A GCM reference implementation is being realised with
ProActive [13]. In this implementation, one active object is
assigned for each primitive component and for each composite
membrane. As a consequence, this implementation also in-
herits some properties and constraints w.r.t. the programming
model:

• components communicate through asynchronous method
calls with transparent futures. These futures are first order
objects: they can be forwarded to any component in a
non-blocking manner;

• there is no shared memory between components;
• a single control thread is available for each component,

either primitive or composite.

Method calls use a rendez-vous protocol: requests are en-
queued in the callee (server) side in an atomic way. During
the rendez-vous, a future is created as a placeholder for the
returned result, whenever it arrives. Caller execution may
freely continue up to a point where the concrete value of the
result is needed. At this moment it is blocked until the concrete
value is available; this implicit synchronisation mechanism is
called wait-by-necessity. A precise operational semantics of
ProActive is given by the ASP-calculus [14]; it allows to prove
generic and important properties of ProActive’s constructs on
top of which we base our graphical language shown in Section
IV.

The rest of the paper presents our work in two steps. We first
consider Fractal components, and explain the mapping of its
main concepts (except non-functional interfaces) to UML 2
component diagrams and state machine diagrams and its
implementation in the CTTool software. This will be of interest
for many of the developments and implementations done in the
Fractal community. The following part is specific to the GCM
model, or more generally to distributed component systems
using remote method invocation as their basic communication
mechanism.

III. SPECIFYING FRACTAL COMPONENTS WITH UML

There already exists work for modelling hierarchical compo-
nents with UML. One of the closest to our goals is from Mencl
and Polak [15], who discussed various possible mappings
between the Fractal and UML 2 key concepts, though they
only address the architectural part of Fractal, not the behaviour
description. Our architectural diagrams are very close to theirs,
and we add the behaviour description in the form of (protocol)
state machine diagrams.

We have implemented these diagrams in a tool called
CTTool. It is based on TTool and we give its syntax and
semantics below.

For the drawings in this paper we use the classic Producer-
Consumer example (see Fig. 1). This example is composed
of:

• a bounded Buffer modelled as a composite with two
subcomponents: BufferQueue where method calls are
stored until they are served by the BufferBody; and
BufferBody expressing its functional behaviour (serving
from the queue and processing the request);

• one Producer, modelled as a primitive component. Ele-
ments are sent one at a time to the buffer by calling a
method named put on the Buffer;

• and two Consumers each modelled as a composite with
two subcomponents: ConsumerBody with its functional
behaviour (consuming elements through a method call
get); and ConsumerProxy which takes care of the remote
method call – it performs the call and receives the return
value.

A. Architectural Modelling

UML 2 provides Component Diagrams for specifying the
architecture of components. In Fractal this is done with the
Fractal Architecture Description Language (ADL). So, for
structural modelling of a Fractal component we map the
Fractal ADL to UML 2 Component Diagrams as follows:

1) Components and Subcomponents: The two Fractal com-
ponent kinds, composites and primitives, can be distinguished
according to the existence of subcomponents. In composites
there are subcomponents but not in primitives. Then, Fractal
ADL components can be designed using a UML 2 metaclass
Component, and subcomponents can be defined using an
embedded definition of a subcomponent within a definition of
its owning component.

When modelling a system with a compositional approach,
there is no need to specify whether a given component is
primitive. This allows components to be further refined if
needed, or to give a final specification of them.

2) Provided and Required Interfaces: UML offers a more
complex interface structure than Fractal, as it has both ports
(that can be unidirectional or bidirectional), and interfaces
(that are either provided or required); a port may contain
several interfaces. In order to encode in a compact way
Fractal interfaces and to obey the semantics of the remote
method invocation mechanism, we define in CTTool a notion
of oriented port. A CTTool in-port (resp out-port)
models a Fractal provided (resp required) interface, and is
composed of:

• a UML port, which name is the name of the Fractal
interface,

• exactly one provided (resp required) interface on which
the component receives (resp emits) the service requests,

• exactly one required (resp provided) interface on which
the component sends (resp receives) back the request
result,

• a boolean attribute stating whether this port is mandatory
or optional (the interface contingency in Fractal vocabu-
lary).
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CTTool Element Representation

Component – composite or primitive Fractal compo-
nent

IN port – represents a Fractal server interface

OUT port – represents a Fractal client interface

Connector – represents a Fractal binding

Delegate connector – represents a Fractal binding
between a subcomponent interface and its parent
inner interface

Interface signature – defines the interface’s methods

TABLE I
ELEMENTS OF A COMPONENT DIAGRAM

3) Bindings: Fractal ADL provides both primitive and com-
posite bindings. The later allow for building various complex
communication schemes, but we do not need them, at least
in the current state of our framework. CTTool only imple-
ments primitive bindings, using UML assembly and delegate
connectors. Connections may be between in and out ports
of components having the same parents or between a com-
ponent and its own subcomponent and vice versa. Naturally,
connected ports must have compatible signatures.

Table III-A1 shows a graphical representation of the ele-
ments explained before.

The full component diagram of the Producer-Consumer,
built using CTTool, can be seen in Fig. 1. Some of the
signatures were hidden for simplicity; those that are shown
display their list of methods, with their return type (a void
return type implies that there is no associated result message).
Note that some of the primitive components in this diagram
have an additional icon, that indicates they have a state ma-
chine diagram associated, specifying their behaviour. Remark
also that we have included two instances of a Consumer
component, this is because Fractal does not allow for multiple
components in its architecture description; we shall discuss
this point later in the paper.

B. Behavioural Modelling

For the behavioural modelling we chose to use UML 2 State
Machine Diagrams. Indeed, these diagrams specify sequences
of events managed by various components. In our case,
incoming events are reception of incoming method calls, and
of remote method call results; outgoing events are emission of
remote method calls, and of incoming method calls results.

Components are unaware of the structure of their envi-
ronment, except for events occurring at their interfaces. A
black-box view of the component represents the protocol

Fig. 1. Component Diagram for the Producer-Consumer architecture.

constraining these interactions with the environment. This is
done by associating a state machine exposing the component’s
functionality. For every primitive component (meaning here a
component with no content), it is mandatory to give a State
Machine Diagram with its behaviour, whereas for composites
it is optional when the component is provided with a respective
Component Diagram. This constraint ensures that the global
behaviour of the system can be generated by CTTool.

We consider method calls to be composed of two separate
messages: the call itself, and its return value (for non-void
calls). Method calls may have arguments with a value passing
CCS-like semantic, but in the current CTTool prototype the
only allowed type is integer – we plan to support real Java
user-classes as discussed in Section IV-B. These messages
are of the form: <messageName>!<expr> for sending
requests, and <messageName>?<var> for receiving back
results. In these forms, <expr> can be a variable or a set
of operations involving variables; it is mandatory to have
previously declared all variables. Variables are visible (and
shared) by all submachines a machine may have.

Table II shows a graphical representation of the state
machine operators: State machines diagrams allow developers
to define states, to send or receive messages over ports, to
synthesise behaviour with submachines (submachine opera-
tor), to define complex transitions between states (with choice
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Operator Representation
States

(named) State

Start point

Stop point

Submachine
Transitions

Receive message

Send message

Action

Choice

Non-deterministic choice

TABLE II
OPERATORS OF A STATE MACHINE DIAGRAM

operators, guards, and mixing of data and control flow), to
specify actions over variables, and to abstract away from
implementation choices (non-deterministic choice operator).
Moreover, there are distinguished start and stop operators for
defining initial and final machine states. The stop operator
returns execution to its parent machine; if the machine is a
root, the machine halts.

When a method call is performed over a bound interface,
two components synchronise on the message call, and some
time later on the return value message; it means that the call
and the response are not atomic. If a method call is performed
over an unbounded interface, the component halts.

In Fig. 2 the state machine diagram of the BufferBody
component is shown as an example. In this case, the use of
submachines in the state machine diagram is the developer’s
choice. The choice operator is used with guards controlling
the buffer state; when empty only a put method is allowed;
when full only a get method is allowed; otherwise both
are allowed.

C. Practical Experience

One can wonder to which extent this kind of approach
may scale up, in term of expressivity and convenience of
the graphical language, and in term of feasibility of model-
generation and model-checking.

We have modelled with CTTool a full-fledged case-
study called Common Component Modelling Example (Co-
CoME [16]) using the techniques and tools shown above. As
its name suggests, CoCoME is an initiative for defining a
common component example, and may be used for comparing
different component models. The subset of CoCoME we mod-
elled consists in 16 components, 5 of them being composites.
Furthermore, composite components were designed with up
to 5 layers of hierarchy, stressing the need of hierarchical

Fig. 2. State Machine Diagrams for BufferBody and CBody in CTTool.

component models. In fact this system necessitates hierarchical
components, component multiplicities, collective communica-
tions (for addressing a specific component and broadcasting
a message), modelling of exceptions, and synchronous and
asynchronous method calls.

CTTool generates formal code in LOTOS for either the
global system behaviour, a single component, or an arbi-
trary assembly. Moreover, it has a bridge towards the CADP
toolset [17], which in principle allow:

• simple “press-button” properties, like the absence of
deadlocks, or the absence of certain types of events
(predefined error events);

• more complex temporal properties expressed as temporal
logic formula, or in a formalism that can be translated into
the temporal logic language understood by the model-
checker;

• conformance between the implementation of a component
(computed from the behaviour of its structure) and its
black-box specification, expressed as an equivalence or a
preorder relation (as in [18]).

When generating a LOTOS model for model-checking in
CADP, the CTTool user must give finite instantiations of its
data parameters, depending on the formula he/she wants to
check. We specified instantiations in such a way that we could
check 6 formulas (expressing various usage scenarios) defined
by CoCoME. The generated model had 81 distinct transition
labels (instances of communication events). Its size before
reduction was 1.25 million states / 3 million transitions,
and after reduction by branching bisimulation 9800 states /
33 000 transitions.

As a result of model-checking this model, we were able
to find several errors within the reference specification. Most
of them were related to underspecification of requirements,
others to non-trivial race conditions within the system. The
results of this experiment are available in [19].
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D. Evaluation of the current framework

At the current point of our framework development, we have
defined a mapping of Fractal architectural and behavioural fea-
tures into UML 2 diagrams (based on Mencl and Polak work
for the architectural part), and implemented a prototype based
on the TTool toolkit that enables us to perform generation of
finite-models and model-checking of temporal logic formulas
for those diagrams. We do not address all concepts of the
Fractal specification (in particular no composite bindings, no
shared sub-components and no collective interfaces).

Within these limits, we have designed a full set of tools
allowing the modelling of components, generation of finite,
hierarchical, LTS-based representations of their behaviours,
and model-checking of temporal-logic properties.

Technically we have used the internal TURTLE format of
the toolkit, extended by a component hierarchical structure, to
give the semantics of our diagrams. This can be viewed as
an informal semantics (defined by the code), while the formal
semantics is still to be provided. We intend to do this in term of
the pNets model [20], that is a very expressive parameterized
and hierarchical model for synchronised labelled transition
systems.

IV. SPECIFYING GCM/PROACTIVE COMPONENTS

In the previous section, we tried to be as compliant as
possible with the Fractal specification. Most Fractal imple-
mentations can be modelled with the techniques described
above. However, our specific goal is to address GCM/ProAc-
tive specifications (see section II-C), and there are several
limitations in the current model that prevent the specification
from capturing the desired behaviour. We also want to provide
the GCM/Proactive developers with primitives allowing them
to express their designs at the right level of abstraction. Here
are the most important missing features, using our Producer-
Consumer example:

• Asynchronous Method Calls: the GCM/ProActive model
uses a queue in the server side, and proxies in the client
side, whereas in CTTool these had to be explicitly mod-
elled by the user by adding two additional components:
BufferQueue and ConsumerProxy;

• Service policy: it is possible to define the activity of a
component in GCM/ProActive but this is not captured
by CTTool; we had to encode its behaviour description
within a state-machine as in Fig. 2;

• Multiplicity: instantiation and binding of multiple in-
stances of a component do not exist in CTTool, so multi-
ple producers/consumers had to be explicitly instantiated
at design level.

Additionally, CTTool does not offer constructs for express-
ing other GCM/ProActive features such as Multicast and Gath-
ercast Interfaces, that are extensively used in Grid applications
to develop applications that can take advantage of complex
and massively distributed grid insfrastructures, without fixing
the numbers of components in the source code. Additionaly,
multicast and gathercast interfaces allow the specification

of specific communication mechanisms, to optimise network
usage, and to hide latency as much as possible.

Fig. 3. Active Components representing GCM/ProActive component.

In the rest of the paper we propose answers to these
constraints by extending the language with abstractions for
the various aspects of Active Components listed above. For
the time being we do not address the specification of Frac-
tal/GCM non-functional management interfaces as well as of
reconfiguration of dynamic architectures. We hope to include
these features in the mid-term in order to answer a wider set
of GCM/ProActive designs.

A. Language Extensions

We start by specialising the component diagrams for active
components: a GCM/ProActive component provides a request
queue that collects in an asynchronous manner the messages
arriving on its provided interfaces, and a service thread that
serves requests in the queue. Within the Component Diagram,
this will appear as a novel kind of component with a dedicated
icon nearby the component icon (see Fig. 3).

To ensure compact and flexible specification of Grid ap-
plications that may be deployed on large infrastructures, and
where some subcomponents may represent groups of similar
component instances, sharing some part of the computation,
we provide a notation for parameterized active components.
More precisely, an active component can have one or more
parameters, that are indexes ranging over some built-in or
user-defined type. A consequence of this is that we need a
more expressive syntax and semantics for ports and connec-
tors; indeed, both in and out ports of active components
can be multiple when they are connected to parameterized
components. The precise addressing or multicasting strategy
will be defined in the associated state machine. In Fig. 2 we
had two explicit instances of the Consumer component, with as
many bindings from the Buffer to the components; in Fig. 3
we represent any possible configuration of a buffer with c
Consumers and p Producers in a single diagram.
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Ready

Ready

buff.isFull()buff.isEmpty()

else

Put body
entry/ x=buff.push(val)

active component Buffer
BufferImpl buff;

policy initActivity (Int size) policy runActivity ()

Init body
entry/ buff.init(size)

service Get ()        via b2 (Int c)
Data x;

service Put (Data val) via b1(Int p) method ....

Get body
entry/ x=buff.pop()

! return (x) via b2(c)

ServeOldest(Get)

ServeOldest (Put)

ServeOldest ()

Fig. 4. State machines for the Buffer component

Then, queues and proxies no longer have to be explic-
itly defined by state machines as was the case in CTTool
(compare Fig. 3 with Fig. 2); they will be handled implicitly
by the diagram’s semantics when generating the semantic
representation of the components (see Section IV-B). The
mechanism that links together those queues and proxies with
the user-defined service policies is also implicit. Concretely,
we introduce a new graphical construct for modelling the
behaviour of an active component. This construct resembles
a “region” diagram, but its header label starts with a “active
component” keyword, and includes the component name and
declarations of its instance variables. Its sub-regions contain
the state-machines required for defining the service policy of
the component; this includes the policies and the services state-
machine, that we describe in the next section, but also auxiliary
sub-machines that can be used to enhance readability of the
diagrams.

a) Policies: The service policy is FIFO by default,
or can be specialised by the application developer with
a set of methods manipulating the queue. The component
goes through three states in its lifecycle: InitActivity,
RunActivity, and EndActivity. The first and last take
care of initialisation and termination policies respectively,
whereas RunActivity gives the component activity, usually
as an infinite loop. An example of a RunActivity state-
machine is shown in Fig. 4; the submachines in it are using
predefined service policy methods from the ProActive API,
named Serve*. These methods allow for various policies
of selection and execution of requests in the queue, and
that take as argument zero, one or more method names;
e.g. "ServeOldest(Put,Get)" means “pick the oldest

Graphical Element Representation
Components

(Parameterized) Active Component

Multiple interfaces

Multicast and Gathercast
State Machines

Active Component Behaviour
(with local variables)

Regions, Forks and Joins
Request on a required interface

Wait for a Future Update

TABLE III
NEW GRAPHICAL ELEMENTS FOR ACTIVE COMPONENTS

request in the queue matching one of the method names Put
or Get.

b) Services: Then the behaviours of those methods (that
are the public services offered by the component) have to
be specified themselves by state machines. There must be
one such state machine for each public method offered on
a provided interface of the component, and it appears in the
active component behaviour with a special header starting with
the keyword service. This header has a specific syntax,
taking care of: the bindings of the request arguments, but also,
for services coming on multiple interfaces; and the binding
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of the parameters of the interface (after the via keyword).
The detailed code of these services need not be detailed here
(this will only be required in the implementation code later),
but all communication events with other components (method
calls on required interfaces) should be there, and also the part
of the control flow and of the data flow that will influence
the behaviour. Note in Fig. 4 that these machines may access
and modify the local variables of the component, that were
declared in the header label of the active component behaviour
diagram, and shared between the services.

c) Component Synchronisation: How does this all work
together? The formal model for these components was de-
scribed in [21]. The various state machines encoding prede-
fined or user-defined policies, the component provided ser-
vices, and the automatically generated queues and proxies
are assembled using a synchronisation network, that is also
automatically deduced from the component diagram. This
network implements the GCM/ProActive semantic model, as
described in Section II-C.

Examples: the RunActivity state machine of the Con-
sumer component is a simple loop that repetitively calls the
get method on its C1 interface, then waits (explicitly) till it
gets an answer. The get call appears within a send message
transition event, that corresponds (implicitly) to the creation
of a future proxy. The next transition event is a special
synchronisation action use that is forcing the component
thread to wait for the return of the get result.

policy runActivity ()
Data val;

Ready

Ready

val = !get() via c1()

use (val)

active component Consumer

Fig. 5. State machine for the Consumer component

d) Distributed or Concurrent Services: Although
GCM/ProActive components have a unique service thread,
it is necessary to define concurrent services within the
component activity. A composite component delegates
services to its subcomponents, each of them having its
own service thread. But we do not want designers to give
implementation details of the component architecture within
state machines. So, in general, the black-box specification
of a component may have one or more parallel activities,
defined as multiple services within the RunActivity. This
is done using fork operators, denoting services running in

parallel. Each one of these services defines its own service
policy and its own local set of variables.

e) Interfaces between multiple components: Then, col-
lective interfaces may be defined for dealing with distribu-
tion and synchronisation of method calls amongst groups of
distributed components. We propose graphical primitives for
representing multicast and gathercast interfaces (Fig. 6). These
were inspired by [22], and are:

• Multicast client interface: a client interface connected to
several (N ) server interfaces. The designer may spec-
ify the distribution policy of the method calls and the
method’s arguments. Among those policies we distin-
guish broadcast and scatter; broadcast sends the same
message, whereas scatter splits the method’s arguments
into N pieces and distributes these towards the servers.

• Gathercast server interface. Symmetric to a multicast
interface, N client interfaces are connected to a single
server one. Multiple messages are gathered, and a single
call is sent to the server component. This interface also
works as an implicit barrier, synchronising all clients.
The designer may specify the distribution policy of the
method’s results symmetrically to the multicast.

Fig. 6. Multicast interface on the left, and Gathercast interface on the right

B. Model Generation

For the user-defined part of the component’s behaviour,
and for their synchronisation, the model generation is the
same than in the current CTTool implementation. In addition,
modelling of GCM/ProActive’s queues and proxies will have
to be automatically generated during the translation into the
internal model, before translation to the model-checker format.

A queue is created for each Active Components. For that, we
use the model defined in [21] of a ProActive component and
create automata encoding its behaviour. Note that as we cur-
rently work with finite-state model-checkers, an instantiation
of the queue is mandatory. An example of such queue with
length of 2 is given in Fig. 7 expressed as a state machine
in CTTool. Roughly, there is a state for each combination
of pending methods within the queue, and transitions over
incoming and outgoing events, i.e. push/pop. Although the
diagram looks complex, it is not visible by the user.

Finally, for each future within state machines, we create a
proxy. The automaton takes care of the remote call and of the
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Fig. 7. Finite instantiation of the buffer queue

future value update. Within CTTool, a similar behaviour can
be achieved with the state machine shown in Fig. 8; similarly
as above, the tool handles these proxies automatically.

Fig. 8. Generated proxy for the Consumer component

Note that some static analysis of the component state-
machine can be used to determine the points in the graph
where the future values are used. There are cases where it can
be automatically proved that a future value is used exactly
once in each possible execution path; as a consequence the
corresponding proxy machine can be terminated at this point
(this is the case in Fig. 8). A difficulty is that GCM/ProActive
allows futures to be passed as arguments to remote components
(this is called automatic continuation); so in absence of infor-
mation on the context, potentialy all arguments of received
requests can be futures, or be structures containing futures.
This feature makes the analysis more difficult, and is subject

of further research.

V. CONCLUSION

In this paper we have shown how Fractal and Grid Compo-
nent Model (GCM) components can be specified using UML 2
diagrams for both architectural and behavioural specifications.
For the architectural specification we based our work on
previou work by Mencl and Polak [15], leaving our main
contribution on the behavioural specification. For the latter,
we used UML’s State Machine Diagrams endowed with formal
semantics denoting precisely the behaviour of Fractal compo-
nents.

The graphical specification language is formal enough to be
model-checked, and it fits well with most software engineer’s
expertise as it is based on widely used UML 2 diagrams.
Further, the language allows for incremental refinement of
components, meaning that at each level a component speci-
fication may be refined if needed, or a final implementation
may be specified. We have developed this framework using
only existing UML diagrams, and yet it is applicable to
various implementations of the Fractal specification. Indeed,
we support this language in a tool called CTTool, and we tested
our methodology by specifying a large scale case-study. We
have both the tool and the case-study available at our website 1.

In a second phase, we also give the basis for addressing
distributed components specification, concretely in the domain
of GCM/ProActive components. For that, we propose to create
a new UML profile which brings constructs and semantics
for dealing with distributed active components. An advantage
of this approach is that we let designers capture the business
behaviour of the system, not the complex semantical encodings
of the underlying communication protocol. Moreover, the
language is extended to deal with parameterized (multiple)
components and collective interfaces. These fit well with
system designs taking into account large number of nodes
distributed on the Grid, and allow precise and concise speci-
fication of distributed components.

CTTool is used to create formal LOTOS specifications that
suit as input for state-of-the-art model-checkers. However, the
diagnostic relies on the generated model, not on the user
model. Therefore, it may be complex to understand the nature
of the problem. The solution is to find a safe mapping back
to the specification. We expect to study further this issue in
the next release of our tool.

Finally, we also plan to study the conformance of a com-
ponent implementation given by a component diagram (and
the set of subcomponents’ state machines) with its black-
box behaviour given by a state-machine. Ior the moment we
leave unspecified the meaning of the equivalence (or preorder).
Many existing work can apply here, starting with all notions of
simulations and bisimulations inherited from process algebras.
They have to be adapted to our component model though, e.g.
in a way similar to the component substitutability relations of
[18].

1http://www-sop.inria.fr/oasis/Vercors
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